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Abstract

The linear complexity, £(s™), of a sequence s" is defined as the length of the short-
est linear feedback shift-register (LFSR) that can generate the sequence. The linear
complexity profile, L,n = LyL;....L,, of s® (where I; = £(s'), 1 < i £ n, denotes
the linear complexity of first # digits of s”) provides better insight into the complexity
of an individual sequence. By the increment sequence A,» = AjAz---A,, in a linear
complexity profile, LyL; - - L, , we mean the subsequence of positive numbers in the
sequence Ly (Ly — L1)...(Lp — Lp—1). For example, if Ly ---Lg = 02223, its incre-
ment sequence is A,z = A1Az = 21. If we associate a sequence s™ over F with an
element S(z) in the field of Laurent series over F in the following way

M =31830003, = S(2) = 8127+ 827 o 527

S(z) can then be written as

S(2) = aol(z) + ] .
al(z) +

az{z) +

. 1
)

where a;(z) € F[z], the ring of polynomials in z over F, for all ¢ > 0. It will be
shown that, for a sequence s™, the increment sequence A,» of the linear complexity
profile of s* is as follows. (1) If 2 - X, deg(ai(z)) — deg(ax(z)) < n, then A =
deg(a1(z)) deg(az(z)) - - -deg(ar(2)). (2) If 2- %, deg(ai(z)) — deg(ar(z)) > n, then
A, = deg(ay(z)) deg(az(z)) - - -deg(ap(z)), where k' = max{j : 2 - 17, deg(ai(z) —
deg(a;j(2)) < n}.

J.J. Quisquater and J. Vandewalle (Eds.): Advances in Cryptology - EUROCRYPT ’89, LNCS 434, pp. 571-585, 1990.
© Springer-Verlag Berlin Heidelberg 1990



572

1 Introduction

It has long been known that there is some sort of connection between linear complexity
concepts and continued-fraction theory Recently, H. Niederreiter has done lots of works on
the problem [NIED 87] [NIED 88] [NIED 89]. If sequences are associated with the elementsin
the field of Laurent series, the linear complexity profile of a sequence is totally specified by the
degrees of partial quotients in the continued-fraction expansion of the corresponding Laurent
series [NIED 87]. We will prove that the sequence of “jumps” in the linear complexity profile
of a sequence is equal to the sequence of degrees of partial quotients in the continued-fraction
expansion of the corresponding Laurent series. Therefore, sequences with desired linear
complexity profiles can be constructed by choosing the degrees of partial quotients in the
continued-fraction expansion.

We first give a short introduction to continued-fraction expansions in the field of Laurent

series (Laurent series field). A Laurent series in the indeterminate z over the fleld F is an
expression of the form

+o00 )
fiz)= ) a;7

j=—oo
for which a; € F, all 7, and where a; =0 for j > d, where d is some integer. The degree
of fi(z), denoted by deg fi(z), is the largest j (if any) such that a; # 0 and is, by way of
convention, —oo when a; = 0 for all j. For instance, the Laurent series z+1+ 271+ 272 4. ..
has degree 1 whereas the Laurent series 27 + 272 4+ z7% + ... has degree —1. Addition and
multiplication of Laurent series is defined in the same way as for power series. The set of all
Laurent series in z over the field F forms a field that we denote by F(z!). A polynominal
is a Laurent series for which a¢; = 0 for all j < 0. Note that the ring of polynomials in z over
F, denoted by F{z], is a subring of the field F(z~1).

For a Laurent series fi(z), one defines its valuation, || fi(z)], by

[ 2dshl) i f(2) #0
f‘(z)“{o it fi(z) =o.

This is a nonarchimedean valuation because

1£(2) + a(2)]] < max{|| (=), la()II},
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which is stronger than the more usual “norm inequality” in which the right side is the sum
of the two valuations.

For convenience, we summarize without proof some obvious properties of |[.| .

Lemma 1 ||.|| has the following properties:

i) au(l = 1A a2

P2. || fi(2)|| = 0 with equality if and only if fi(z) = 0.

P1.

-

P3. || fi(z) + ai(2)|| £ max{||fi(2)]], lg:(2)I}, with equality if
1A # g2

P4 1) =1.

P5. [ fi(z)7 | = A=)

P6. || = fil2)l| = [Lfil2)].

