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ABSTRACT 

An algorithm recently introduced by Meier and Stdelbach is mod&d to be applicable to stream- 

ciphers with running key generators (RKG) consisting of a single linear feedback shift-register 

(LFSR) with a (nonlinear) feedforward Slter applied to it. It is shown that, under certain assump- 

tions, this modified algorithm can be used by a cryptanalyst to determine an equivalent system 

-consisting of a couple of LFSR’s together with a suitable combining function- which generates the 

same running key sequence. Finally, design criteria are given, which ensure that a RKG withstands 
the modified attack. 

I. INTRODUCTION 

A running key generator consisting of a maximum-length (ML) lin ear feedback shift-register and 

some nonlinear filtering function f is investigated (Fig. 1). Siegenthaler showed in [l] that the 

L_- ;:...z*,z,,zo 

Figure 1: Structure of the investigated running key generator 

output sequence z’ and the ML-sequence 6 of any RKG of the above type have a cross-correlation 
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Figure 2: Cryptanalyst’s equivalent system, with s identical LFSR’s initially loaded with linearly 
independent states derived from the peaks of the CCF of G and 2 

- 
9 -  

of this attack up to now was restricted to a RKG with a relatively short LFSR, because of the 
exponentially growing computational work needed to determine the peaks of the CCF of the 
sequences ii and i. In this paper, we show how to determine those peaks with a modified version 
of the correlation attack according to algorithm A as described by Meier and Stdelbach in [2,3], 
and therefore how to break a RKG of the above type with a long LFSR. 

11. MODIFIED CORRELATION ATTACK 
Meier and StafFelbach implicitely assumed in [2,3] a RGK built from a number s of LFSR’s generat- 
ing cyclically different (contrary to the situation as shown in Fig. 2) binary sequences Zil,6z,. . . , ii, 
which are combined by some boolean function. 

They considered the generated keystream t as a noisy version of the sequence a;, with the 
noise coming conceptually from the sequences zil, Z2,. . , ,a,, . . . ,a, for j # i. Their algorithms 
reconstruct from the sequence 5 each of the sequences 6, by using correlation properties between 
the sequences 6, and f. The behaviour of their algorithms, however, is not clear for the case 
where the combined sequences are only cyclic shifts of each other. This is e.g. the case when the 
sequences are derived from the stages of a single LFSR as shown in Fig. 1 (or equivalently as shown 
in Fig. 2). Meier’s and StaEeibach’s algorithms may in this case not be able to converge to some 
defined result because there are instead of a single solution many (s) convergence points. 

In this paper we investigate the corresponding problems and modify the algorithm to be appli- 
cable for RKG’s as given in Fig. 1. 
We first recall in this section the principles of the attack by Meier and Staffelbach. 

Assume the cryptanalyst has observed N bits of a running key sequence 2 known to be correlated 
to a ML-sequence 6 produced by some MLLFSR of length k, having t feedback taps. The sequence 
Z may be viewed as a perturbation of 6 by a binary asymmetric memoryless source (with Prb(O)= 
po # 0.5), and the purpose of the cryptanalyst is to reconstruct the LFSR-sequence ii from 5. 
Every bit a, of 6 satisfies several linear relations (according to the basic feedback relation of the 
LFSR), each of them involving t other bits of i i .  The cryptanalyst checks how many of those 
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Table I: LFSR-initial states that yield ML-sequences 
highly correlated to the sequence 2 of Fig. 3 

I Peak Nr. Initial states Correlation 

1 101011 -69.84% 
2 101010 68.25% 
3 010100 68.25% 

5 000101 68.25% 
4 010000 -69.84% 

relations hold for the corresponding bit z j  of 2: the more they are. the higher is the probability 
for z, to agree with aj (if po > 0.5), resp. to be the complement of a, (if po < 0.5). After having 
assigned to each bit z, of f a probability p j  of being equal to (resp. the complement of) aj ,  the 
cryptanalyst selects the k bits of t with the highest probabilities, uses these bits as a reference 
guess 10 and computes the corresponding LFSR-initial state. Since some bits of the reference 
guess -usually with low probability- might be erroneous, the cryptanalyst sometimes has to test 
modifications of 1, with Hamming-distances 1 ,2 , .  . . until he finds the correct initial state of the 
LFSR. 

If this attack is applied to RKG’s of the type of Fig. 1, there is no guarantee that it will succeed, 
since the high probable bits of the reference guess do not necessarily all correspond to the same 
CCF-peak, as the following example shows. 

