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ABSTRACT 

In [2] Buchmann and Williams presented a new public key exchange 

system based on imaginary quadratic fields. \Vhile in that paper the 
system was-described theoretically and its security was discussed in some 
detail nothing much was said about the practical implementation. 

In this paper we discuss the practical aspects of the new system, its 

efficiency and implementation. In particular we study the crucial point 
of the method: ideal reduction. We suggest a refinement of the well 

known reduction method which has been implemented on a computer. 
We present extensive running time statistics and a detailed complexity 
analysis of the methods involved. 

The implementation of the reduction procedure on chips is subject 
of future research. 

I. THE DIFFIE-HELLMAN SCHEME 

In their paper “New Directions in Cryptography” [3] Diffie and Hellman 

introduced in 1976 the idea of public key exchange. By this method it is 
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possilde to communicat.e a secret key for soiiie cryptosyst.eiii over a pul>lic 
illsecure channel. JVe briefiy review the idea of Diffie and Hellman. 

Suppose t h t .  Alice- ( A )  and Boll ( L ; )  wish to secretly eschallge a 
key. 

(1) A chooses a finite group C: aiid - at. random - a n  element. A E G. 
Both C: and A are sent to  L4 over the public channel. 

(2)  Both A and L; now select - at randoiii - an integer a and b,  respec- 
tively. These integers are kept secret. 

(3) A computes cu = A" and transmits the result to  L;. In the saiiie 
way G coiiiputes ,B = Ab and sends it to A. (Note that the group 
elements Q' and /3 are public.) 

(4) A computes -y = pa, L; computes y' = a*. 

Because y = pa = (Ab)"  = = ab = 7' both A and 13 are in 
possession of the same key y without this key having been sent over the 
public channel. 

In order to  b e  able to  apply this algorithm in practice it is necessary 
to have an efficient multiplication routine in G i.e., if all the elements are 
represented by numbers in {0,1, .  . . , IGl - 1) the representation of the 
product of two elements of G should be computable in time polynomial 
in log IGI. 

Then, using the method of binary shfting (see [6, p. 441 ff.]) pow- 
ers of group elements can be computed very efficiently even for large 
exponents d ,  namely in O(1ogd) elementary operations in G. 

The scheme is secure if the key cannot be guessed easiliy and cannot 
be determined easily from the public information. 

To avoid the key beeing guessed easily it is necessary to  choose a 
group G of very high order, t o  pick a starting element X of high order 
(close to  IGl) and t o  select large exponents a and 6. 

To make sure that the choice of G is adequate one has t o  analyse 
its arithmetic properties carefully. A neccessary condition is that the  
determination of discrete logarithms in G is difficult. Note, however, 
that this condition is not sufficient for the security of the system because 
the determination of Xu* from A, A" and Ab might be easier than the 
calculation of a and b from A, A" and Ab.  

So far the following groups have been suggested: 
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The group G = G L , ( Z / p Z )  of invertible n x n-matrices over the 

The group of points on an  elliptic curve over a finite field. ([ll]) 

Several groups associated with higher dimensional varieties. ([7]) 

The group G = (Z /nZ)  where n is the product of two large primes. 

finite field ( Z l p Z ) .  ([14]) 

([101) 
The class group of an  imaginary quadratic field. ( [ a ] )  

In this paper we continue the discussion of the case where G is the 
class group of an imaginary quadratic field. 

11. THE CLASS GROUP OF AN IMAGINARY QUADRA- 
TIC FIELD 

First we summarize the main facts concerning imaginary quadratic fields. 
All these facts are well known and therefore will be given without proof. 
Proofs of the statements made here and more detailed descriptions can 
be found in standard texts like Hua [5 ]  or Narkiewicz [la], [13]. 

