ON THE COMPLEXITY AND EFFICIENCY
OF A NEW KEY EXCHANGE SYSTEM

1) 1)

Johannes A. Buchmann Stephan Dullmann
Hugh C. Williams®

1) FB 10 Informatik
Universitat des Saarlandes
D-6600 Saarbriicken
WEST GERMANY

2) Department of Computer Science
University of Manitoba
Winnipeg, Manitoba
CANADA R3T 2N2

ABSTRACT

In [2] Buchmann and Williams presented a new public key exchange
system based on imaginary quadratic flelds. While in that paper the
system was described theoretically and its security was discussed in some
detail nothing much was said about the practical implementation.

In this paper we discuss the practical aspects of the new system, its
efficiency and implementation. In particular we study the crucial point
of the method: ideal reduction. We suggest a refinement of the well
known reduction method which has been implemented on a computer.
We present extensive running time statistics and a detailed complexity
analysis of the methods involved.

The implementation of the reduction procedure on chips is subject
of future research.

I. THE DIFFIE-HELLMAN SCHEME

In their paper “New Directions in Cryptography” [3] Diffie and Hellman
introduced in 1976 the idea of public key exchange. By this method it is

J.J. Quisquater and J. Vandewalle (Eds.): Advances in Cryptology - EUROCRYPT ’89, LNCS 434, pp. 597-616, 1990.
© Springer-Verlag Berlin Heidelberg 1990

598

possible to communicate a secret key for some cryptosystem over a public
insecure channel. We briefly review the idea of Diffie and Hellman.

Suppose that Alice (A) and Bob (£) wish to secretly exchange a
key.

(1) A chooses a finite group G and - at random - an element A € G.
Both GG and A are sent to 3 over the public channel.

(2) Both A and 5 now select — at random - an integer a and b, respec-
tively. These integers are kept secret.

(3) A computes @ = A* and transmits the result to 5. In the same
way B computes 5 = A\ and sends it to A. (Note that the group
elements o and 3 are public.)

(4) A computes v = (3%, B computes 7' = o,

Because v = 3¢ = (A\})® = (X*)® = o = 4 both A and B are in
possession of the same key v without this key having been sent over the
public channel.

In order to be able to apply this algorithm in practice it is necessary
to have an efficient multiplication routine in G i.e., if all the elements are
represented by numbers in {0,1,...,|G| — 1} the representation of the
product of two elements of G should be computable in time polynomial
in log |G|.

Then, using the method of binary shifting (see [6, p. 441 ff.]) pow-
ers of group elements can be computed very efficiently even for large
exponents d, namely in O(logd) elementary operations in G.

The scheme is secure if the key cannot be guessed easiliy and cannot
be determined easily from the public information.

To avoid the key beeing guessed easily it is necessary to choose a
group G of very high order, to pick a starting element)\ of high order
(close to |G]) and to select large exponents a and b.

To make sure that the choice of G is adequate one has to analyse
its arithmetic properties carefully. A neccessary condition is that the
determination of discrete logarithms in G is difficult. Note, however,
that this condition is not sufficient for the security of the system because

the determination of A% from A, A* and A® might be easier than the
calculation of a and b from A, A% and Ab.

So far the following groups have been suggested:

599

o The group G = GL,(Z/pZ) of invertible n X n-matrices over the
finite fleld (Z/pZ). ([14])

o The group of points on an elliptic curve over a finite field. ([11])
e Several groups associated with higher dimensional varieties. ([7])

o The group G = (Z/nZ) where n is the product of two large primes.

([10])

o The class group of an imaginary quadratic field. ([2])

In this paper we continue the discussion of the case where G is the
class group of an imaginary quadratic field.

II. THE CLASS GROUP OF AN IMAGINARY QUADRA-
TIC FIELD

First we summarize the main facts concerning imaginary quadratic fields.
All these facts are well known and therefore will be given without proof.
Proofs of the statements made here and more detailed descriptions can
be found in standard texts like Hua [5] or Narkiewicz [12], [13].

Let D < 0 be a squarefree integer and let K = Q(v/D) be the
quadratic field which is defined by adjoining /D to the set of rational
numbers . If @« € K we denote by @ the complex conjugate of &, by
Tr(c) the trace of «, i.e. the value of o + &, and by N(«) the norm of
@, i.e. the value of o - @. Note that N(a) > 0 for every o € K.