Example 1 

The generator of Fig. 3 is investigated. The table I lists the initial states of the LFSR of Fig. 3 

2 rnlW10001M3 

Figure 3: A running key generator with a MLLFSR of length 6 (feedback polynomial z6 f i + 1) 

that produce ML-sequences with a high correlation to 5. .4 correlation of 70.00% in the second 
column of table I means that 70.00% of the bits of one period of 5 coincide with the corresponding 
bits of the LFSR-sequence. The notation -70.00%, on the other hand, signifies that 70.00% of the 
bits o f t  are the complements of the corresponding bits of the LFSR-sequence. Notice that the 
initial states and the correlations of Table I were computed without determining the full CCF of 
Z and 6, by means of the Walsh-tranform of the function f [l]. 

We get a better insight into the situation by considering the table II. It contains the full period 
of 63 bits output by the generator of Fig. 3, the individual bit probabilities computed according 
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I 

Prb(z,) 
I, 

b x , , = G  
b, ,=az , ,  
b 3 . . = a 3 , ,  

11,. =i;iT; 
bs., = a5,, 

to (2,3], and the five LFSR-sequences yielded by the five initial states of table I, where the sequences 
with negative correlations (Nr. 1 and 4) have been complemented. 

Table 11: Sequence output by the generator of Fig. 3, corresponding bit probabilities 
and correlated LFSR-sequences. 

0 1 2  3 4 5 6 7 8 9 10 11 
0.493 0.621 0.493 0.621 0.887 0.621 0.356 0.887 0.734 0.366 0.887 0.887 

0 0 1 0  0 0 1 0  0 1 0  0 

0 0 1 0 1 o 1 o o 1 1 0 

0 1 0 1 o 1 1 o o 1 1 0 

0 o 1 0 1 0 o o 1 1 0 0 

1 l l l O l l l l l 0 0  
1 0 1 0 0 0 1 1 0 0 0 0  

I 

Prb(r,) 
I, 

b i , , = T  
bz,, = 42.i 

b3 , ,=a3 , ,  

b + , , = K  
bs., = as., 

12 13 14 15 16 17 18 19 20 21 22 23 
0.621 0.984 0.823 0.887 0.957 0.974 0.887 0.621 0.887 0.734 0.957 0.887 

0 0 0 0 0 0 0 0 1 0  1 1  

0 1 0 0 0 1 0 o I 0 1 1 
1 1 1 0 1 1 0 1 0 0 1 0  
0 0 1 o o o o o 1 1 1 1 
0 0 0 O I O 1 o 1 O 0 1 
1 0 0 0 0 0 1 1 1 1 1 1  

i 

Prb(z,) 
I, 

b i , , = c  
b , , = a z , ,  
b3., = a3,, 

b , , s = K  
b S , , = a s . ,  

24 25 26 27 28 29 30 31 32 33 34 35 
0.929 0.967 0.823 0.957 0.957 0.493 0.734 0.734 0&37 0.621 0.734 0.366 

0 1 0  1 0  0 0 1 0  0 1 0  

0 1 1 o o O 1 1 1 O 1 0 

0 1 1 1 o o o I o 1 1 1 

1 1 0 1 0 1 0 1 1 0 0 1  
1 O 0 1 O O O 1 O O 1 0 
0 1 0 1 o 1 1 o o 1 1 0 

1 

Prb(z.) 
z ,  

b l , . = n i , .  
- 

bz,. = 42..  

b3, ,  = =3, ,  

br , .  =% 
bs , ,  = as.. 

36 37 38 39 40 41 42 43 44 45 46 47 
0.929 0.957 0.887 0.i- 0.621 0.621 0.957 0.734 0.994 0.734 0.887 0.929 

1 0  0 1 1  0 0 0 0 1 1  0 

0 0 0 1 1 0 1 0 1 1 1 0 
1 0 0 1 0 1 0 0 0 1 1 0  
1 0 1 1 1 0 1 1 0 1 0 0  
1 1 0 1 1 0 0 0 1 1 1 0  
1 I 1 0 1 1 0 1 0 0 1 0  

I 

Prb(z,) 
I. 

b i , , = T  

b z , , = o , , .  
b 3 . ,  = ax,, 

b&, ,== 
bs, .  = as,' 

48 49 50 51 52 53 S4 55 56 5 i  58 59 
0.991 0.991 0.887 0.957 0.957 0.887 0.991 0957 0.984 0.887 0.929 0.823 