Let D < 0 b e  a squarefree integer and let K = Q(-) be the 
quadratic field w b c h  is defined by adjoining a to the set of rational 
numbers &. If a E K we denote by E the complex conjugate of a, by 
Tr(a) the trace of a, i.e. the value of Q + E ,  and by N ( a )  the n o r m  of 
a, i.e. the value of a - 3. Note that N ( Q )  2 0 for every Q E K. 

We define 
r = {  1 if D = 2 , 3  mod 4 

2 i f D =  1 mod4.  
Then the discriminant of K is given by 

4 0  
r2 ’ 

A = -  

For a,  P E K put [a, p ]  = a23 + P Z .  Moreover, let 

r 
Then the ring of  algebraic integers in K is given by 
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T h e  fraction crl i dea l s  of ~ ' 1 ~ .  form a mdtiplicat.ive a1)elian group de- 
noted liy F. By f - i c k c r l  we cleiiot,e t,he neutm.1 eleiiieiit. in this group. T h e  
principnl  ideclls of form a. suhgroup of F denot.ec1 by 'P. T h e  fact,or 
group F/'P is called t.he cl.ctss group of (I)*. deuot.ec1 by Ca. T h e  cla.ss 
group is finite, its order is called the class number  of c),,: and is deiiot,ed 
by h.  T h e  e1eiiient.s of the cla.ss group are called t.he . ideal classes.  Two 
ideals of CIK are said t o  he  equivalent if they are in the same ideal class. 

Every integral ideal a of CIA: can he writte.11 in the form 

a = [Q, b + cw] 

where a ,  c E Z ' , b  f ZZ and 

clu., clb, aclfV(b + cw) .  

For a given ideal a the integers a and c are uniquely determined and b 
is unique modulo a. a is the least positive rational integer in a, denoted 
by L(a). If c = 1 then a is called primit ive .  

Every integral primitive ideal a of Clx: can be uniquely presented in 
the form 

a = [L(a), b + w ]  

-L(a) < T r ( b  + w )  5 L(a).  
with b E 22 and 

This is called the normal presen ta t ion  of a. 

[L(a), b + w ]  is called reduced if 
An integral primitive ideal a whose normal presentation is a = 

I b + w l  2 L(a), 
T r ( b + w )  > 0 if Ib+w(  = L(a) .  

There are the following main facts concerning reduced ideals: 

0 For each reduced ideal we have L(a) < ,/m. 
Every ideal class of ( 3 ~  contains exactly one reduced ideal. 

Each ideal class can be represented by its reduced ideal. So the 
arithmetic in the class group of imaginary quadratic fields can be reduced 
to ideal-arithmetic: In order t o  determine the product of two ideal classes 
multiply their reduced ideals and compute the reduced ideal equivalent 
to  this product. 
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Since every reduced ideal is presented by a pair of integers which 
are less than ,/m in absolute value class groups can be used in the 
Diffie-Hellman scheme if multiplication and reduction of ideals can be 
carried out efficiently. The  secret key must be one of the integers of the 
normal presentation of the reduced ideal computed in the scheme. 

111. THE ALGORITHMS 

In [2] it is pointed out that D has to be of order of magnitude lo2'' 
to guarantee high security of the scheme. Also the exponents should 
be of this order of magnitude. So first of all we need a multi-precision 
integer-arithmetic for implementing the scheme. For details see [GI or 

After the initialization all computations have the following struc- 
ture: For an integer n and an ideal class I' given by its reduced ideal 
ar compute the reduced ideal in I?", i.e. the reduced ideal equivalent to 
(ar)". This can be done by means of the well known fast exponentiation 
technique described in [6 ,  p.  4411. 

PI. 

Algorithm 3.1 (Exponentiation of ideal classes) 
Input: Reduced ideal  a, exponen t  n E Po. 
Output: Reduced ideal  b equivalent t o  a*. 

(1) N t n; b t l - ideal ;  c - a; 

(2) if N i s  e v e n  t h e n  go to  (5); 

(3) b + cab; 

(4) reduce b; 

(5) N + LNI2I; 

(7) c t c c; 

(6) if N = 0 t e r m i n a t e .  

