
ATKIN’S TEST: NEWS FROM THE FRONT

Franqois Morain *

Institut National de Recherche en Informatique et en Automatique

Domaine de Voluceau, B. P. 105

78153 LE CHESNAY CEDEX (France)

Dipartement de Mathkmatiques

Universitk Claude Bernard

69622 Villeurbanne CEDEX (France)

Abstract

We make an attempt to compare the speed of eeme primality testing algorithms for certifying
loo-digit prime numbers.

1. Introduction. The implementation of several public-key cryptosystems requires the ability to
build large primes as fast as possible [13, 21. Several authors [29,12, 15, 221 have studied this problem
and given some good algorithms, which give primes having special forms. Our purpose is to explain
how to test a random integer for primality.

One possible solution to this problem is to use probable primes, recognized by a probabilistic
primality testing algorithm, such as Miller-Rabin’s [19]. This test is very fast and almost surely
yields prime numbers. (For a philosophical interpretation of this test, see [4].)

Another way is to use determinis tic primality testing algorithms which yield a proof for a number
to be a prime. The first general purpose deterministic algorithm was introduced by Adlernan, Rumely
and Pomerance [l] and refined by H. Cohen, H. W. Lenstra (Jr.) and A. K. Lenstra [lo, 111 (and
more recently by Bosma and van der Hulst [S]). It gi ves good running times (on a huge computer).
However, the proof given by their program is yes or no and the only way for someone else to verify the
results is to rewrite and rerun the entire program. One of the most recent prim&y testing algorithm,
due to Atkin [3], uses elliptic curves and generalizes the old theorems of Fermat on primahty. The
author used his own implementation of this algorithm to prove the prima&y of about fifty large
numbers from Cunningham’s tables [S] (thus finishing the list of probable primes that were waiting
to be certsed), the largest one being the 564-d@ cofactor of Fii [24], and two other large primes,
namely S1493 (572 digits) and S19e1 (728 digits), where

For this algorithm, the work needed to check the results is far less than that of establishing proofs.
The purpose of this paper, after a brief description of Atkin’s test, is to attempt to compare these

algorithms with respect to the following questions:

1. How long does it take to test a loo-digit number for primality?

2. How fast are these algorithms compared to the algorithm of Miller?

‘On leave from the French Department of Defense, DOl@tion G&~&ale pour 1’Armement.

J.J. Quisquater and J. Vandewalle (Eds.): Advances in Cryptology - EUROCRYPT ‘89, LNCS 434, pp. 626-635, 1990.

0 Springer-Verlag Berlin Heidelberg 1990

627

3. What kind of proof do we get? How long does it take to verify it?

It should be noted that we only describe the implementation of the algorithm that is needed t o
test 10Gdigit numbers. Many other strategies are used when dealing with larger numbers (see [24]
or the forthcoming papers [23, 261).

Notations. In the sequel, N will denote an odd integer to be tested for primality, MR Miller-Rabin's
algorithm, CL2 Cohen-Lenstra's, and ATK Atkin's.

2. A brief description of Atkin's test. (2.1) Elliptic curues. Let K be a field of characteristic
prime to 6. An elliptic curve E over K is a non singular algebraic projective curve of genus 1. It can
be shown [9, 331 that E is isomorphic t o a curve with equation:

yZz = x3 + axi? + bz3, (1)

with a and b in K. The discriminant of E is A = -16(4a3 + 27b2) and the invariant is

a3
4a3 + 27b2.

j = 2's3

We write E(K) for the set of points with coordinates (2 : y : z) which satisfy (1) with z = 1,
together with the point at infinity: OE = (0 : 1 : 0). We will use the well-known tangent-and-chord
addition law on a cubic [18] over a finite field Z / N Z (see [16] for a justification).

T

I

Figure 1: An elliptic curve over R

In order t o add two points M I = (z l ,y l) and M2 = (x2,yz) on E resulting in I& = (~ 3 , ~ 3) , the
equations are

where

A = {
We can compute kP using the binary method (see also [ll]) or addition-subtraction chains [28].

(2.2) Primality testing. Let us recall one of the converses of Fermat's theorem.

Theorem 1 Let a be such Mat gcd(a, N) = 1, q a prime divisor of iV - 1. If
aN-' = 1 mod N and gcd(a(N-l)/q - 1, N) = 1

then each prime divisor p of li satisfies: p = 1 mod q.

628

Corollary 1 If q > f i then N is prime.

A simiiar theorem can be stated for elliptic curves.