P7. If fi(z) € F[z] and fi(z) # 0, then ||fi(z)|| = 1.

Euclid’s division theorem for polynomials can be restated in terms of ||.|| as follows.

Theorem 1 (Euclid’s Division Theorem for Polynomials) If f(z) and g(z) are in F(z]
with g(z) # 0, then there ezists unique ¢(z) and r(z) in F[z] such that

f(z) = q(2)g(z) +v(z)  and [Ir(z)f] <[lg(2)]-

A continued-fraction in the indeterminate z over the field of F is an expression of the

form

a.o(z) + 1

a(z) + a T

-t
a.‘-(z) + .
where a;(z) € F[z] for all i > 0 and either (1) dega;(z) > 1 (lai(z)|| = 2) forall i > 1 (in

which case the continued-fraction is called to be infinite) or (2), for some positive integer N,

-
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dega;(z) > 1for 1 € ¢ < N and ¢;(z) = 0 for all # > N (in which case the continued-fraction
is said to be finite). The polynomials a;(z) are called the partial quotients of the continued-
fraction. There is a unique way in which the indicated divisions in a continued-fraction can
be carried out to give a Laurent series, and we thus regard hereafter a continued-fraction as

an element of F(z™1).

Given any continued-fraction, let [ao(z);a:1(2),..., a.(z)] denote the finite continued-
fraction obtained by setting a;(z) = 0 for all i > n, i.e., the finite continued-fraction
1
ao(2) + I
a{z) +
1( ) dg(z) T+
S
a;(z

Every finite continued-fraction can, after clearing of denominators, be written as the ratio
of two polynomials, i.e., as an element of F(z), the field of rational functions over F. Thus

one can write

z)ia1(z), -~ ,an(z =p,,(z) n
[ao( )1 1( )1 ’ "( )] qn(z)) 20,

where pn(z) and ¢.(z) are polynomials, defined recursively by

po(z) =ao(z), pu(2) = ar(2)pa-1(2) + pe-2(z) (k> 1), (1)
(=) =1, @(2) = ai(2)ga-1(2) + @a-2(z) (A 21) (2)

where, by way of convention, p_;(z) = 1 and q_;(z) = 0. The rational function %% is
n
called the n-th convergent of the continued-fraction [ao(z); a1(2),- -+, ai(z),.. ]

The following lemma is proved in [LID-NIE 83, pp.235-239].

Lemma 2 The convergents of [ao(z); a1(z),...,ai(2),...] have the following properties:

Pr(2)qu-1(2) — pra()aa(2) = (-1)*F (k2 1) (3)

or, equivalently,

n(z) pa(s) (1
25 @ - awaE 2
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Fquation (8) implies that
ged (pi(z), i(2)) = 1 fori> 1. (4)

The following property of convergents, which appears to be new, will play an important

role in the sequel.

Lemma 3 The denominator g,(z) of the n-th convergent to [ag(2); a1(2),...,ai(z),...] sat-
isfies
llga(2)l = 1, (8)
llgn(Il = ILlles()ll, m21 (6)

provided a,(z) # 0.
Proof. Because go(z) = 1, we have ||go(z)[| = 1 as claimed. Because

a1(z) = ai(z),

(6) holds trivially for n = 1.
Suppose that (6) holds for 1 < n < N. Because ||a;(z)]| > 1 for 1 <j < N, |lgn-1(2)] is
strictly smaller than |lg~(z)(|. Thus

lawsa (2l = llawsa(2)gn(z) + av-a(2)l]
= |laxt1(z)gn(2)]|| (P3 in Lemma 1)
= llavta(2)ll -llan (=)  (P1lin Lemma 1)
N1

'1:11 llas(2)1l-

This completes the proof by induction.
The following theorem, which is proved in [WES-SCH 79, theorem 2], shows the sense in

which the n-th convergent is the best approximation to

lao(2);a1(2),...,ai(2),...] = §(z).
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Theorem 2 The convergents to [ao(z); a:(2),...,ai(z),...] have the property that, for every
n (32 0), #a(z) is a polynomial with [lg()]| < llanss(2), then, for any polynomial p(z)

such that
p(z) _, pa(2)
g(z) 7 qn(2)’

it must hold that

Pn(z) p(z)