We define
- 1 ifD=2,3mod4
“ 12 if D=1 mod4.

Then the discriminant of K is given by

For a,0 € K put (o, 8] = «Z + BZ. Moreover, let
r~1++vD

T

Then the ring of algebraic integers in K is given by

Ok = [1,w].

800

The fractional ideals of Oy form a multiplicative abelian group de-
noted by F. By I-ideal we denote the neutral element in this group. The
principal ideals of Oy form a subgroup of F denoted by 7. The factor
group F/P is called the class group of OOy denoted by Cs. The class
group is finite, its order is called the class number of Oy and is denoted
by h. The elements of the class group are called the ideal classes. Two
ideals of () are said to be equivalent if they are in the same ideal class.

Every integral ideal a of Oy can be written in the form
a=a,b+ cw
where a,c € Z'b € Z and
cla, c|b, ac|N{b+ cw).

For a given ideal a the integers a and ¢ are uniquely determined and b
is unique modulo a. a is the least positive rational integer in a, denoted
by L(a). If c =1 then a is called primitive.

Every integral primitive ideal a of Oy can be uniquely presented in
the form

a = [L(a),b+ w]

with b € Z and
—L(a) < Tr(b+w) < L(a).
This is called the normal presentation of a.
An integral primitive ideal a whose normal presentation is a =
[L(a), b+ w] is called reduced if
lb+w| = La),
Tr(b+w) > 0 if [b+w|= L(a).

There are the following main facts concerning reduced ideals:

e For each reduced ideal we have L(a) < \/|]A]/3.

o Every ideal class of O contains exactly one reduced ideal.

Each ideal class can be represented by its reduced ideal. So the
arithmetic in the class group of imaginary quadratic fields can be reduced
to ideal-arithmetic: In order to determine the product of two ideal classes

multiply their reduced ideals and compute the reduced ideal equivalent
to this product.

601

Since every reduced ideal is presented by a pair of integers which
are less than /|A|/3 in absolute value class groups can be used in the
Diffie-Hellman scheme if multiplication and reduction of ideals can be
carried out efficiently. The secret key must be one of the integers of the
normal presentation of the reduced ideal computed in the scheme.

III. THE ALGORITHMS

In [2] it is pointed out that D has to be of order of magnitude 10%%
to guarantee high security of the scheme. Also the exponents should
be of this order of magnitude. So first of all we need a multi-precision
integer-arithmetic for implementing the scheme. For details see [6] or
[1].

After the initialization all computations have the following struc-
ture: For an integer n and an ideal class " given by its reduced ideal
ar compute the reduced ideal in I'?, i.e. the reduced ideal equivalent to

(ar)™. This can be done by means of the well known fast exponentiation
technique described in [6, p. 441].

Algorithm 3.1 (Exponentiation of ideal classes)
Input: Reduced ideal a, exponentn € Z>°.
Output: Reduced ideal b equivalent to a™.

(1) N —n; b« l-ideal; c — a;
(2) if N is even then goto (5);
(8) b—~c-b;

(4) reduce b;

(5) N — |N/2);

(6) if N =0 terminate.

(7) c—c-c;

(8) reduce ¢ and goto (2);

For practical purposes it is more convenient to represent an integral
primitive normally presented ideal a = [L(a),b+w| by (4, B) € Z* with

602

A=rL(a) and B = rb+ r — 1. Note that the new presentation is well
defined and unique.

For the multiplication we use an algorithm based on Shanks [15]
which computes a primitive ideal equivalent to the product of two prim-
itive ideals:

Algorithm 3.2 (Multiplication of ideals)
Input: Two primitive ideals (A1, By), (As, Bs).
Output: Primitive ideal (Aa, B;3) equivalent to the product of the input
ideals.
(1) G' — ged(Ay, 4z);
compute the coefficient V' in A\V' + A, W' =G,
(2) By — V'A(By — By);
(3) A3 — T‘A]_Ag,‘
(4) if G' =1 then goto (8);

(5) G — ged(G', (By + Ba)),
compute the coefficients U', U in U'G' + U(B; + B2) = G;

