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Abstract 

We make an attempt to compare the speed of eeme primality testing algorithms for certifying 
loo-digit prime numbers. 

1. Introduction. The implementation of several public-key cryptosystems requires the ability to 
build large primes as fast as possible [13, 21. Several authors [29,12, 15, 221 have studied this problem 
and given some good algorithms, which give primes having special forms. Our purpose is to explain 
how to test a random integer for primality. 

One possible solution to this problem is to use probable primes, recognized by a probabilistic 
primality testing algorithm, such as Miller-Rabin’s [19]. This test is very fast and almost surely 
yields prime numbers. (For a philosophical interpretation of this test, see [4].) 

Another way is to use determinis tic primality testing algorithms which yield a proof for a number 
to be a prime. The first general purpose deterministic algorithm was introduced by Adlernan, Rumely 
and Pomerance [l] and refined by H. Cohen, H. W. Lenstra (Jr.) and A. K. Lenstra [lo, 111 (and 
more recently by Bosma and van der Hulst [S]). It gi ves good running times (on a huge computer). 
However, the proof given by their program is yes or no and the only way for someone else to verify the 
results is to rewrite and rerun the entire program. One of the most recent prim&y testing algorithm, 
due to Atkin [3], uses elliptic curves and generalizes the old theorems of Fermat on primahty. The 
author used his own implementation of this algorithm to prove the prima&y of about fifty large 
numbers from Cunningham’s tables [S] (thus finishing the list of probable primes that were waiting 
to be certsed), the largest one being the 564-d@ cofactor of Fii [24], and two other large primes, 
namely S1493 (572 digits) and S19e1 (728 digits), where 

For this algorithm, the work needed to check the results is far less than that of establishing proofs. 
The purpose of this paper, after a brief description of Atkin’s test, is to attempt to compare these 

algorithms with respect to the following questions: 

1. How long does it take to test a loo-digit number for primality? 

2. How fast are these algorithms compared to the algorithm of Miller? 
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3. What kind of proof do we get? How long does it take to  verify it? 

It should be noted that  we only describe the implementation of the algorithm that is needed t o  
test 10Gdigit numbers. Many other strategies are used when dealing with larger numbers (see [24] 
or the forthcoming papers [23, 261). 

Notations. In the sequel, N will denote an odd integer to  be tested for primality, MR Miller-Rabin's 
algorithm, CL2 Cohen-Lenstra's, and ATK Atkin's. 

2. A brief description of Atkin's test. (2.1) Elliptic curues. Let K be a field of characteristic 
prime to 6. An elliptic curve E over K is a non singular algebraic projective curve of genus 1. It can 
be shown [9, 331 that  E is isomorphic t o  a curve with equation: 

yZz = x3 + axi? + bz3, (1) 

with a and b in K. The discriminant of E is A = -16(4a3 + 27b2) and the invariant is 

a3 
4a3 + 27b2. 

j = 2's3 

We write E(K) for the set of points with coordinates (2 : y : z )  which satisfy (1) with z = 1, 
together with the point at infinity: OE = (0 : 1 : 0). We will use the well-known tangent-and-chord 
addition law on a cubic [18] over a finite field Z / N Z  (see [16] for a justification). 

T 

I 

Figure 1: An elliptic curve over R 

In order t o  add two points M I  = (z l ,y l )  and M2 = (x2,yz) on E resulting in I& = ( ~ 3 , ~ 3 ) ,  the 
equations are 

where 

A =  { 
We can compute kP using the binary method (see also [ll]) or addition-subtraction chains [28]. 

(2.2) Primality testing. Let us recall one of the converses of Fermat's theorem. 

Theorem 1 Let a be such Mat gcd(a, N )  = 1, q a prime divisor of iV - 1. If 
aN-' = 1 mod N and gcd(a(N-l)/q - 1, N )  = 1 

then each prime divisor p of li satisfies: p = 1 mod q.  
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Corollary 1 If q > f i  then N is  prime. 

A simiiar theorem can be stated for elliptic curves. 