(8) reduce c a n d  go to  (2); 

For practical purposes it is more convenient to represent a n  integral 
primitive normally presented ideal a = [L(a), b+w] by ( A ,  B )  E Z2 with 



602 

A = r L ( a )  and B = rb + r - 1. Note t.liat. t h e  new preseiit.ation is well 
defined and unique. 

For the  n1ultiplicatibn we use an algorithm lxsed  on Shanks [15] 
which comput.es a primitive ideal ecluivaleiit to bhe product. of t.wo prim- 
itive ideals: 

Algori thm 3.2 (Mult ipl icat ion of ideals) 
Input: Two prin1itii:e ideals ( & A l )  Bl), (As ,  & ) .  
Output: Primitive ideal (-43, B3) equi i~c~lent  to  t h e  product of t h e  i71pilt 
ideals. 

(I) G' + gcd(A1, A?) ; 
c o m p u t e  t h e  c o e f i c i e n t  V' in A1V' + A2W' = G"; 

(2) B3 t V'Al(B2 - B1); 

(3) A3 - rALA2; 

(4) if G' = 1 t h e n  g o t o  (8); 

(5) G + gcd(G', (B1+ B2)); 
c o m p u t e  t h e  c o e f i c i e n t s  U', U in U'G' + U ( B I +  B2) = G; 

(6) B3 + [B3U' + U ( D  - B;)]/G; 

(7) A3 + A3/G2; 

(8) B3 + Bi -I- B3; 

If the ideals t o  be multiplied are equal then step 1 of the multipli- 
cation algorithm can be replaced by 

G = A i ,  W ' =  1, V'=O 

because A1 = A2. This simplification leads to  the following algorithm 
for squaring an ideal: 

Algorithm 3.3 (Squaring of an ideal) 
Input: P r i m i t i v e  ideal  ( A i ,  B1). 
Ou tpu t :  P r i m i t i v e  ideal  (A3, B3) equivalent to  the square of t h e  i n p u t  
ideal. 

(1) G + gcd(A1, m); 
c o m p u t e  the c o e f i c i e n t  U in U'A1+ 2UB1 =. G: 
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Now we discuss ideal reduction. In order to decrease the size of the 
coefficients of the ideal representation whenever it is possible the ideals 
are reduced after each multiplicatioil in Algorithm 3.1. So the reduction 
algorithiii is applied very frequently a id  therefore it. is necessary t o  have 
a fast reduction method. Our method is a refinement of the following 
well known algorithm (see [8] or [9]). 

Algorithm 3.4 (Reduction of ideals, classical vers ion)  
Input: Primitive ideul (A’, B‘).  
O u t p u t :  Reduced ideal (A ,  B )  (in normal presentation) equivcdent t o  
the input ideal. 

(I) A t A‘; B f- B‘; 

(2)  B t round(B/A) .  A - B ;  

(3) AN t (B2 - D ) / A ;  

(4) if AN < A then  A + AN and goto (2); 

(5) if (2B < A)  and ( B  < 0 or A < A N )  then B t -B; 

In step 2 of the algorithms “round” means a multi precision integer 
function which computes the rounded quotient of two integers. This  can 
be done by the following algorithm: 

A l g o r i t h m  3.5 ( R o u n d e d  quot ien t  of two integers) 
Input: Integers A and B ,  B # 0 .  
Output: Integer C with C = round(A /B) .  

(1) C t A I B ;  R t A mod B;  

(2) if21RI 2 IBl then [ i f A  > 0 then C +- C + 1 else C t C - 11; 

Now we present the refinement of the algorithm which was theoret- 
ically described in [2]. 
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Algorithm 3.6 (Reduc t ion  of ideals, optimized version) 
Input :  P r i m i t i c e  idea l  (.-I/. B‘). 
Outpu t :  R E C ~ L I C E ~  idea l -  (-4, B) ( i n  rzoi.rnaI p r e s e u t n t i o n )  eqiiiiwlerzt to 
the input idea l .  