(6) By — [BsU' + U(D — B3)]/G;
(7) A3 — A3/G?;
(8) By — By + Bj;
If the ideals to be multiplied are equal then step 1 of the multipli-
cation algorithm can be replaced by
G=A,W=1 V=0

because A; = A,. This simplification leads to the following algorithm
for squaring an ideal:

Algorithm 3.3 (Squaring of an ideal)
Input: Primitive ideal (A, By).
Output: Primitive ideal (A3, B;3) equivalent to the square of the input
ideal.
(1) G — ng(Al, 2B1),’
compute the coefficient U in U'A; +2UB; = G;

603

(2) By — Bi+ [U(D = B{))/G;
(3) A3 — r(4,/G)*;
(4) terminate.

Now we discuss ideal reduction. In order to decrease the size of the
coefficients of the ideal representation whenever it is possible the ideals
are reduced after each multiplication in Algorithm 3.1. So the reduction
algorithm is applied very frecuently and therefore it is necessary to have

a fast reduction method. Our method is a refinement of the following
well known algorithm (see [8] or {9]).

Algorithm 3.4 (Reduction of ideals, classical version)
Input: Primitive ideal (A', B').

Output: Reduced ideal (A, B) (in normal presentation) equivalent to
the input tdeal.

(1) A— A'; B — B;
(2) B — round(B/A)- A — B;
(3) Ay — (B* — D)/A;
(4) if Ay < A then A — Ay and goto (2);
(5) if (2B < A) and (B <0 or A < Ay) then B — —B;
In step 2 of the algorithms “round” means a multi precision integer

function which computes the rounded quotient of two integers. This can
be done by the following algorithm:

Algorithm 3.5 (Rounded quotient of two integers)

Input: Integers A and B, B 0.

Output: Integer C with C = round(A4/B).

(1) C — A/B; R — A mod B;

(2) if 2|R| > |B| then [if A> 0 then C — C +1 else C « C — 1];

Now we present the refinement of the algorithm which was theoret-
ically described in [2].

604

Algorithm 3.6 (Reduction of ideals, optimized version)

Input: Primitive ideal (A", B').

Output: Reduced ideal (A, B) (in normal presentation) equivalent to
the input ideal. ,

(1) A— A
if B <0 then s — —1 else s — 1,
B — |B'|;

(2) @ —B/4A: R — B mod A; M — A - 2R:
if M >0 then B— R ands — —s else B— R+ M;
Ay — (B* — D)/4;

(8) if Ay < A then Ag — A and A — Ay else goto (6);
(1) Q — B/A; R — B mod A; M — A—2R;

(5) Ay — Ao — (R+ B) - Q;
If M >0 then B+ R and s «— —s else B — R+ M and
AN‘—AN-{-M,'
goto (3);

(6) if s <0 then B — —B;
if (2B < A) and (B <0 or A< Ay) then B — —B;

Comparing the two versions of the algorithm we see that the number
of iterations in both algorithms and also the sequences of the values for
A and B computed in both algorithms are equal. There are two main
differences between the two versions:

The computation of the new value of A in each iteration in the
optimized version needs one division of multi precision integers less than
in the first version because the division in step 3 is avoided. Instead
of this the value of 4 from the preceeding iteration is used. Therefore
this simplification cannot be made up in the first iteration. So step 2 of
Algorithm 3.6 contains the first iteration of Algorithm 3.4.

The computation of the rounded quotient of A and B is avoided in

the optimized version. Moreover the sign of B is stored in a seperate

variable s. In this way one multiplication of multi precision integers in
each iteration is avoided.

The following theorem makes sure that algorithm 3.6 indeed com-
putes the reduced ideal equivalent to the input ideal in finitly many

605

iterations. Moreover an estimation for the number of iterations is given.
In (2] this theorem was proved for Algorithm 3.4 which requires one more
iteration.

Theorem 3.1 Let (A, B) represent a primitive ideal. Algorithm 3.4
finds the reduced ideal equivalent to (A, B) in al most i ilerations of the
steps 3.4 and & where

i = max{O, F log (53—\/%” + 1}.