Let gi{z) be an element in F(z~!). If also gi(z) € F(z), then

_z(z)
gl(z) ( )

where 7_3(z) and r_;(z) are polynomials with |{r_;(z)|| > 1. There exist unique polynomials
ao(z) and 7o(z) such that r_5(z) = ao(2)r_1(z) +ro(2) and |re(2)|| < ||r-1(2}||. Equivalently,
ro(2)

r_i(z)

If ||ro(2)]| # O, then by the same argument there exist unique polynomials a;(z) and r1(z)
such that

gi(z) = aoz) +

r_1(z) = aifz) 2 1(z)
() TG

and {|r1(2)]} < |lre(2)|| < ||r-1(2)}|- Continuing in this manner, we must eventually reach the

case rn(z) = 0 because the degrees of 7_;(z),ro(z),71(2), - - - are strictly decreasing. Thus it
r.alz
roilz

follows that we can always write a rational function as a finite continued-fraction

r_2(z)

r_i(z

= [ao(2); aa(z), -+, an(z)].

—

The converse statement that every finite continued-fraction [ao(z);a1(2), ..., an(z)] repre-

sents an element of F'(z) was noted previously.

Ezample. r,(z) = 22+22+1, r_y(z) =24
ao(z) = 0,
ro(z) = 2+2741,

a(z) = z+41, mz)=z2t4+z41,
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ax(z) = z, mz)=z+41,
az(z) = z, ri(z) =1,

aq(z) = 241, r4z)=0,

r_a(z) 242241
roa(z) zt
_ 1
T oz41+ =
z+ 1
z+z+1

= [0;z2+1,2z,2z,z+1]

2 Relation between Linear Complexity Profile and
Continued Fractions

" = 3,83---8, where s;,392,...,9, are from

The linear complezity L£(s™) of a sequence, s
a field F, can also be defined as the smallest nonnegative integer L such that there exist

€gyC1,++,cp in F satisfying
crsisL +CLo18i4L—1 + -+ co8i =0, 1 <i<n-1L, (7)

where ¢z # 0. The monic polynomial cf*(cz D¥ + ... 4+ c1D + co) is called a characteristic

polynomial of the sequence; we remark that the characteristic polynomial is unique if and
only if L < n/2.
The linear complezity profile L,» is defined as the sequence

L,n = L1L2"'Ln

where L; = L(s*). The definition of linear complexity implies
L; > Lj for i > j. (8)
We associate a sequence s™ over F with an element S(z) in the field of Laurent series

over F in the following way

n -1

=818y 8, = S(2) =812 sz 4 F sz (9)
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We see immediately that the sequence s™ and the sequence s"*™ = s"0™ (where s"0™ denotes
the concatenation of s™ and 0™) are associated with the same element 3°7..; 3;z~% in the field
of Laurent series. Therefore, we can implicitly expand s® = s135,--- 3, to a semi-infinite

sequence s by concatenating s" with infinitely many zeroes,
8% = 5187+--8,000--- .

Suppose that S(z) = s;z271 + 52277 + -+ is a Laurent series with ||S(z)|| < 1. Letting
g(z) = cpzP 4+ -+ + c1z + ¢, ¢z # 0, we see that the left side of (7) is the coefficient of
z~% in the product S(z)g(z). Thus, if (7) holds, there is a unique polynomial p(z) such that
ll2(z) = S(2)q(2))|| < 2™+ and hence (by P1 and P5) such that

p(z) -
— =S|l <2 (10)
125 - st
Moreover, |[p(z)]| < lla(z)lf = 2*.

Conversely, if (10) holds where ¢(z) = czz¥ +---+¢12+¢o and p(z) are polynomials with

llg(2)]] = 2%, then (7) also holds and |[p(z)]| < ||g(2)||. We have thus proved the following

lemma.

Lemma 4 The linear complezity of a sequence s™ = 8138, ... 8, 15 equal to the minimum degree

of polynomials g(z) such that there exists a polynomial p(z) satisfying

12 s <o,

q(=)
where $(z) = 81271 + 5327 + ... F 5,27". Moreover, c;'¢(z) is a characteristic polynomial

of 8", where cp is the leading coefficient of ¢(z).

Because S(z) is in F(z), S(z) can be expressed as a finite continued-fraction

1

5(2) ao(z) +

I

ar(z) + P

Il
=)
21

-
—_
t
~——
3
2
—_
e
=
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for some N (where the polynomial part vanishes because ||S(z)|| < 1). Notice that ae(z) is
always zero.
The following theorem is proved in [NIED 87]. For readers’ convenience, we give an

alternative proof here.