(‘1) A - A’; 
if B‘ < 0 t h e n  s - -1  e l se  s - 1; 
B - IB’I; 

(2) Q ,-- B / A :  R - B mod A; .!Id - -4 - 2R: 
if A4 2 0 t h e n  B - R r i n d  s - -s  else B - R + M ;  
AN - ( B 2  - D ) / A i  

(3) if AN < A t h e n  A0 - A and .4 - . 4 ~  else goto  (6); 

( 4 )  Q t BIA; R - B m o d  A; &I t A - 3R; 

(5) AN A0 - @ +  W Q ;  
I f M  2 0 then B t R und s t -s else B t R f A41 and 
AN +- AN + M ;  
goto (3); 

(6) if s < 0 then B +- -B; 
if (223 < A )  and (B < 0 OT A < A N )  then B t -B; 

Comparing the two versions of the algorithm we see that the number 
of iterations in both algorithms and also the sequences of the values for 
A and B computed in both algorithms are equal. There are two main 
differences between the two versions: 

The computation of the new value of A in each iteration in the 
optimized version needs one division of multi precision integers less than 
in the first version because the division in step 3 is avoided. Instead 
of this the value of A from the preceeding iteration is used. Therefore 
this simplification cannot be made up in the first iteration. So step 2 of 
Algorithm 3.6 contains the first iteration of Algorithm 3.4. 

The computation of the rounded quotient of A and B is avoided in 
the optimized version. Moreover the sign of B is stored in a seperate 
variable s. In this way one multiplication of multi precision integers in 
each iteration is avoided. 

The following theorem makes sure that algorithm 3.6 indeed com- 
putes the reduced ideal equivalent to the input ideal in finitly many 
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iterations. ?vIoreo\-er an est.iiiiczt.ion for t.lie nuni l~er  of it.erat.ions is gi\-en. 
In ['I this t.lieoreni was proved for Algorit.liiii 3.4 which requires one iiiore 
it.eration. 

Finally we describe the iiiitializatioii where we have to find an ap- 
propriate starting ideal class for a given value of D .  We chose - at 
random - a prime number q ( q  E 3 mod 4) such that D is quadratic 
residue modulo 4 .  Theii 

satisfy the condition 
r A  I B2 - D. 

So ( A ,  B )  represents a primitive ideal. Reduction of this ideal gives the 
starting ideal class. 

IV. THE COMPLEXITY 

First we compute the size of the integers occuring in the computations 
of our key exchange system for a fixed value of D. 

Theorem 4.1 

(a) If ( A ,  B )  is a reduced ideal  in normal presenta t ion  t h e n  
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provided thut the i n p u t  zclenls were  reduced c112d gicien 111 nor ind  
prese i z t  a t 10 n.  

(c )  The s i x  of  the i n t e g e r s  occiir~iig 111 t h e  compii tc l t ions of our  k e y  
exchunge s y s t e m  is bounded b y  

Proof 
(a) Let a = [L(a), b+w] = (A, B ) .  Then, according to the definition 

of A and B in section 4, we have A = r L ( a )  and B = r b f r - 1 .  Moreover 

~ - - l + d D  - B + J Z j  b + w = - -  - 
r r 

B + l  If 
r 

Tr(b + w) = - 5 2B. 
and therefore 

2B 
r 

Since a is reduced we have 

A = r L ( a ) < r  - 2  -. 