Theorem 2 ([14, 211) Let N be an integer greater than 1 and prime to 6. Let E be an elliptic
curve over Z f N Z , m and s two integers such that s I m. Suppose we have found a point P on E that
satisfies mP.= OE, and that for each prime factor q of s, we have verified that TP # OE. Then if
p i s a prime divisor of N , # E (Z / p Z) ZE 0 mod s.

Corollary 2 If s > (fl+ I) ~ , &en N i s prime.

In order to use the preceding theorem, we need to compute the number of points m. This process
is far from trivial in general (see [32]). From a practical point of view, it is desirable to use deep
properties of elliptic curves over finite fields. This involves the theory of complex multiplication and
class fields and requires a lot of theory [24]. We can summarize the principal properties:

Theorem 3 Every elliptic curve E mod p has complex multiplication by the ring of integers of an
imaginary quadratic field K = $(m).
From a very down-to-earth point of view, this comes down to saying:

0 p splits in K : (p) = (T) (T‘) in K ;

x ~ (j (E))

m = (T - 1)(d - 1) = p + 1 - t , where It/ 5 2 f i (Hasse)

0 mod p for a fixed H D (X) in Z[X];

The computation of the polynomials HD is dealt with in [24] and [25]: it requires some 1000 lines
of MAPLE code. As a result, I have a list of 575 discriminants (those with h 5 10 and some with
h = 12), thus providing about 1158 potential number of points.

3. Atkin’s algorithm. We now explain how the preceding theorems are used in a factor and conquer
algorithm similar to the DOWNRUN process of [34]. The first phase of the algorithm consists in
finding a sequence NO = N > Nl > 1 . - > Nk of probable primes such that: N;+l prime =+ Ni
prime. The second then proves that each number is prime, starting from Nk.
Procedure SEARCHN

1. i := 0; No := N ;

2. find a fundamental discriminant -D such that (Ni) splits as the product of two principal ideals
in Q(Q);

3. for each solution of (N ;) = (T) (T ’) , find all factors of m, = (T - l)(d - 1) less than a given
bound B and let N , be the corresponding cofactor;

4. if one of the N , is a probable prime then set NiLl := N,, store { N ; , D , T , ~ } set i := i + 1,
and go to step 2 else go to step 3.

5. end.

In Step 2, we use lattice reduction (see [24]). In Step 3, we use a sieve to find all factors less than
215, which is enough for our purpose (that is testing the primality of 100-digit integers). The sieving
process is done as follows (this generakes a trick described in 17, Section 7, Rem. 1) and [ll]):

629

Procedure Sieve

1. for i = l . .k do RES[i] := (N + 1) mod pi;
2. N f 1 tests:
for i = 1..k

i fRES[i] = 0 then pi 1 N + 1
o i f R E S [Z] = 2 t h e n p i I N - l

3. m , t = N + l f t , I t1<24%:
for i = l . . k

T := t mod pi
if RES[i] = T then pi I rn-
if RES[il = -T then pi I m,

If one of the steps of procedure SEARCHN cannot be achieved, this means that either one of O m

The second phase consists in proving that the numbers Xi are indeed primes. This is done as
Xi is indeed composite or that this is a difficult number (see [26]) .

follows:

Procedure PROOF

for i = k . 0

1. compute a root j of Pn,(X) mod Ni using Berlekamp’s algorithm if deg(P) > 4, Shanks’s if
deg = 2, Cailler-Williams’ if deg = 3, and Skolem’s otherwise (see [27]);

2. let k := j / (1728-j) mod Ni, a := 3k, b := 2k: E(a, b) has for equation yz = z3+az+b mod Ni;
choose a point P on E(a, b) and compute Q = miP; if Q # OE then choose a non residue c
and set: a := a~?, b := bc3.

3. verify the condition of theorem (2) .

The same remarks can be made if we cannot complete our task. It has been observed that as soon
as we can complete Phase 1, Phase 2 is no problem (apart from the execution time).

4. Implementation and empirical comparisons. I have implemented ATK on a SUN 3 / 6 0 (12
Mo) using the BigNum package described in [17]. This package includes about 700 lines of assembly
code together with 1500 lines of Le-Lisp (or C). My program is written in Le-Lisp.

(4.1) A brief comparison with CL2. In [ll], the authors describe the implementation of CL2 on
a CDC Cyber 170/750. They used a 47-bit arithmetic and they gave the time for doing elementary
operations on multiples (i.e. 8 words of 47 bits) and doubles (16 words).

We can attempt t o compare the speeds of these two arithmetics by measuring the time needed
on a SUN t o do the same operations on numbers having equal numbers of bits: a multiple consists
of 12 words of 32 bits and a double of 24 words of 32 bits. We list below these times in milliseconds.

