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Abstract 

The linear complexity, d(C), of a sequence s” is defined as the length of the short- 
est linear feedback shift-register (LFSR) that can generate the sequence. The linear 
complexity profile, Lam = LlL2.. . .L,, of s” (where L; = C(s'), 1 < i 5 n, denotes 
the linear complexity of first i digits of s”) provides better insight into the complexity 
of au individual sequence. By the increment sequence A,” = A, Aa . . . A,,, in a linear 
complexity profile, ~5~ Lz . - . L, , we mean the subsequence of positive numbers in the 
sequence L1 (Lz - -Cl). . . (L,, - L,_l), For example, if L1 - e. 1;~ = 0 2 2 2 3, its incre- 

ment sequence is A,a = AlA = 2 1. If we associate a sequence s” over F with an 
element S(Z) in the field of Laurent series over F in the following way 

sn = .slJ2 “‘3, +=+ S(z) = s& + szt-2 + * * * + S,Z-n, 

S(t) cm then be written as 

S(z) = at(z) + 
1 

1 
1 

al(z) + 
a2(s) + 

***+& 

where ai(.z) E F[r], the ring of polynomials in t: over F, for all i 2 0. It will be 
shown that, for a sequence s”, the increment sequence A,” of the linear complexity 
profile of s” i.s as follows. (1) If’ 2 * & deg(ai(z)) - deg(ak(z)) 5 n, then A,” = 
deg(al(z)) deg(a2(z)) - .,deg(ak(z)). (2) If 2 . Cf=, deg(a;(z)) - deg(ak(z)) > n, then 
A = deg(al(z)) deg(ar(z)) . . -deg(ak,(z)), where k’ = max{j : 2 . cf=, deg(a;(z) - 
dez(aj(r)) < n}. 

J.J. Quisquater and J. Vandewalle (Eds.): Advances in Cryptology - EUROCRYPT ‘89, LNCS 434, pp. 571-585, 1990. 
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1 Introduction 

It has long been known that there is some sort of connection between linear complexity 

concepts and continued-fiaction theory Recently, H. Niederreiter has done lots of works on 

the problem [NIED 871 [PITIED 881 [NIED 891. If sequences are associated with the elements in 

the field of Laurent series, the Linear complexity profile of a sequence is totally specified by the 
degrees of partial quotients in the continued-fraction expansion of the corresponding Laurent 

series [NIED 87). We wil l  prove that the sequence of “jumps” in the linear complexity profile 

of a sequence is equal to the sequence of degrees of partial quotients in the continued-fraction 

expansion of the corresponding Laurent series. Therefore, sequences with desired linear 

complexity profiles can be constructed by choosing the degrees of partial quotients in the 

continued-fraction expansion. 

We first give a short introduction to continued-fraction expansions in the field of Laurent 
series (Laurent series field). A Laurent series in the indeterminate I over the field F is an 

expression of the form 

I = - -  

for which aj € F ,  all j ,  and where aj = 0 for j > d, where d is some integer. The degree 

of fi(z), denoted by degfr(z), is the largest j (if any) such that aj # 0 and is, by way of 

convention, -00 when aj = 0 for all j .  For instance, the Laurent series z + 1 + z-l + z-’ +. . . 
has degree 1 whereas the Laurent series + I-’ + z-’ + . . . has degree -1. Addition and 
multiplication of Laurent series is defined in the same way 8s for power series. The set of all 

Laurent series in t over the field F forms a field that we denote by F(z-’). A po lynomina l  

is a Laurent series for which aj = 0 for a l l  j < 0. Note that the ring of polynomials in z over 
F ,  denoted by F [ z ] ,  is a subring of the field F(z- ’ ) .  

For a Laurent series fi(z), one defines its valuation, llh(z)/l, by 

This is a nonarchimedean v a h a t i o n  because 
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which is stronger than the more usual “norm inequality” in which the right side is the s u m  

of the two valuations. 

For convenience, we summarize without proof some obvious properties of 11.11 . 

L e m m a  1 11.11 has t h e  following properties: 

P4. lllll = 1. 

Euclid’s division theorem for polynomials can be restated in terms of 11.11 as follows. 