0 0 0 1 0  0 0 0 0 1 1  1 

0 1 1 1 1 0 1 1 1 1 1 0  
0 0 0 I 0 o 0 0 0 1 1 1 
1 0 0 1 1 1 0 0  0 1 0 1  
1 0 0 0 0 1 1 0 1 O 1 1 
0 1 1 1 0 0 0 1 0 1 1 1  
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60 61 62 

Prb(Z.f 1 0.734 0.493 0.493 

Z i 1 0 0  

The algorithm A of Meier and Stdelbach selects the most probable bits (213,244, 248,  ~ 4 9 .  ~ 5 4 , 2 5 6 )  

as a reference guess I,. Looking at the bits of the correlated LFSR-sequences at the same positions 
and introducing the notation Ij = (bj.13, bjvec, bj,&, bj,49, b,,54, a,,%), we see that lo has a Hamming- 
distance 1 of 1 2 , &  and &., but Hamming-distances 5 resp. 4 of 11 resp. 14. 
Since the expected value of the number of errors in the reference guess is here one (computed 
according to [3]), modifications of 10 with Hamming-distances up to one will be tried, as well as 
their complements (because we don’t know in advance whether the sought initial state yields a 
positive or a negative correlation). 
Thus, the states Nr. 1, or 2, or 3, or 5 can be discovered, but not the state Nr.  4. Note that 
the algorithm as described in [2,3] needs a special implementation (to be described later in this 
paper) to be able to fmd all of the above states (Nr. 1, 2, 3: 5 ) .  Note also that testing larger 
Hamming-distances -even if it Seems at a first glance to be the best way to ilnd state Nr. 4 in 
this small example- generally requires a very large amount of additional work in larger examples. 
Therefore, the algorithm needs another modification to deal with this situation (e.g. to eventually 
be able to find state Nr. 4). Instead of selecting the most probable bits as a reference guess, we 
propose to first select a set S of M > 6 high probable bits, and then randomly choose 6 bits out of 
this set. Several reference guesses leading to several initial states might be tested in that manner. 
Coming back to the above example, the set S of bits with probabilities 2 0.9 could be considered 
(21 bits). For 10 = ( z I ~ , z ~ T ,  z27, zZ8, 242,  z49) c S we can check that Hd (Io, 14) = 0, thus the initid 
state Nr. 4 will be detected. But if, for example, lo happens to be (z13, zI6, zS7, 2 4 9 ,  zS2, z ~ ) ,  we c a u  
check that Hd(I0,IZ) = H d ( I ~ , 1 ~ ) = H d ( 1 o , I 4 ) = H d ( 1 o , 1 s ) = 2 a n d H d ( 1 o , 1 l ) = 3 a n d n e i t h e r  
of the five peaks will be discovered. Hereafter, we recapitulate the steps of the modified correlation 
at tack. 

1. 

2. 

3. 

4. 

5. 

6. 

Determine the average number m of linear relations per bit (according to [2 ,3]) .  

Determine, for each bit 2, of the observed running key sequence, the number of linear relations 
it fulfills, and compute the resulting probability pi (again according to [2,3]). 

Select a set  S consu t ing  of ibf high probable bits z , .  The  number M of bits in thi3 set  should 
be large enough to  allow the selection of suficiently many reference guesses I,, but small 
enough to reduce the  risk of enclosing eTronzous bits. 

Select randomly k bi ts  in S (reference guess l o )  that f o r m  a non-singular linear sy s t em whose 
solution is the in i t ia l  state of the LFSR leading to those particular bils at those particular 
positions. 

Test modifications of 1, with Hamming-distances 0 ,1 ,2 , .  . . ~ r by correlating the correspond- 
ing LFSR-sequences with the sequence H. Store the initial states that yield sufficiently high 
correlation values and go back to step 4, unless you have determined enough initial states. 

Use a subset of linearly independent initial states (among those found in step 5 )  to construct 
an equivalent RKG according to the method described in ill. 
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In step 5, it is difficult to determine the upper limit r of the Hamming-distances to test. If we 
compute the expected number of erroneous bits in the reference guess lo according to [2,3], we 
obtain a value that sometimes lies far  below the actual number of errors in the reference guess. 
This discordance ist due to  the fact that, as already mentioned, the statistical model of [2,3] 
is not perfectly adequate for a running key generator of the type of Fig. 1. Instead of testing 
Hamming-distances up to an unknown upper bound, the cryptanalyst could just solve the linear 
system defined by the unmodified reference guess Io, compute the LFSR-sequence associated to the 
obtained initial state and compare it with the running key sequence Z .  Then he keeps on selecting 
randomly new reference guesses until he has found enough initial states yielding high correlation 
values. We try now to  answer the question, whether this alternative improves the efficiency of the 
modified attack or not. 