Theorem 2 ([14, 211) Let N be an integer greater than 1 and prime to 6. Let E be an  elliptic 
curve over Z f N Z ,  m and s two integers such that s I m. Suppose we have found a point P on E that 
satisfies mP.= OE, and that for each prime factor q of s, we have verified that TP # OE. Then if 
p i s  a prime divisor of N ,  # E ( Z / p Z )  ZE 0 mod s. 

Corollary 2 If s > (fl+ I ) ~ ,  &en N i s  prime. 

In order to  use the preceding theorem, we need to compute the number of points m. This process 
is far from trivial in general (see [32]). From a practical point of view, it is desirable to  use deep 
properties of elliptic curves over finite fields. This involves the theory of complex multiplication and 
class fields and requires a lot of theory [24]. We can summarize the principal properties: 

Theorem 3 Every elliptic curve E mod p has complex multiplication by the ring of integers of an  
imaginary quadratic field K = $( m). 
From a very down-to-earth point of view, this comes down to saying: 

0 p splits in K :  ( p )  = (T )  (T‘) in K ;  

x ~ ( j ( E ) )  

m = (T - 1)(d - 1) = p + 1 - t ,  where It/ 5 2 f i  (Hasse) 

0 mod p for a fixed H D ( X )  in Z[X]; 

The computation of the polynomials HD is dealt with in [24] and [25]: it requires some 1000 lines 
of MAPLE code. As a result, I have a list of 575 discriminants (those with h 5 10 and some with 
h = 12), thus providing about 1158 potential number of points. 

3. Atkin’s algorithm. We now explain how the preceding theorems are used in a factor and conquer 
algorithm similar to the DOWNRUN process of [34]. The first phase of the algorithm consists in 
finding a sequence NO = N > Nl > 1 . -  > Nk of probable primes such that: N;+l prime =+ Ni 
prime. The second then proves that each number is prime, starting from Nk. 
Procedure SEARCHN 

1. i := 0; No := N ;  

2. find a fundamental discriminant -D such that (Ni) splits as  the product of two principal ideals 
in Q(Q); 

3. for each solution of ( N ; )  = (T ) (T ’ ) ,  find all factors of m, = (T - l)(d - 1) less than a given 
bound B and let N ,  be the corresponding cofactor; 

4. if one of the N ,  is a probable prime then set NiLl := N,, store { N ; , D , T , ~ }  set i := i + 1, 
and go to step 2 else go to step 3. 

5. end. 

In Step 2, we use lattice reduction (see [24]). In Step 3, we use a sieve to find all factors less than 
215, which is enough for our purpose (that is testing the primality of 100-digit integers). The sieving 
process is done as follows (this generakes a trick described in 17, Section 7, Rem. 1) and [ll]): 
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Procedure Sieve 

1. for i = l . .k  do RES[i] := ( N  + 1) mod pi; 
2. N f 1 tests: 
for i = 1..k 

i fRES[ i ]  = 0 then pi 1 N + 1 
o i f R E S [ Z ] = 2 t h e n p i I N - l  

3. m , t = N + l f t ,  I t1<24%: 
for i = l . . k  

T := t mod pi 
if RES[i] = T then pi I rn- 
if RES[il = -T then pi I m, 

If one of the steps of procedure SEARCHN cannot be achieved, this means that either one of O m  

The second phase consists in proving that the numbers Xi are indeed primes. This is done as 
Xi is indeed composite or that  this is a difficult number (see [26]) .  

follows: 

Procedure PROOF 

for i = k . 0  

1. compute a root j of Pn,(X) mod Ni using Berlekamp’s algorithm if deg(P) > 4, Shanks’s if 
deg = 2, Cailler-Williams’ if deg = 3, and Skolem’s otherwise (see [27]); 

2. let k := j / (1728-j)  mod Ni, a := 3k, b := 2k: E(a,  b) has for equation yz = z3+az+b mod Ni; 
choose a point P on E(a,  b) and compute Q = miP; if Q # OE then choose a non residue c 
and set: a := a~?, b := bc3. 