Theorem 1 (Euclid’s Division Theorem for Polynomials) Iff(.) andg(z) are in F[z] 
with g(z) # 0, t h e n  there  mists unique q(z)  and r ( z )  in F[r] such that  

A continued-fraction in the indeterminate z over the field of F is an expression of the 

form 

’.. + I 

.;(z) f - - .  
where a;(.) E F[z ]  for all i 2 0 and either (1) dega,(z) 2 1 ( / Ia , (z) / l  2 2) for all i 2 1 (in 

which case the continued-fraction is called to be infinite) or (2), for some positive integer N ,  
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deg a;(.) 2 1 for 1 5 i 5 N and a;(.) = 0 for all i > N (in which case the continued-fraction 

is said to be finite). The polynomials u ; ( z )  are called the partial quotients of the continued- 

fraction. There is a unique way in which the indicated divisions in a continued-fraction can 

be carried out to give a Laurent series, and we thus regard hereafter a continued-fraction as 

an element of F( z-I) .  

Given any continued-fraction, let [aO(t); al(z), . . . , an(t)] denote the finite continued- 

fraction obtained by setting .;(.) = 0 for all i 2 n, i.e., the finite continued-fraction 

1 
1 ao(z)  + 

al(z) 4- a* (z )  + 
..*  -+ & 

Every finite continued-fraction can, after clearing of denominators, be written as the ratio 

of two polynomials, i.e., as an element of F ( z ) ,  the field of rational functions over F. Thus 

one can write 

where pn(z) and qn(.) are polynomials, defined recursively by 

Po(.) = ao(4 ,  pk(e) = ak(L)Pk-l(z) +Pk-2(z) (k > - 1)) (1) 

40(-2) = 1, Q k ( 2 )  = ak(z)qk-l(z) i- % - I ( = )  (k 1 1) (2) 

where, by way of convention, P-~(Z) = 1 and q-l(.z) = 0. The rational function 'li"f is 

called the n-th convergent of the continued-fraction [a , ( z ) ;  al (z) ,  1 .  - ,  u,(z), . . .]. 
Qn 

The following lemma is proved in [LID-NIE 83, pp.235-2391. 

Lemma 2 The convetgents of [a&); al(z), . . . , a ; ( z ) ,  . I .] have the foZZowing properties: 

or, equivalently, 
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Equation (3) implies that 

gcd(p;(z),q;(z)) = 1 fo r  i 2 1. (4) 

The following property of convergents, which appears to be new, will play an important 

role in the sequel. 

Lemma 3 The denominator q,,(z) of the n-th convergent to [ao(%);  al(z), . . . , a,(z), . . .] sat- 

isfies 

provided u,(z) # 0. 

Proof. Because qO(z) = 1, we have 11q,,(z)1[ = 1 as claimed. Because 

(6) holds trivially for n = 1. 

Suppose that (6) holds for 1 5 n 5 N .  Because \laj(z)l/ > 1 for 1 5 j 5 N ,  IIqN-l(z)ll is 

strictly smaller than 11q~(z)11. Thus 

This completes the proof by induction. 

The following theorem, which is proved in [WES-SCH 79, theorem 21, shows the sense in 

which the n-th convergent is the best approidmation to 

[ao(z) ;  u1(z) ,  . . . , U i ( Z ) ,  . . .] = S(Z). 
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Theorem 2 T h e  conuergents t o  [ao(z); u1(z j I . .  . , n i ( z ) , ,  . .] hnue the property tha t ,  f o r  every 

n (n 2 0) ,  if q(z) i s  u polynomiaZ with llq(zjll < IIp,,+l(z)\l, then, f o r  any poZynominZ p(z) 

such that  

it must hold that  

Let gl(z) be an element in F(2-l) .  If also m(z) E F ( z ) ,  then 

where r-2(2) and r - l ( z )  are polynomials with l/r-1(z)]l 2 1. There exist unique polynomials 

~ o ( z )  and T O ( % )  such that r - 2 ( 2 )  = u o ( ~ ) r - ~ ( z ) + r o ( z )  and ] ~ r o ( z ) ~ l  < ~~r-l(.z)l~. Equivalently, 

If 11ro(z)11 # 0, then by the same argument there exist unique polynomials n l ( z )  and  TI(^) 
such that 

and llr1(z)ll < 11ro(z)11 < llr-l(z)l/. Continuing in this manner, we must eventually reach the 

case r N ( z )  = 0 because the degrees of r - I ( z ) ,  ro(z ) ,  rl(z), . . . are strictly decreasing. Thus it 

follows that we can always write a rational function f i  as a finite continued-fraction 

The converse statement that  every finite continued-fraction [a&); al(z), . . . , u,v(z)] repre- 

sents an element of F ( z )  was noted previously. 