Finally we describe the initialization where we have to find an ap-
propriate starting ideal class for a given value of D. We chose — at
random — a prime number ¢ (¢ = 3 mod 4) such that D is quadratic
residue modulo g. Then

A

= r-q
B = D% mod Tq
satisfy the condition
rA|B?-D.

So (A, B) represents a primitive ideal. Reduction of this ideal gives the
starting ideal class.

IV. THE COMPLEXITY

First we compute the size of the integers occuring in the computations
of our key exchange system for a fixed value of D.

Theorem 4.1

(a) If (A, B) is a reduced ideal in normal presentation then

| D]

< '

A < 2 T
5] < (2L

|

606

(b) If (4, B) is the primitive ideal computed by Algorithm 3.2 or 3.3

then
D
4 B
3
16|D] | |D]
Bl € ——\|—=
Bl < 3 3
provided that the input ideals were reduced and given in normal
presentation.

(¢) The size of the integers occuring in the computations of our key
ezchange system is bounded by

M = 3|D|y|D|.
Proof:

(a) Let a = [L(a), b+w] = (4, B). Then, according to the definition
of A and B in section 4, we have A = rL(a) and B = rb+r—1. Moreover

_B+1 _ r-1+vD B+VD
s

T T

b4+ w 14

and therefore °B
Tr(b+w)=— < 2B.

-
Since a is reduced we have

A=rL{a) < T\J%l =7‘J
Since a is in normal presentation we have |Tr(b+w)| < L(a) and therefore
B < 2l 1D
2 3

(b) In Algorithm 3.2 the new value for A is computed in steps 3 and
7. From these steps and part (a) of this theorem we get

2
| D] 8|D|
A< o) =22
= (3 3

The new value for B is computed in steps 2, 4 and &8 The coefficients
V', V, U' in step 2 and 5 can be choosen less than 2\/1%. So

P

607

The same arguments apply to Algorithm 3.3.

(c) The input ideals for the multiplication and squaring algorithm
are always reduced ideals in normal presentation. The input ideals for
the reduction algorithm are always results of multiplication and squar-
ing. Moreover the successive values of A in the reduction algorithm are
strictly decreasing with the exeption of the last one and therefore the
size of the input value of 4 is an upper bound for all values of 4 and
B occuring in the algorithm. So by (a) and (b) we see the maximum
integer occuring in the system is bounded by

1653_'\@ - l%@m%ﬁ < 3[DIVID].

a

Note that by part (c) of this theorem we also can estimate the
number of computer words necessary to store the integers used in the
algorithm. If for example D has 200 decimal digits then our multi preci-
sion arithmetic package must be able to handle numbers of 301 decimal
digits.

Next we list the number of elementary operations (additions, mul-
tiplications and divisions) with multi precision integers for each of our

algorithms. Multiplication by r is considered as an addition because r
is either 1 or 2.

To analyze the multiplication and squaring algorithm we first need
to know the number of elementary operations necessary to compute the
gcd’s. This computation can be done by the euclidian algorithm [6,
p. 325]. If one has to compute a gcd and both coefficients of its rep-
resentation the euclidian algorithm needs one division, three additions
and three multiplications in each division step. This case will be called
“ged2”. If one has to compute a gcd and only one of the coefficients of
its representation one can avoid some computations. Then the euclidian
algorithm only needs one division, two additions and two multiplications
in each division step. This case will be called “gcdl”.

Theorem 4.2

(¢) The mazimum number of division steps in the euclidian algorithm
(see [6, p. 325]) used for the computation of the god’s in the mul-
tiplication and squaring algorithm is

M < 2—10g]D|+ L.

608

(b) In case G' =1 Algorithm 3.2 requires at most (3 +2M") additions,
(3 + 2A0) multiplications and A" divisions of multi precision inte-
gers.

(c) In case G' > 1 Algorithm 3.2 requires at most (6 + 5M') additions,
(74 5A0") multiplications and (24 2M") divisions of multi precision
integers.

(d) Algorithm 3.3 requives at most (3+ 2A") additions, (34 2AL") mul-
tiplications and (2 + M') divisions of multi precision integers.