Since a is in normal presentation we have ITr(b+w)I 5 L(a )  and therefore 

(b) In Algorithm 3 .2  the new value for A is computed in steps 3 and 
7. From these steps and part (a) of this theorem we get 

The new value for B is computed in steps 2,  4 and 8. The coefficients 
V' ,  V ,  U' in step 2 and 5 can be choosen less than 2@. So 

B i 2  p - - 2  F.F. - 
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The same arguiiieiits apply to Algorithii 3.3. 
(c) The  input ideals for the multiplication and squaring algoritlim 

are always reduced ideals in normal presentation. The input. ideals for 
t.lie reduction algorithm are always results of niultiplication and squar- 
ing. Moreover the successive va.lues of d in the reduction algoriblim are 
stricbly decreasing with the exeptioii of the last one and therefore the 
size of the input value of A is an upper bound for all values of -4 and 
B occuring ia the algorithm. So by (a) and (b) we see the maximum 
integer occuriiig in the system is l~ounded by 

0 

Note that  by part (c) of this theorem we also can estimate the 
number of computer words necessary to store the integers used in the 
algorithm. If for example D has 200 decimal digits then our multi preci- 
sion arithmetic package iiiust be able to handle numbers of 301 decimal 
digits. 

Next we list the number of elementary operations (additions, mul- 
tiplications and divisions) with multi precision integers for each of our 
algorithms. Multiplication by r is considered as an addition because r 
is either 1 or 2. 

To analyze the multiplication and squaring algorithm we first need 
to know the number of elementary operations necessary to compute the 
gcd’s. This computation can be done by the euclidian algorithm [6, 
p. 3251. If one has t o  compute a gcd and both coefficients of its rep- 
resentation the euclidian algorithm needs one &vision, three additions 
and three multiplications in each division step. This case will be called 
“gcd2”. If one has to  compute a gcd and only one of the coefficients of 
its representation one can avoid some computations. Then the euclidian 
algorithm only needs one division, two additions and two multiplications 
in each division step. This case will be called “gcdl”. 

Theorem 4.2 

T h e  m a x i m u m  number  of division s t eps  in the euclidian algori thm 
(see [S, p .  325]) used for the computation of t h e  gcd’s in t h e  mul -  
tiplication and squaring algorithm is 

3 
4 

M‘ 5 - l O g p I + l .  
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Proof: 
(a) From the bounds given in Theorem 4.1 (a) for the input values 

of the multiplication and squaring algorithm and by the listings of these 
algorithms in the previous section we see that the input values for the 
gcd's are bounded by 2@. By Corollary L in [6 ,  p. 3431 we can 
conclude that  the  number of division steps required when the euclidian 
algorithm is applied to  numbers u and with 0 _< u ,v  < N is at most 
4.8 loglo N + 0.68. So in our special case we have 

M' 5 4.810gIo 

2 4.8 
= 4.8 loglo - + -log + 0.68 &- log10 

n 

= - log[Dl+1.  3 
4 

(b) For G' = 1 Algorithm 3.2 requires three additions, three multi- 

(c) For G' > 1 Algorithm 3.2 requires three additions, seven multi- 

(d) Algorithm 3.3 requires three additions, three multiplications, 

plications and one gcdl .  

plications, two divisions, one gcdl and one gcd2. 

two divisions and one gcdl .  
0 

Now we turn  t o  the reduction algorithm. Here we first have to 
compute the maximum number of iterations. 
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Proof: 
(a) Using the bound given in Theorem 4.1 (b)  we have 

for the input ideal of the reduction algorithm. From Theorem 3.1 we 
conclude that the number of iterations in Algorithm 3.6 is bounded by 

= 'log(@) 2 + l  

1 8 1  
2 5 4  

= -log- + -1oglDI + 1 
1 
4 5 - logIDI+2.  

(b) The number of iterations in Algorithm 3.4  is one more than in 
Algorithm 3.6. Each iteration (steps 2,  3 and 4) requires two additions, 
two multiplications, one division and one call of the round procedure in 
which there are two additions and one division. Step 5 of the reduction 
algorithm requires one additional addition. 