Example.  r,(=) = z3 + z z  + 1, T - ~ ( Y )  = z4, 

a*(=) = 0, 

a1(;) = z + l ,  r l ( z j = z 2 + z + 1 ,  

3 2  ro(z)  = z + z -i- 1, 
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~ ( z )  = z ,  r 2 ( z )  = t +  1, 

~ ( 2 )  = t, r s ( t )  = 1, 

u 4 ( z )  = t + 1, r 4 ( ~ )  = 0, 

r-2(z) 2 + z2 + 1 - -  - 
r-1(=) z4 

1 - - 
1 

1 

z + -  
z + l  

% + I +  

% +  1 

= [o;z+ l , Z , Z , Z +  11. 

2 Relation between Linear Complexity Profile and 
Cont hued Fractions 

The linear complexity L(s") of a sequence, 3" = 3132.. . s, where 31, s2,. . . , 3 ,  are from 

a field F, can also be defined as the smallest nonnegative integer L such that there exist 

q, c1 , * ' * , CL in F satisfying 

CLS;+L + cL-13;+&1 + ... + QS; = 0 ,  1 5 i 5 n - L, (7) 

where CL # 0. The monic polynomial cil(c~DL + . . . + clD + Q) is called a characteristic 

polynomial of the sequence; we remark that the characteristic polynomial is unique if and 
only if L 5 n/2 .  

The linear complezi ty  profile L." is defined as the sequence 

L," = LlLZ.**L, 

where Li = L(s') .  The definition of linear complexity implies 

L; 2 Lj for i > j .  

We associate a sequence 3" over F with an element S(;) in the field of Laurent series 

over F in the following way 

3" = 9192 * * s, * S ( t )  = .qz-1 + s z i - :  + . * .  + s,z-,. (9) 



We see immediately that the sequence s" and the sequence snfm = snOm (where s"Om denotes 
the concatenation of s" and 0") are associated with the same element s;zbi in the field 

of Laurent series. Therefore, we can implicitly expand s" = slsz,. - .  s, to a semi-infinite 

sequence sco by concatenating s" with infinitely many zeroes, 

Suppose that S(z) = s1z-I + S ~ Z - ~  + . . is a Laurent series with llS(z)II < 1. Letting 

q(z)  = C L Z ~  + f C ~ Z  + G,, C L  # 0 ,  we see that the left side of (7) is the coefficient of 

z-' in the product S(z)q(z).  Thus, if (7) holds, there is a unique polynomial p ( z )  such that 

IIp(z) - S(z)q(z)) l l  < 2"iL and hence (by P1 and P5) such that 

Moreover, IIP(Z>II < I l d ~ > l I  = 2 L .  
Conversely, if ( lo) holds where q( z )  = c& +. - . + clz + ~0 and p (  z )  are polynomials with 

Ilq(z)II = 2&, then (7) also holds and / l p ( ~ ) l l  < 11q(z)11. We have thus proved the following 

lemma. 

Lemma 4 The linear complexity of a sequence s" = 3132.. . s, i s  equal to the minimum degree 

of polynomials q(z)  such that there exists a polynomial p ( z )  satisbing 

where S(Z) = s1z-I + s2z-' + . . + J,z-". Moreover, c i l q ( z )  is a characteristic polynomial 

ofs" ,  where CL is t he  feuding coeficieni o f q ( z ) .  

Because S(z )  is in F ( z ) ,  S(z) can be expressed as a finite continued-fraction 

S(Z) = U O ( Z )  + 1 
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for some N (where the polynomial part vanishes because llS(z)II < 1). Notice that a&) is 

always zero. 