Proof:

(a) From the bounds given in Theorem 4.1 (a) for the input values
of the multiplication and squaring algorithm and by the listings of these
algorithms in the previous section we see that the input values for the
gcd’s are bounded by 2\/@. By Corollary L in [6, p. 343] we can
conclude that the number of division steps required when the euclidian
algorithm is applied to numbers v and v with 0 < u,v < N is at most
4.8logy N 4 0.68. So in our special case we have

M' < 4.8logy, (2 B;—I- + 0.68

4.8

2
= 4.8log10 ﬁ + mlog \ |D| + 0.68

< glog\/lDHl

= %10g[D| + 1.

(b) For G’ = 1 Algorithm 3.2 requires three additions, three multi-
plications and one gedl.

(c) For G' > 1 Algorithm 3.2 requires three additions, seven multi-
plications, two divisions, one gedl and one ged?.

(d) Algorithm 3.3 requires three additions, three multiplications,
two divisions and one gcdl.

a

Now we turn to the reduction algorithm. Here we first have to
compute the maximum number of iterations.

609

Theorem 4.3

(e) The marimum number of iterations in the optimized version of the
reduction algorithm is

MY < %longi +2.

(b) Algorithm 3.4 requires (1+4(M"+1)) additions, 2(M" +1) multipli-
cations and 2(M" +1) divisions of multi precision integers. Here the
operations caused by the seperate ™ round”-algorithm are included.

(c) Algorithm 3.6 requires (5+G6M") additions, (1+M") multiplications
and (2 4+ M") divisions of multi precision tntegers.

Proof:
(a) Using the bound given in Theorem 4.1 (b) we have
AL 80|
-3

for the input ideal of the reduction algorithm. From Theorem 3.1 we
conclude that the number of iterations in Algorithm 3.6 is bounded by

M 1l 3{%——
! — 1
8\5/D1) T

IA

15
log (% 1D[) +1

1 8 1

2
L
2

IN

%log |D| + 2.

(b) The number of iterations in Algorithm 3.4 is one more than in
Algorithm 3.6. Each iteration (steps 2, 3 and 4) requires two additions,
two multiplications, one division and one call of the round procedure in
which there are two additions and one division. Step 5 of the reduction
algorithm requires one additional addition.

(c) Each iteration (steps 3, 4 and 5) in Algorithm 3.6 requires six
additions, one multiplication and one division. Additionally, steps 2 and
6 require five additions, one multiplication and two divisions.

C

Now we have to examine Algorithm 3.1 for the exponentiation of
ideal classes,

610

Theorem 4.4 If the exponents a and b are bounded by a-b < /| D] then
the total number of iterations performed in all calls of the exponentiation
algorithm in the key exchange system is at most

A" < log|D|+ 4.

Proof: The number of iterations in algorithm 3.1 for an arbitrary
exponent n is lower than |logn]|+1 (see [6, 443]). Each exponent is used
twice in the scheme. Therefore the total number of iterations performed
in the four calls of the exponentiation algorithm is hounded by

M" < 2(loga+1+logh+1)
2log(a-b) +4

2log/|D| + 4

log | D] + 4.

IA A

a

Finally we give an upper bound for the number of elementary opera-
tions performed in the key exchange system which follows from Theorems
4.2, 4.3 and 4.4.

Theorem 4.5 Using the optimized version of the reduction algorithm
our key ezchange systemn takes at most

169 33
217 + < log | D| + T log?|D| additions,
185 23
95 - Ve log | D] + T log? |D| multiplications,

105 11
64 + e log | D} + T log? |D| divisions

of multi-precicison integers.

Now we give the asymptotical bit complexity for our algorithms and
for the whole method. Clearly the complexity depends on the implemen-
tation of the multi precision routines. Using the so called “Classical Al-
gorithms” (see [6, p. 250 ff.}) multiplication and divsion of n-bit numbers
require O(n?) bit operations. Using the so-called “Fast Multiplication
Techniques” these operations numbers require only O(nlognloglogn)
bit-operations (see [1, p. 272, 286)).

611

Theorem 4.6

(a) The algorithms for squaring and multiplication of ideals and both
versions of the reduction algorithm have bit complexity

(i) O(log® | D|) if the classical algorithms are used,
(ii) O(log® |D|loglog|D|logloglog|D|) if fust multiplication tech-
nique s used.