Let M be the number of bits in the set S, and assume that m bits (0 5 m 5 M )  in S are 
erroneous with respect to some correlated LFSR-sequence produced by a LFSR of length k .  In 
order to find at  least one correct reference guess in S, the inequality 

m < M - k  (1) 

must hold. There are different reference guesses that c a r  be chosen in S, and rim) of them 

are “correct”, i.e. they ’cdntain no erroneous bit with respect to the correlated LFSR-sequence. If 
we neglect the fact that some of these “correct” reference guesses yield singular linear systems and 
are useless in computing the searched initial state, we obtain for the probability Po of selecting 
(randomly and uniformly) a correct reference guess 

Po = ($-I 

(3) 
M - m  M - m - 1  -%I - ~TL - k + 1 ... - -. 

- M  M - 1  . L i - k + l  . 
The probability that among N randomly and uniformly selected reference guesses exactly one is 
correct, is given by 

We are mainly interested in the expected number E[i’V,] of reference guesses to select in order to 
find a correct one: 

P ( N )  = Po. (1 - p(JN-1. (4) 

We now compute the expected number E [ N 2 ]  of modifications of one randomly selected ref- 
erence guess that are necessary to reconstruct the correct reference guess. We assume that the 
cryptanalyst begins by testing Hamming-distance 0, then l,?. . .and so on. The expected number 
rno of erroneous bits in a randomly selected reference guess is approximately given by (worst-case 
approximat ion) - -  

mo = l$ l .  
Therefore, the expected number E[N4 of modifications of a reference guess is given by 

( 7 )  
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0 2 4 8 8 10 

# erroneous bits in S 

where we assumed that, on the average, half the possible tests with Hamming-distance m o  have 
to be made for finding the correct reference guess. Fig. 1 shows a sample graph of the expected 

Figure 1: Expected number of tests to be made vs. the number of erroneous 
bits in the set S, where IS1 = M = 30 and k = 20 

number of tests to be made for both methods as a function of the number m of erroneous bits 
in the set S. We observe that the first method (where reference guesses are picked up until a 
good one is found) is more efficient for the case where only few bits of S are erroneous. But 
when more bits in S are wrong, the method where Hamming-distances of some given reference 
guess x e  tested is t,o be preferred. This trend was confirmed by further sample curves. The two 
methods can of course be combined, for example in assigning a (small) value r > 0 to the maximal 
Hamming-distance to be tested and in picking up a new reference guess as soon as all possible 
tests have been made with the former one. This seems to be the most reasonable approach of the 
problem, since the cryptanalyst normally doesn’t know the number m of erroneous bits in the set 
S but must necessarily choose a maximal Hamming-distance to test. 

111. LIMITS OF THE ATTACK 
In order to judge the feasibility of the modified attack, two kinds of computer experiments were 
carried out for concrete examples of running key generators. The first series of experiments con- 
sisted of the full execution of the attack, as it would be done by an enemy cryptanalyst who can 
observe a limited amount of running key bits and knows nothing but the single LFSR used in the 
RKG. These experiments showed that the success of the attack depends on following factors. 

T h e  n u m b e r  of feedback taps of the LFSR: the more taps there are, the more bits are involved 
in each linear relation and the less reliable is the assignment of probabilities in step 2 [2,3]. 

The (absolute  a n d  relat ive)  heights  of the  correlation peaks between the running-key  sequence 
and the LFSR-sequence. Higher peaks are much easier detected by the algorithm than lower 
ones. If the CCF has one or a few high peaks and some lower peaks, the last ones are not 
easily discovered by the algorithm. In this case. it might be necessary to test modifications 
of 10 with quite large Hamming-distances. 

T h e  n u m b e r  of b z t s  zn the 3 e t  S in step Y. It must be large enough to allow the cryptanalyst 
to extract a sufficient number of linearly independent sets of It. bits. 

The second series of experiments is described hereafter and the obtained results are then discussed. 
For a given RKG with an arbitrary initial state, we f i s t  determine the initial states S1. S2,. . . , S, 



593 

yielding the sequences C l l  Cz, . , . & which lead to high cross-correlation values with the running- 
key sequence. We continue by assigning probabilities to the observed bits of the running-key 
sequence (as in step 3 above) and by selecting a set S of M high probable bits (as in step 2 ) .  We 
then compare the values of the bits in this set to those of the corresponding bits of the correlated 
sequences. If mi bits of S coincide with the corresponding bits of the i-th MGsequence (1 5 Z 5 s ) ,  
the expected number of erroneous bits in a reference guess of k bits uniformly randomly chosen in 
S can be computed as 

mi 

M 
E ;  = (1 - -) . k. (9) 

Notice that ”erroneous” means here “does not coincide with the corresponding bit of the sequence 
hi’). Under the assumption that the statistical model of [2,3] is suitable for the investigated type 
of RKG, the following two facts are expected to be observed experimentally. 