The following theorem is proved in [NIED 871. For readers' convenience, we give an 

alternative proof here. 

Theorem 3 The linear complezity profile, L,-, of the sequence soo i s  totally specified b y  the 

degrees of the partial quotients in the continued-fiaction ezpansion of S(z), in the following 

Way: 

L1 ifdegal(z) > I, Li = 0, 15 i < degal(z); 

LZLi=degui(z),  degal(z) < i  < dega2(t)+degal(z); 
2 

i=l 
Li =degaz (~)+dega l ( z ) ,  degaz(2) +2degal(z)  5 i < dega3(z) + 2  C degai(z); 

N-1 N - 2  N-1 

i=l r = l  
L; = C deg ai(z), deg u N - ~ ( z )  + 2 .c dega;(z) 5 i < degaN(z) + 2 C deg ~ ( 2 ) ;  

i=l 

Proof. L1 is obvious because degal(z) > 1 implies s1 = . 

Consider the convergents 

We know from Lemma 2 and Lemma 3 that 

coefficients of z-; for 1 5 i < (,, in the Laurent series for si and "tff are the same 

but that the coefficients of z b  are different. Thus 
Pn Z 
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where 

We have then 

According to Lemma 4, 

~(sisz--.s~,,) 2 degqn(z). 

By the same argument that gives (11), we have 

Theorem 4 shows that there exists no polynomials p(z) and q ( z )  with llq(z)/l < ]]g,,+.1(%)11 
such that 

That is to  say, q,,+l(z) is the po1ynomia.I with minimum degree such that (13) holds. 

It now follows from Theorem 2, (12) and (13) that 

This proves L2. 

By the increment sequence AlA2 4 . . A,,, in a linear complexity profile, L& - - L,, , we 

mean the subsequence of positive numbers in the sequence L1 ( L z  - L1). . . (Ln - Ln-l) .  For 

example, if L1- - .  L6 = 0 2 2 2 3, its increment sequence is A,Az = 2 1. 

Lemma 5 The linear complexity profile L1 Lz  . . . L, is uniquely determined by i t s  increment  

sequence, and conversely. 

Proof. The linear complexity profile trivially determine: the increment sequence. The incre- 

ment sequence uniquely determines the linear complexity after the k-th jump as A, + A2 + 
- -4- Ak. Suppose this jump occurs at position i + 1, i.e., = A, + A2 +. . . + & > L - i = 
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A1 t A, t t &-I. By the "Length-Change Property of LFSR's" proved in [MASS 69, 

theorem 21, Li+l # Li implies L;+l = i + 1 - L, for a l l  i > 0 ( L o  = 0 by way of convention). 

Thus 

Thus, the location i + 1 of the k-th jump 

increment sequence. This proves the lemma. 

- L;) is also uniquely determined by the 

For instance, suppose that the increment sequence of a linear complexity profile is 1 3  2, 

the linear complexity profile can only be 

With the aid of Lemma 5, we now have our main result. 

Corollary 1 to T h e o r e m  3. If a semi-infinite sequence sw = slsz - .  . over a field F is as- 

sociated with the  e l emen t  S(z) = zzl s ; ~ - ~  in the field of Laurent series over  F ,  t h e n  the  

increment  sequence of t h e  l inear complexity profile of 8Oo is equal t o  the sequence of degrees 

of the partial  quot ients  in the  continued-fraction expansion of S(z), i e . ,  Ak = deg[ak(z)]. 

Corollary 2 t o  T h e o r e m  3. If a f ini te  sequence s" = ~ ~ s ~ .  . . s, ouer a field F is  associated 

with the element S(z)  = C?!'=, - , ah(.)] in the field of Lauren t  series 

ouer F ,  t h e n  the  i n c r e m e n t  sequence ABn of the linear complexity profile of s" is as follows. 

1. I f2 .& deg(a;(z))-deg(ak(z)) _< n, then  A," = deg(al(z)) deg(az(z)) *..deg(ak(%)). 

2. I f 2 . &  deg(ai(z))-deg(ak(z)) > n, t hen  A,n = deg(ul(z)) deg(az(r)). deg(w(t)) ,  

= [O; al(z), a 2 ( z ) ,  

where k' = maz{j : 2 - ci=, deg(a;(z) - deg(a,(z)) 5 n}.  