3. verify the condition of theorem ( 2 ) .  

The same remarks can be made if we cannot complete our task. It has been observed that  as soon 
as we can complete Phase 1, Phase 2 is no problem (apart from the execution time). 

4. Implementation and empirical comparisons. I have implemented ATK on a SUN 3 / 6 0  (12 
Mo) using the BigNum package described in [17]. This package includes about 700 lines of assembly 
code together with 1500 lines of Le-Lisp (or C). My program is written in Le-Lisp. 

(4.1) A brief comparison with CL2. In [ll], the authors describe the implementation of CL2 on 
a CDC Cyber 170/750. They used a 47-bit arithmetic and they gave the time for doing elementary 
operations on multiples (i.e. 8 words of 47 bits) and doubles (16 words). 

We can attempt t o  compare the speeds of these two arithmetics by measuring the time needed 
on a SUN t o  do the same operations on numbers having equal numbers of bits: a multiple consists 
of 12 words of 32 bits and a double of 24 words of 32 bits. We list below these times in milliseconds. 

We can satisfy ourselves with the crude statement that our arithmetic is 15 times slower than 
that of Cohen and Lenstra. 

Following the same line, we can compare the time needed to test 100-digit numbers for primality. 
We now describe the protocol we used (it is the protocole of [ll] without the testing for small factors). 
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minimum 
maximum 
mean 
standard deviation 

CL2 4 x M R  ratio ATK 4 x M R  ratio 
26.031 0.544 350.4 4.0 
75.416 0.602 1042.3 5.0 
50.442 0.567 88.92 661.0 4.4 150.23 
15.203 0.015 197.0 0.4 

We now see that our MR is about 8 times slower, but ATK algorithm is less than 14 times slower 
than CL2. These arguments are not very strong, but gives some hints on the relative behaviors of 
CL2 compared t o  ATK. 

For the sake of completeness, I list in the following table the corresponding times for the  imple- 
mentation of CL2 by A. K. Lenstra on a Cray I [20]. 

CL2 4 x M R  
minimum 3.822 0.061 

9.174 0.057 
7.047 0.058 

We can also proceed t o  give in Table 1 the time needed to test a number of d words of 32 bits 
with my program, for d = 2(2)20. Time are in seconds. The first line is concerned with ATK, the  
second with the number of steps in procedure SEARCHN. 

These data  are reported in Figure 2. They suggest the following approximation for the  average 
running time of our program (in seconds if d is the number of 32-byte words): 

T A T K ( ~ )  z 0.27 x d3.*’. 

Using the data  in [ll], we can compute a similar approximation for the running time of CL2 for 
numbers from 100 t o  200 digits. This yields: 

T c ~ ( d )  x 0.024 x d3.’*. 

If we use the theoretical running time of CL2, we find 

~ ~ ( d )  2 p 5 w o g d  

We can draw some conclusions regarding this comparison between CL2 and ATK. It seems that 
CL2 is slightly faster for this range of numbers (100 to 200 digits). It is worth noting that the 
implementation of CL2 was very optimized for this range, as mine is not (at least for the  time 
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mean 
3.6 
1.5 

28.4 
4.7 

119.9 
9.6 

250.6 
12.8 

608.9 
16.5 

1312.0 
21.0 

1937.0 
26.6 

3513.1 
30.5 

5454.9 
34.9 

10405.6 
37.3 

- 
d 
2 

4 

6 

8 

10 

12 

14 

16 

18 

20 

- 

- 

st. dev. 
1.5 
0.9 

15.8 
1.4 

37.6 
1.7 

73.9 
2.6 

160.8 
2.7 

384.0 
3.6 

276.5 
2.7 

1077.8 
3.9 

1469.1 
5.3 

2772.2 
4.3 

min 
1.3 

0 
9.0 

3 
54.1 

5 
146.1 

9 
294.7 

11 
846.6 

15 
1369.4 

21 
1945.1 

24 
3289.8 

27 
5871.0 

30 

max 
6.5 

3 
74.8 

8 
195.9 

12 
413.4 

18 
983.9 

20 
2334.5 

28 
2433.5 

31 
5886.5 

39 
10009.5 

46 
17845.8 

44 

Table I: Time needed to  test a d-word number for primality 

being). My arithmetic is able to  deal with arbitrary large numbers and I was able to certify numbers 
from 250 t o  700 digits. (For these sizes, I use special algorithms, including Karatsuba’s multiplication 
algorithm as implemented by P. Zimmermann at  INFUA.) On the contrary, the size of integers used 
on the CDC must be fixed at compile time [20]. 