(c) Each iteration (steps 3, 4 and 5) in Algorithm 3.6 requires six 
additions, one multiplication and one division. Additionally, steps 2 and 
6 require five additions, one multiplication and two divisions. 
P 

ideal classes. 
Now we have t o  examine Algorithm 3.1 for the exponentiation of 
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Theorem 4.4 If tlrc exponents CI c i n d  b u r c  bouiidcil b y  ci . b < t h e n  
t h e  t o t a l  n u m b e r  of tteratioirs p e r f o r i n e d  117 (ill cnlls o j  t h e  e .rponent i t i t iol1 
a l g o r i t h m  i n  t h e  k e y  eschciirge s y s t e m  i s  a t  mos t  

Proof: T h e  iiuiiiher of iteratioils in algorithm 3.1 for ail arl)itrarjr 
exponent n is lower than  Llog n J + 1 (see [ 6 ,  4431). Each exponent. is used 
twice in the scheme. Therefore the total nuiiiher of iteratiolls performed 
in the four calls of the esponentiatioii algorit.hiii is hounded hj- 

b1”’ 5 ‘(log Q f 1 f log b -/- 1) 
5 2 log(a .  b )  t 4 
- 2 l o g m + 4  
= l o g I D I f 4 .  

Finally we give an upper bound for the number of elementary opera- 
tions performed in  the  key exchange system which follows from Theorems 
4.2, 4.3 and 4.4. 

Theorem 4.5 U s i n g  t h e  o p t i m i z e d  v e r s i o n  of the r e d u c t i o n  a l g o r i t h m  
OUT k e y  e x c h a n g e  s y s t e m  t a k e s  a t  m o s t  

169 33 217 -+ -log \Dl + log2 ID! a d d i t i o n s ,  
2 

4 
105 11 
4 4 

95 + - 185 log /Dl + 4 23 log 2 ID1 m u l t i p l i c a t i o n s ,  

64 t - log ID1 + - log2 ID/ d i v i s i o n s  

of m u l t i - p r e c i c i s o n  i n t e g e r s .  

Now we give the  asymptotical bit complexity for our algorithms and 
for the  whole method.  Clearly the complexity depends on the implemen- 
tation of the multi precision routines. Using the so called “Classical Al- 
gorithms” (see [6, p. 250 ff,]) multiplication and divsion of n-bit  numbers  
require O ( n 2 )  bit operations. Using the so-called “Fast Multiplication 
Techniques” these operations numbers require only O ( n  log n log log n) 
bit-operations (see [I, p. 272, 2861). 
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Theorem 4.6 

(a )  Tlie cilgorithms for sqi tccring n i t d  .iiiultiplbccitio,1 of i dea l s  (irztl both 
i w s i o n s  of t h c  reduction a1goritlz.m h u e  bit coiiip1e.rit.y 

( i )  O(10g3 ID] )  if the classical u lgor i th i t s  are u s e d ,  

(ii) O(log2 ID1 log log ID1 log log log 101) if fust ~17z~ii1tipliccit~i01~ tech- 
n i q u e  is -used. 

( b )  Tlie 1 n ~ t h o ~ 1  f o r  public k e y  e.z:clic~nge has  bit coiirplewity 

ti) 0(10g4 1 0 1 )  ,if the  classical ulgoritlzr-rrs ure .used, 

(ii) O(10g3 ID1 log log ID[ log log log 101) if f a s t  multiplication tech- 
nique is used. 

Proof: Both statements follow immediately from the previous re- 
sults. Note that according to  Theorem 4.1 (c) the binary length of the 
integers occuring in our scheme is O(1og 101). 0 

The theorem shows that both versions of the reduction algorithm 
have the same asymptotical complexity. The improvement in the opti- 
mized version on ly  affects the 0-constant as can be seen from Theorem 
4.3. 

We see that  using fast multiplication techniques the running time of 
our method for public key exchange is a cubic polynomial in the length 
of the input data. Therefore it is executable for big exponents and  big 
discriminants. 