These corollaries tell us how to construct (finite and infinite) sequences with desired 

linear complexity profiles. 

Ezample.  Construct a l l  sequences over F2 that have the linear complexity profile 14446" 

of (17). According The increment sequence of this linear complexity profile is 1 3 2 . 
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to the Corollary 1 to Theorem 3, a sequence with this increment sequence has the finite 

continued-fraction 
1 

S(%) = 
1 I 

4 . z )  + 

where degal(z) = 1, dega2(z) = 3, dega3(z) = 2. There are 2' ways to choose a polynomial 

over F2 with degree i. There are thus 212322 = 64 different choices for S(z), i.e., there are 

64 semi-infinite binary sequences having the linear complexity profile of (17). For a specific 

such sequence, we choose 

.I(.) = 2, 

u ~ ( z )  = z3, 

U3(%)  = z . 2 

We have then 

1 

zt- 
S(Z) = 

1 
1 

t3+ -j- 
z 

26 + 1 
z6 + 22 + z '  

- - 

By long division, we find 

The desired sequence is 

3- = l(ooolooolloolololllllo)m. 

If a semi-infinite sequence 390 corresponds to  the element S(z) of the Laurent field in the 

manner (9) such that the continued-fraction expansion is infinite, i.e., 
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then by using the k-th convergent of S(z) to approximate S(z), we can see that L1 and L2 

in Theorem 3 still hold. If Ic goes to infinity, the k-th convergent then approaches S(Z) .  

Therefore, L1 and L2 in Theorem 3 and the Corollary 1 to Theorem 3 are also valid for the 

case that the continued-fraction expansion of S(z) is infinite. 

3 Remarks 

In [NIED 861, Niederreiter showed the following result. If the continued-fraction expansion 

of S ( Z )  is infinite, which is the same as saying that S ( r )  is irrational, the linear comp€exity 

profile satisfies 

(18) 
1 
-(i + I - K ( S )  5 L .  < L ( i  + K ( s ) )  for dl i 2 1, 2 ‘ - 2  

where L; = L(31s2---s;) and K ( S )  = supdeguj(z). We now show that (18) is a simple 

consequence of L2 in Theorem 3 and the “length-change property of LFSR’s” for the case 

that the continued-fraction expansion of S(z) is infinite. 

j21 

We restate (2) in Theorem 3 as follows. 

For 
k-1 k 

deg ak(z) + 2 deg q(z) _< i _< deg ak+l(z) + 2 deg a,(%) - 1, (19) 
j+l j=1 

where k 2 1, we have 

k 

L; = x d e g a j ( z )  (20) 

(21) 

(22) 

j=1 

k-1 1 
-( deg ak(Z) + 2 2 
1 .  

= deg uj(z) 4- deg u ~ ( z ) )  
j=1 

I s(’ + deg .k(Z)) 

with equality when i = deg a ~ ( z ) + 2  Cjzt, where the last step follows from the left inequality 

of (19). 

Further, 

k 
L; = x d e g a , ( z )  

j=1 
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It follows then from the right inequality of (19) that 

(23) 
1 .  

Li 2 ?(a + 1 - degak+l(r)) 

with equality when i = deg ~ k + ~ ( 2 ) + 2  C!==, a,(%)- 1. Inequalities (22) and (23) immediately 

give (18). 

Baum and Sweet [BAU-SWE 771 showed that all partial quotients of the continued- 

fraction expansion of S(z) have degree one if and only if 

S2(Z) + IS(,) + 1 = (1 4- z)gZ(z) (24) 

for some po1ynomia.I g(z). Their equation (24) is the same as 

The Corollary 1 to Theorem 3 implies then that all sequences sm, for which S ( L )  satis- 

fies (24), have the linear complexity profde 11 2 2 3 3  . . ., defined as the perfect linear com- 

plez i ty  profile (PLCP). This is consistent with the result proved in [WAN-MAS 861, namely, 

that P has a perfect linear complexity profile if and only if 

31 = 1, 

%;+I = 32; + 3; for i 2 1 
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