(b) The method for public key exchange has bit complexity

(i) O(log* | D|) if the classical algorithms are used,
(ii) O(log® | D|loglog |D}logloglog |D|) if fast multiplication tech-
nigue s used.

Proof: Both statements follow immediately from the previous re-
sults. Note that according to Theorem 4.1 (c) the binary length of the
integers occuring in our scheme is O(log |D|). O

The theorem shows that both versions of the reduction algorithm
have the same asymptotical complexity. The improvement in the opti-

mized version only affects the O-constant as can be seen from Theorem
4.3.

We see that using fast multiplication techniques the running time of
our method for public key exchange is a cubic polynomial in the length

of the input data. Therefore it is executable for big exponents and big
discriminants.

V. RUNNING TIME STATISTICS

The method for public key exchange has been implemented on a SIE-
MENS 7580-S computer of the University of Diisseldorf [4]. The pro-
gramming language was FORTRAN-77. For the multi-precision arith-
metic we used the classical algorithms. These and some procedures to
get the running time statistics presented below were taken from the
number theoretic subroutine library KANT.

We computed many examples where the value of D was the product
of two prime numbers each of size up to 10'%. This choice of D was done
according to the remarks in [2] concerning the security of the method.
Both cases 7 = 1 and r = 2 occured equally often.

612

In the table below we present the statistics of 32 of these examples.
Here the size of D varies between 100 and 10°%. For each size of D we
took several exponents of different size. The columns of the table have
the following contents:

\umber of the example

Size of D (number of decimals)
ize of the product of the exponents (number of decimals)

S
Number of calls of the squaring algorithm

8) Number of calls of the reduction algorithm
(7) Average number of iterations in the reduction algorithm
(8) Maximum number of iterations in the reduction algorithm

(9) Theoretical bound for the number of iterations in the reduction
algorithm

(10) Average running time of the squaring algorithm
(11) Average running time of the multiplication algorithm

(12) Average running time of the classical version of the reduction algo-
rithm

(13) Average running time of the optimized version of the reduction
algorithm

(14) Total running time of the program with the optimized version of
the reduction algorithm

All times are given in seconds (CPU).

From the structure of the exponentiation algorithm we know the
connection between the exponents and the number of calls of our algo-
rithms: The number of squarings (col. 4) is exactly twice the sum of the
logarithms of the two exponents. The number of multiplications (col. 5)
is twice the number of One’s in the binary representation of the expo-
nents. The number of reductions (col. 6) minus 1 is exactly the sum of

613

the columns 4 and 3 because there is a recduction after each squaring or
multiplication and one reduction in the initialization.

The theoretical bound for the number of iterations in the reduction
algorithm is computed from the formula in Theorem 4.3 (a) with a value
of D rounded to the next power of ten.

Table (Running time statistics)

Decimals Subroutine Iterations I Average runmng time Total
Calls in reduction Reduction | running
D |a-b|Squ| Mul | Red | aver | max | theo | Squ | Mul | Cla | Opt time

W) [E) 1@ [6) [6y} (7) | (8 | (9 [(10)] 1)]2 [(13) | (14)
1| 188 10 | 62 | 30 | 93 | 57 | 80 | 166 | 0.23 | 0.23 | 1.60 | 0.27 | 47.11
21198 | 30 | 192 | 88 | 281 | 64 | 79 | 166 [0.25|0.28 | 1.80 | 0.30 | 159.83
31197 | 50 | 324 | 162 | 487 | 65 | 77 | 165 | 0.27|0.28 | 1.81 | 0.30 | 280.79
41197 (7L | 468 | 236 | 705 | 66 | 82 | 165 | 0.27 | 0.28 | 1.82 { 0.30 | 408.24
5(197 | 97 | 640 | 294 | 935 | 66 | 80 | 165 | 0.27 | 0.27 | 1.84 | 0.30 | 540.30
6182 11 | 66 | 32 | 99 | 51 | 71 | 153 |0.20 | 0.21 | 1.25 | 0.22 | 42.54
71182 30 | 190 | 82 | 273 | 59 | 79 | 153 | 0.23 | 0.24 | 1.44 | 0.26 ; 133.59
811821 48 | 310 | 140 | 451 | 60 | 75 | 153 | 0.23 | 0.24 | 1.48 | 0.27 | 225.44
91182 | 7L | 466 | 238 | 705 | 61 | 74 | 153 |0.24 | 0.24 | 1.50 | 0.27 | 356.13