V. RUNNING TIME STATISTICS 

The method for public key exchange has been implemented on a SIE- 
MENS 7580-S computer of the University of Diisseldorf [4]. The pro- 
gramming language was FORTRAN-77. For the multi-precision arith- 
metic we used the  classical algorithms. These and some procedures to  
get the mnning time statistics presented below were taken from the 
number theoretic subroutine library KANT. 

we computed many examples where the value of D was the product 
of two prime numbers each of size up to 10loo. This choice of D was done 
according to  the remarks in [2] concerning the security of the method. 
Both cases T = 1 and T = 2 occured equally often. 
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In the table below we prcscnt the statistics of 33 of these essiirples 
Here the size of D varies lietween 10"' and 10'". For each size of D we 
took several exponents of different size. The colLiiiins of the talile 1ial.e 
the following contents: 

(1) Nuinher of the example 

(3) Size of D (number of decimals) 

(3)  Size of t,he product, of the exponents (number of decimals) 

(4) Number of calls of the squaring algorit.hni 

( 5 )  Number of calls of the multiplication algoritlim 

(6) Number of calls of the reduction algorithm 

( 7 )  Average nuniher of iterations in the reduction algorithm 

(8) Maximum number of iterations in the reduction algorithm 

(9) Theoretical bound for the number of iterations in the reduction 
algorithm 

(10) Average running time of the squaring algorithm 

(11) Average running time of the multiplication algorithm 

(12) Average running time of the classical version of the reduction algo- 
rithm 

(13) Average running time of the optimized version of the reduction 
algorithm 

(14) Total running time of the program with the optimized version of 
the reduction algorithm 

All times are given in seconds (CPU). 
From the structure of the exponentiation algorithm we know the 

connection between the exponents and the number of calls of our algo- 
rithms: The  number of squarings (col. 4) is exactly twice the sum of the 
logarithms of the two exponents. The number of multiplications (col. 5 )  
is twice the number of One's in the binary representation of the expo- 
nents. The  number of reductions (col. 6) minus 1 is exactly the sum of 
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s q u  Mu1 
(10) (11) 
0.23 0.23 
0.26 0.28 
0.27 0.23 
0.27 0.28 
0.27 0.27 
0.20 0.21 
0.23 0.24 
0.23 0.24 
0.24 0.24 
0.24 0.24 
0.21 0.21 
0.22 0.22 
0.23 0.23 
0.23 0.23 
0.18 0.18 
0.20 0.21 
0.20 0.20 
0.20 0.21 
0.17 0.17 
0.18 0.19 
0.18 0.18 
0.19 0.19 
0.14 0.16 
0.16 0.16 
0.15 0.15 
0.16 0.17 
0.13 0.13 
0.14 0.14 
0.13 0.14 
0.12 0.13 
0.13 0.14 
0.13 0.13 

the coluilms 4 and 5 liecause diere is a recluct.ion after each squaring or 
multiplication aiid one reduction in the initialization. 

The t.lieoret.ica1 l~ouiicl for the nuni11t.r of i t.erat.ions in the recluctioii 
algorithm is computecl froiii the  formula in Theorem 4.3 (a) with a value 
of D rouiidecl to the  liest. power of' ten.  

Cla 

1.60 
1.30 
1.81 
1.82 
1.84 
1.25 
1.44 
1.43 
1.50 
1.51 
1.28 
1.34 
1.39 
1.40 
1.03 
1.18 
1.20 
1.22 
0.89 
0.99 
0.94 
1.04 
0.72 
0.83 
0.72 
0.81 
0.58 
0.67 
0.61 
0.54 
0.62 
0.58 

(12) 

Table (Running time statistics) 

(8) 
80 
79 
77 
82 
80 
71 
79 
75 
74 
74 
72 
74 
75 
75 
72 
69 
70 
70 

- 

- 
- (1) 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 - 

( 9 )  
166 
166 
165 
165 
165 
153 
153 
153 
153 
153 
148 
148 
148 
148 
140 
140 
139 
139 