(4.2) Further remarks o n  my implementation. In a typical run of my program, three quarters 
of the time are needed t o  complete the  first phase of the algorithm and one quarter for the  second 
(again for a 100-digit number). The most time consuming part of the algorithm is the factorization 
of the number of points m. 

5. Generalized certificate of primality. Certificates of primality have been introduced by 
Pratt [31]. Recently, Pomerance studied some certificates using elliptic curves [30]. It is very easy 
to generalize the work of Pratt. A certificate generated by algorithm ATK consists in blocks of 
numbers. Each block has the following structure: 

ni 

1 0 

where R, is the number to be tested, type giving the type of theorem used to  show the primality of 
n;. This is an integer, chosen as follows: 

-1 : use of the factors of ni - 1, 
1 : use of the factors of n; + 1, 

D : an integer (D > 2) used in ATK. 
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TO each of the types corresponds a list of numbers used to complete the proof of ni being prime, 
whenever the following block is valid. For instance, the format of a proof using elliptic curves is the 
following: 

D 
m 
TO 
f . .  

r k  
0 
a 
b 

Y 
z 

fl 

ff 
... 

the discriminant used 
the number of points on the cune  

the factors of m 

the curve is E: yz = r3 + uz -+ b 
E has complex multiplication by a(-) 
the coordinates of a point P on the curve 

the factorization of the order of P on E 

For example, here is the first block of proof for a 50-digit prime: 

n0=35090920174233837395447134480305116522935098213281 
D=4 
m=35090920174233837395447125326861763110277715724842 
r1=937 

853 
13 
2 

0 
a=6 
b=O 
~=7778128793230599416235595023534938267181834875 
y=18796494177062591514397495874290295720055455015935 
f=1688623335721461035951533562150236430435197 
0 

It is also possible to  give a very short label to a certificate, which I call a primaIity path. It 
consists in some brief informations on the discriminants used and the actual value of m choosen (see 
[26]). For example, for the above mentioned prime, the path is: 4dl - 1 + 1 + 3 f l +  l+. 

An independant verifier can check the proof by simply coding the necessary basic operations on 
elliptic curves. 

The size of the whole program is about 230 kbytes (about 6500 lines of Le-Lisp) using 370 kbytes 
of data  (the polynomials HD and the primes below ZI5).  The code needed for verifying a certificate 
is about 74 kbytes. Moreover, the time needed to  verify a certificate for a 100-digit prime is about 
one fifth the time needed t o  build it. 

6. Further directions of research. In the future, I intend to optimize my code a little further, 
namely using special techniques for gcd’s, . . . It d also be interesting to use the hardware multiplier 
built by J. Vuillemin and his team at  INRIA and DEC-PRL [5] to speed up the modular operations. 

A p d  from this technological research, it is possible to give some hints concerning the analysis 
of the algorithm and also what a bad number is for ATK. 

7. Conclusions- If we try to answer our original questions in brief, we see that CL2 gives a succinct 
proof in a short time on a huge computer, taking 90 times more time than four executions of MR; 
on the other hand, ATK gives a lengthy proof that can be v e d e d  in a small fraction of the time 
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needed to establish it, and it works well on a small computer, achieving a ratio of 150 with ~ x M R ,  
which is not too bad compared to CL2, since the arithmetic is approximately fifteen times slower. 

Acknowledgments. I wish to thank A. K. Lenstra for some useful comments on the first version 
of this article and S. S. Wagstaff, Jr. for his careful reading of this article. 
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