101182 | 93 | 608 | 286 | 895 | 62 74 153 | 0.24 | 0.24 | 1.51 | 0.27 454.34
117178 | 19 | 118 | 62 181 | 54 72 148 1 0.21{0.21 | 1.28 | 0.23 80.75
12 1177 40 | 246 | 132 [379 | 57 74 148 1022 10.22 | 1.34] 0.25 177.06
131177 | 60 | 394 | 202 | 597 | 59 75 148 1 0.23 | 0.23 | 1.39 | 0.25 288.64
14 1177 | 79 | 518 | 238 | 757 | 59 75 148 1 0.23 | 0.23 [1.40 | 0.25 363.59
1511671 10 58 26 85 43 72 140 | 0.18 ; 0.18 | 1.03 | 0.20 32.25
16 | 167 | 40 | 256 | 122 [379 | 55 69 140 | 0.20 | 0.21 | 1.18 | 0.22 162.92
17 1 166 | 60 | 364 | 202 | 597 | 55 70 139 | 0.20 | 0.20 | 1.20 | 0.22 255.87
18 1166 | 79 | 518 | 238 | 757 | 55 70 139 | 0.20 | 0.21 | 1.22 | 0.23 326:39
19 1157 | 10 62 40 103 | 46 64 132 | 0.17 | 0.17 } 0.89 | 0.18 46.50
201187 | 30 | 196 | 98 | 295 | 51 66 132 |1 0.18 [0.19 | 0.99 | 0.20 113.45
21152 51 | 334 182 | 517 | 50 63 128 [0.18 [0.18 | 0.94 | 0.18 193.32
221158 | 71 | 466 | 228 | 695 | 53 67 133 [0.19 1 0.19 | 1.04 | 0.21 276.74
23| 146 | 10 62 30 93 42 59 123 10.14 1 0.16 | 0.72 | 0.16 28.40
24 | 147 | 30 | 190 | 84 | 275 | 47 60 124 |1 0.16 | 0.16 | 0.83 | 0.18 93.22
25| 136 | 50 | 328 | 188 | 517 | 46 59 115 1 0.15(0.15 | 0.72 | 0.16 161.26
26 | 142 | 71 | 466 | 238 | 705 | 48 62 119 1 0.16 | 0.17 | 0.81 | 0.18 240.87
27 | 127 | 20 | 126 | 44 171 | 40 51 107 (0.13 | 0.13 | 0.58 | 0.14 45.33
28 | 133] 39 | 246 | 132 | 379 | 44 56 112 | 0.14 1 0.14 | 0.67 | 0.15 111.96
29 1 127 | 60 | 394 | 202 | 597 | 43 53 107 | 0.13] 0.14 | 0.61 | 0.14 167.23
30| 123 20 | 128 | 54 183 | 40 54 104 j 0.12 [0.13 | 0.54 | 0.13 47.35
31 1 129§ 41 | 258 | 140 | 399 | 43 55 109 : 0.13 | 0.14 | 0.62 | 0.15 113.18
32 {124) 59 | 380 | 176 | 557 | 42 52 104 | 0.13 | 0.13 | 0.58 | 0.14 149.86

614

The comparison of the values in column & and 9 shows that the
maximum number of iterations in the reduction algorithms is about half
of the theoretical bound.

The comparision of the average running time for the two versions of
the reduction algorithm shows that there is indeed an important speed-
ing up. The optimized version only requires 20% or less of the running
time of the classical version. Most of this gain is caused by avoiding
one multi precision division in each iteration. Note that the optimized
version of the reduction algorithm is nearly as fast as the multiplication
of ideals.

Note also that there is almost no difference in the average running
time of the multiplication and the squaring algorithm. Here the theo-
retical improvement has no practical effect.

The examination of the total running time of the program confirms
the complexity result given in Theorem 4.6.

Now we give the data computed by our program for the first example
mentioned in the table above. This example has the highest values of

D.