Decimals 1 Subroutine 

197 

197 

182 

71 
93 
19 
40 
60 
79 
10 
40 
60 
79 
10 
30 
51  
71 
10 
30 
50 
71  
20 
39 
60 
20 
41  
59 

182 
182 
178 
177 
177 
177 
167 
167 
166 
166 
157 
157 
152 
158 
146 
147 
136 
142 
127 
133 
127 
123 
129 
124 - 

466 238 
608 286 
118 62 
246 132 
394 202 
518 238 
58 26 

256 122 
394 202 
518 238 
62 40 

196 98 
334 182 
466 228 
62 30 
190 84 
328 188 
466 238 
126 44 
246 132 
394 202 
128 54 
258 140 
380 176 

Red 

93 
281 
487 
705 
935 
99 
273 
451 
705 
895 
181 
379 
597 
757 
85 
379 
597 
757 
103 
295 
517 
695 
93 
275 
517 
705 
171 
379 
597 
183 
399 
557 

- 
( 6 )  - 

I t.crafious 
in reductioii 

aver 

57 
64 
65 
66 
66 
51 
59 
60 
61 
62 
54 
57 
59 
59 

55 
55 
55 
46 
51 
50 
53 
42 
47 
46 
48 
40 
44 
43 
40 
43 
42 

- 
(7) - 

48 

Average running time 
1 Rtduction 
- Opt 
(13) 
0.27 
0.30 
0.30 
0.30 
0.30 
0.22 
0.26 
0.27 
0.27 
0.27 
0.23 
0.25 
0.25 
0.25 
0.20 
0.22 
0.22 
0.23 
0.18 
0.20 
0.19 
0.21 
0.16 
0.18 
0.16 
0.18 
0.14 
0.15 
0.14 
0.13 
0.15 
0.14 - 

Total 
running 

time 
(14) 
47.11 

159.83 
280.79 
408.24 
540.30 
42.54 

133.59 
225.44 
356.13 
454.34 

80.75 
177.06 
288.64 
363.59 

32.25 
162.92 
255.87 
326139 

46.50 
113.45 
193.32 
276.74 

28.40 
93.22 

161.26 
240.87 

45.33 
111.96 
167.23 
47.35 

113.18 
149.86 
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The coiiipnrisoii of the \-slues in c o l u n u ~  S atid 9 shows that. tlie 
maximum number of iterations in the reduction algorithms is allout half 
of the theoretical bound. 

The coinparision of the a\-erage running tiiiie for the two versions of 
tile reduction algorithm sho\vs that there is indeed it11 iiiil)ortaiit speed- 
ing up. The optimized version only requires 20% or less of the running 
time of the classical versiou. Most of this gain is caused IIJY avoidiilg 
one multi precision division in each iteration. Note that the o p t h i z e d  
version of the reduction algorithin is nearly as fast. as the niultiplication 
of ideals. 

Note also that there is almost no difference in the average running 
time of the inultiplication and the squaring algorithm. Here tlie theo- 
retical improvement has no practical effect. 

The  examination of the total running time of the program confirms 
the complexity result given in Theorem 4.6. 

Now we give the da ta  computed by our program for the first example 
mentioned in the table above. This example has the highest values of 
D. 

We list the information to  be transmitted over the public channel 
(0, the starting ideal class A and the ideal classes @ = A" and Q = Ab)  
and also the secret information (the exponents a and b and the ideal 
class I? = Aab which gives the secret key). 

Note that even if we use low exponents like in the first example the 
secret key has a reasonable size of about m. Nevertheless one should 
choose larger exponents like in the fifth example to have greater security. 

Example 

D = -1198037446912745069541964780276664483054~~107338 
66131993089788267603365417346323605263646114675501 
72246998555004267772913478851528257403104704701886 
44025223079332669700563976732928049691985604910619 

Secret exponents: u = 543210, b = 7980 
Starting ideal class A: A = 9 8 2 ,  B = 3 1  
Ideal class = A=: 
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