Theorem 3 The linear complezity profile, L,«, of the sequence 3™ is totally specified by the
degrees of the partial quotients in the continued-fraction ezpansion of S(z), in the following
way:

Liifdegai(z)>1, L; =0, 1 <t < degay(z);

L2 L; = degai(z), deg a1(z) < 7 < degaz(z) + deg ai(z);
2
L; = deg az(z) + degai(z), degas(z) + 2dega;(z) < i < degas(z) + 2 3 degai(z);
=1

: N-1 N=2 N1
L; = 3 degai(z), degan—1(z) +2 T dega;(z) <t < degan(z) +2 5 degaiz);
i=1 =1 =1

Proof. L1 is obvious because dega;(z) > 1 implies 31 = ... = S(gega,(s)-1) = 0-
Counsider the convergents

Pn(z)
gn(2)

= [0;a1(2), a2(2), -+ -, an(2))], n>1.

We know from Lemma 2 and Lemma 3 that

Pr+1(2) _ pa(z) (="

gni1(z)  gn(2) - gns1(2)Pnsa(2)
and that §, = deg{gn(2)gn+1(z)] = deganti(z) + 27, degai(z). This implies that the

coefficients of z7° for 1 < { < ¢, in the Laurent series for £otl Z] and E23%! are the same

Qn+1 z q» z
but that the coefficients of 2%+ are different. Thus

Pn(z) ;-1 ’ ~(¢n~1) ’ -t
- 8,2 +...+3_z n +3 z "+..-
Qn(z) 1 én—1 én
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where
s, o= 8 for1<i1<€.—1, and
32” # St

We have then )

Pniz ~&n

=t -5 =27 (11)

12255 - sl
According to Lemma 4,
L(3187--3¢,) > deggn(z). (12)

By the same argument that gives (11), we have
pn+l(z) =¢
_— — 2 ("+l)_ 13
128 s (13)

Theorem 4 shows that there exists no polynomials p(z) and ¢(z) with ||g(2)]| < llgns1(2)]]
such that ) )

2(2) _ g < 142 g

122 s < 12 - s

That is to say, g.+1{z) is the polynomial with minimum degree such that (13) holds.
It now follows from Theorem 2, (12} and (13) that

L(3182...8;) = deg gny1(z) for {n L1 < npa-

This proves L2.
By the increment sequence AjA;-.- A, in a linear complexity profile, Ly Lz« L, , we
mean the subsequence of positive numbers in the sequence L; (Lz — Ly} .. . (Ln —Ln-1). For

example, if Ly .--Lg = 02223, its increment sequence is A A, = 21.

Lemma 5 The linear complexzity profile L1 L, ... L, is uniquely determined by its increment

sequence, and conversely.

Proof. The linear complexity profile trivially determines the increment sequence. The incre-
ment sequence uniquely determines the linear complexity after the k-th jump as &, + &, +

---+ Ay, Suppose this jump occurs at position 14 1,1.e., Lip1 = A1+ 8+ + A, > L—1=
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Ay + Az + -4 Ay, By the “Length-Change Property of LFSR’s” proved in [MASS 68,
theorem 2], Liyy # L; implies L;1; = i + 1 — L; for all i > 0 (Lq = 0 by way of convention).
Thus

141 = L+ L (14)
= 2L + (Lipa — L) (15)
= 2A1+ A+ -+ Basy) + As (16)

Thus, the location ¢ + 1 of the k-th jump (L;+1 — L;) is also uniquely determined by the
increment sequence. This proves the lemma.
For instance, suppose that the increment sequence of a linear complexity profile is 132,

the linear complexity profile can only be
L, =1%4%> . (17)

With the aid of Lemma 5, we now have our main result.
Corollary 1 to Theorem 3. If a semi-infinite sequence s*° = 3155-+- over a field F is as-
sociated with the element S(z) = 2, s;z7* in the field of Laurent series over F, then the
increment sequence of the linear complezity profile of s is equal to the sequence of degrees

of the partial quotients in the continued-fraction ezpansion of S(z), i.e., Ay = deglaw(z)].