We list the information to be transmitted over the public channel
(D, the starting ideal class A and the ideal classes ® = A® and ¥ = A®)
and also the secret information (the exponents a and b and the ideal
class I' = A% which gives the secret key).

Note that even if we use low exponents like in the first example the
secret key has a reasonable size of about \/TJTI Nevertheless one should
choose larger exponents like in the fifth example to have greater security.

Example

D = —-119803744691274506954196478027666448305422107338
66131993089788267603365417346323605263646114675501
72246998555004267772913478851528257403104704701886
44025223079332669700563976732928049691985604910619

Secret exponents: a = 543210, &= 7980
Starting ideal class A: A=0982, B=31
Ideal class & = A®:

815

4 = 971429613036373986082445759917205522588066014949
13086285698000466252477914793685446384554925704750
B = 395993438464946485994639174385199545445240652683

75336467384301137146841019182233472651 113628 8470641

Ideal class ¥ = Af:

4 = 3245184228591470294850077585641939122326353850763
30241672632089462264174498544690212815603924965610
B = 1346467765516260169857822840300447086991473982874

11630817948537340265799828623744461455733888148671
Ideal class T = A%

A = 33206434363518178161689675328487011083251016168417
44606450020063171247803446369585670411999866011434
B = —97577809448926539679909701428640738988823144173

53203195510945029218250620415723441254072993437105

References

[1] A.V. Aho, J.E. Hopcroft, J.D. Ullman, The design and analysis
of computer algorithms, Addison-Wesley, Reading, Massachusetts,
1974.

(2] J. Buchmann and H.C. Williams, A key ezchange system based
on imaginary quadratic fields, Journal of Cryptology 1 (1989), to
appear.

[3] W. Diffie and M. Hellman, New directions in cryptography, IEEE
Transactions on Information theory 22 (1976), 472 —~ 492.

[4] S. Dillmann, Ein neues Verfahren zum G&ffentlichen Schlissel-
austausch, Staatsexamensarbeit, Universitat Disseldorf, 1988.

[5] Hua Loo Keng, Introduction to number theory, Springer Verlag,
Berlin and New York, 1982.

[6] D.E. Knuth, The art of computer programming, vol. 2: Seminu-
merical algorithms, Addison-Wesley, Reading, Massachusetts, 2.
Auflage, 1981.

616

[7] N. Koblitz, A Family of Jacobtans Suitable for Discrete Log Cryp-
tosystems, to appear in: Proceedings of Crypto’88, Lecture Notes
of Computer Science, Springer-Verlag.

[8] J.C. Lagarias, Worst-Case Complexity Bounds for Algorithms in
the Theory of Integral Quadratic Forms, Journal of Algorithms 1
(1980), 142 - 186.

[9] H.W Lenstra, Jr., On the calculation of regulators and class num-
bers of quadratic fields, London Math. Soc. Lecture Notes 56
(1982), 123 - 150.

10] K.S. McCurley, A Key Distribution System equivalent to Factoring,
q
preprint, 1987.

[11] V. Miller, Use of Elliptic Curves in Cryptography, Advances in
cryptology (Proceedings of Crypto’85), Lecture Notes in Computer
Science 218 (1986), Springer-Verlag, NY, 417 - 426.

[12] W. Narkiewicz, Elementary and analytic theory of algebraic num-
bers, Warszawa, 1974.

[13] W. Narkiewicz, Number theory, Warszawa, 1977, engl. edition
1983.

(14] R.W.K. Odoni, V. Varadharajan and P.W. Sanders, Public Key

Distribution in Matriz Rings, Electronic Letters 20 (1984), 386 —
387.

[15] D. Shanks, Class number, a theory of factorization and genera,
Proc. Symposia in Pure Mathematics 20 (1971), 415 - 440.

	ON THE COMPLEXITY AND EFFICIENCYOF A NEW KEY EXCHANGE SYSTEM
	ABSTRACT
	I. THE DIFFIE-HELLMAN SCHEME
	II. THE CLASS GROUP OF AN IMAGINARY QUADRATICFIELD
	III. THE ALGORITHMS
	IV. THE COMPLEXITY
	V. RUNNING TIME STATISTICS
	References