1. The average numbers of errors E ,  (1 5 i 5 s ) ~  should grow with the number Id of bits in the 
set S, since including more bits in S implies including less reliable bits. 

2. If the number M of bits in S gets very large, the number of errors ~i should get closer and 
closer to the asymptotic value of (1 - pt) . k (where pi is the probability for any bit of the 
running key sequence to be equal to the corresponding bit of the i-th ML-sequence). This 
means that the bits of S could just as well have been chosen at random. 

The first consideration was experimentally shown to hold more or less for RKG’s with 

a small number of initial states S,, S2,. . , , S, (the number s depends on properties of the 
feedforward function). 

cross-correlation peaks of sufEciently large amplitudes (70-m%), 

all the cross-correlation peaks having very similar amplitudes. 

Fig. 2 shows the curves obtained for a RKG fulfilling the above conditions. We notice that 

The peaks Nr. 1 and Nr. 4 might be discovered by the attack if the set S contains for example 
150 bits and if Hamming distances up to 17 are tested. 

Figure 2: Expected number of errors in the reference guess vs. the number 
of bits in the set S, measured for a RKG with an LFSR of length 100 having 
4 feedback taps; the first 1000 bits of the running key sequence were observed. 
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Hamming distances up to 23 will have to be tested in order to detect the peak Nr. 3. 

The peak Nr. 2 is not detectable by the attack. For reasonably small numbers of bits in S, 
approximately haIf the bits of the reference guess are expected to be erroneous. 

As expected, taking more bits in S implies that the expected numbers of errors € 1 , .  . . .  €4 

tend to the asymptotic value of (1 - 0.75). 100 = 25. 

The average numbers of errors for the smallest set (of 100 bits) do not coincide with the 
theoretical value of r = 14 computed according to [2:3] (for po = 0.75). This is due to the 
fact that the statistical model of [2,3] does not reproduce rigorously the situation where only 
cyclic shifts of the same LFSR-sequence are used. 

Fig. 3 shows the error curves for a RKG with seven peaks of different amplitudes (one of 75%, 
one of 68.75% and five of 62.5%). Only the peak of 75% (lowest curve) is likely to be detected by 
the attack. In a way, this dominant peak “drowns” the effects of the lower peaks. For large sets 
S, the curves can be checked to converge towards the asymptotic d u e s  of (1 - 0.75) . 100 = 25, 
(1 - 0.6875) * 100 = 31.25 and resp. (1 - 0.625). 100 = 37.5 errors. 

0 - 
C - 
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Y 

. . . . . . . . . . . . . .  ............................ ._. ........... - ........... -. .... _ _  . 
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Figure 3: Expected number of errors in the reference guess vs. the number 
of bits in the set S, measured for a RKG with an LFSR of length 100 having 
4 feedback taps; the first 2000 bits of the running key sequence were observed. 

The above observations lead to the formulation of design criteria for RKG’s with a single LFSR 

1. The feedforward nonlinear function f should be chosen so that the cross-correlation peaks 
take values of much less than 

that are to withstand the described modified correlation attack. 

between the running key sequence 5 and the LFSR-sequence 
75% (cf. Fig. 1). 

2. It is more advisable to have many cross-correlation peaks than few, especially when the peaks 
are of similar amplitudes, since the computation of bit probabilities tend to be less reliable 
when the effects of many peaks are merged. 

3. As pointed out in [2,3], the LFSR in use should have no less than 10 feedback taps. 
Finally, we remark that the attack can be more efficiently executed if the cryptanalyst knows 

the exact structure of the RKG. In that case, it is easy for him to plot the curves of Fig. 2 or 3 
(for an arbitrarily chosen initial state of the LFSR), and he can test in priority Hamming distances 
corresponding to the expected numbers of errors for a given size of the set S. If he doesn’t know 
the function f of Fig. 1. he has to systematically try out the Hamming distances 0 ,1 , .  . .  up to 
some unknown upper bound. Indeed, we have seen that the expected number of errors T calculated 
according to [2,3] is not a reliable value for RKG’s with a single LFSR. 
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