Corollary 2 to Theorem 3. If a finite sequence s™ = 313;---3,, over a field F is associated
with the element S(z) = L0, 8:27" = [0; a1(2),a2(z), -+, ax(2)] in the field of Laurent series

over F', then the increment sequence A,n of the linear complexity profile of s™ ts as follows.
1. If2- 5% | deg(ai(z)) — deg(aw(z)) < n, then A, = deg(ai(z)) deg(az(z)) - - - deg(aw(2)).

2. If 2.5k deg(ai(z)) —deg(ai(z)) > n, then A,n = deg(a;(z)) deg(aa(z)) - - - deg(aw(2)),
where k' = maz{j : 2- Zj=1 deg(ai(z) — deg(a;(z)) < n}.

These corollaries tell us how to construct (finite and infinite) sequences with desired
linear complexity profiles.
Ezample. Construct all sequences over F; that have the linear complexity profile 14%6>

of (17). The increment sequence of this linear complexity profile is 1 3 2 . According
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to the Corollary 1 to Theorem 3, a sequence with this increment sequence has the finite

continued-fraction

S(z) = ! - ,
ay(z) + 7
az(z) m

where deg a;(z) = 1, deg a;(z) = 3, deg as(z) = 2. There are 2° ways to choose a polynomial
over F; with degree i. There are thus 2!2°2% = 64 different choices for S(z), i.e., there are
64 semi-infinite binary sequences having the linear complexity profile of (17). For a specific

such sequence, we choose

ai{z) = z,
a)(z) = 2,

as(z) = z*

‘We have then

S(z) =

By long division, we find
S(z) = PR S R NP L L LN

The desired sequence is
% = 1(000100011001010111110).

If a semi-infinite sequence 3™ corresponds to the element S(z) of the Laurent field in the

manner (9) such that the continued-fraction expansion is infinite, i.e.,

S(z) =[0;a1(2),...,au(z),.. ],
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then by using the k-th convergent of S(z) to approximate S(z), we can see that L1 and L2
in Theorem 3 still hold. If k goes to infinity, the k-th convergent then approaches S(z).
Therefore, L1 and L2 in Theorem 3 and the Corollary 1 to Theorem 3 are also valid for the

case that the continued-fraction expansion of S(z) is infinite.

3 Remarks

In [NIED 86], Niederreiter showed the following result. If the continued-fraction expansion
of §(z) is infinite, which is the same as saying that S(z) is irrational, the linear complexity

profile satisfies
—(z +1-K(S)<L: < (1. +K(S)) foralli>1, (18)

where L; = L£($18;---3;) and K(S) = sup deg a;(z). We now show that (18) is a simple
consequence of L2 in Theorem 3 and the “length-change property of LFSR's” for the case
that the continued-fraction expansion of S(z) is infinite.

We restate (2) in Theorem 3 as follows.
For

k-1
dogau(s) +2 3 degay(s) i < degans(s) + 23 degas(s) — 1, (19)
I+1 i=1
where k£ > 1, we have
)
L; = Z dega;(z) (20)
k=1
= S(degau() +23 dega,(z) + degai(2)) (21)
j=1
< -2—(1 + deg a,(z)) (22)
with equality when i = deg as(z)+2 2,-1 , where the last step follows from the left inequality
of (19).
Further,

ke
> degay(2)
i=1
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= %(alﬁ»l(z) +23 dega;(z) — arsa(2)).

=1

It follows then from the right inequality of (19) that
1. '
L > 5(1 + 1 —degas1(z)) (23)

with equality when ¢ = deg ap41(z)+2 }:?:1 a;(z)—1. Inequalities (22) and (23) immediately

give (18).
Baum and Sweet [BAU-SWE 77] showed that all partial quotients of the continued-
fraction expansion of S(z) have degree one if and only if

§*(z) +28(z) + 1= (14 2)9%(z) (24)
for some polynomial g(z). Their equation (24) is the same as

3 = 1, and

S2i41 = S+ 8 forz > 1.

The Corollary 1 to Theorem 3 implies then thet all sequences s, for which S(z) satis-
fies (24), have the linear complexity profile 112233 ..., defined as the perfect linear com-
plezity profile (PLCP). This is consistent with the result proved in [WAN-MAS 86], namely,
that s has a perfect linear complexity profile if and only if

8 = 1,

82i41 = 82, + 3; for z > 1.
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