We can satisfy ourselves with the crude statement that our arithmetic is 15 times slower than
that of Cohen and Lenstra.

Following the same line, we can compare the time needed to test 100-digit numbers for primality.
We now describe the protocol we used (it is the protocole of [ll] without the testing for small factors).

630

minimum
maximum
mean
standard deviation

CL2 4 x M R ratio ATK 4 x M R ratio
26.031 0.544 350.4 4.0
75.416 0.602 1042.3 5.0
50.442 0.567 88.92 661.0 4.4 150.23
15.203 0.015 197.0 0.4

We now see that our MR is about 8 times slower, but ATK algorithm is less than 14 times slower
than CL2. These arguments are not very strong, but gives some hints on the relative behaviors of
CL2 compared t o ATK.

For the sake of completeness, I list in the following table the corresponding times for the imple-
mentation of CL2 by A. K. Lenstra on a Cray I [20].

CL2 4 x M R
minimum 3.822 0.061

9.174 0.057
7.047 0.058

We can also proceed t o give in Table 1 the time needed to test a number of d words of 32 bits
with my program, for d = 2(2)20. Time are in seconds. The first line is concerned with ATK, the
second with the number of steps in procedure SEARCHN.

These data are reported in Figure 2. They suggest the following approximation for the average
running time of our program (in seconds if d is the number of 32-byte words):

T A T K (~) z 0.27 x d3.*’.

Using the data in [ll], we can compute a similar approximation for the running time of CL2 for
numbers from 100 t o 200 digits. This yields:

T c ~ (d) x 0.024 x d3.’*.

If we use the theoretical running time of CL2, we find

~ ~ (d) 2 p 5 w o g d

We can draw some conclusions regarding this comparison between CL2 and ATK. It seems that
CL2 is slightly faster for this range of numbers (100 to 200 digits). It is worth noting that the
implementation of CL2 was very optimized for this range, as mine is not (at least for the time

63 1

1

10

9
8

Time 7
(s) 6

5
4
3
2

L ,..W' ..-*
I I I ! I I

45
40

Number

0 : minimum time
e: maximum *: mean

- -
a - - *

Number of words

632

mean
3.6
1.5

28.4
4.7

119.9
9.6

250.6
12.8

608.9
16.5

1312.0
21.0

1937.0
26.6

3513.1
30.5

5454.9
34.9

10405.6
37.3

-
d
2

4

6

8

10

12

14

16

18

20

-

-

st. dev.
1.5
0.9

15.8
1.4

37.6
1.7

73.9
2.6

160.8
2.7

384.0
3.6

276.5
2.7

1077.8
3.9

1469.1
5.3

2772.2
4.3

min
1.3

0
9.0

3
54.1

5
146.1

9
294.7

11
846.6

15
1369.4

21
1945.1

24
3289.8

27
5871.0

30

max
6.5

3
74.8

8
195.9

12
413.4

18
983.9

20
2334.5

28
2433.5

31
5886.5

39
10009.5

46
17845.8

44

Table I: Time needed to test a d-word number for primality

being). My arithmetic is able to deal with arbitrary large numbers and I was able to certify numbers
from 250 t o 700 digits. (For these sizes, I use special algorithms, including Karatsuba’s multiplication
algorithm as implemented by P. Zimmermann at INFUA.) On the contrary, the size of integers used
on the CDC must be fixed at compile time [20].

(4.2) Further remarks o n my implementation. In a typical run of my program, three quarters
of the time are needed t o complete the first phase of the algorithm and one quarter for the second
(again for a 100-digit number). The most time consuming part of the algorithm is the factorization
of the number of points m.

5. Generalized certificate of primality. Certificates of primality have been introduced by
Pratt [31]. Recently, Pomerance studied some certificates using elliptic curves [30]. It is very easy
to generalize the work of Pratt. A certificate generated by algorithm ATK consists in blocks of
numbers. Each block has the following structure:

ni

1 0

where R, is the number to be tested, type giving the type of theorem used to show the primality of
n;. This is an integer, chosen as follows:

-1 : use of the factors of ni - 1,
1 : use of the factors of n; + 1,

D : an integer (D > 2) used in ATK.

633

TO each of the types corresponds a list of numbers used to complete the proof of ni being prime,
whenever the following block is valid. For instance, the format of a proof using elliptic curves is the
following:

D
m
TO
f . .

r k
0
a
b

Y
z

fl

ff
...

the discriminant used
the number of points on the cune

the factors of m

the curve is E: yz = r3 + uz -+ b
E has complex multiplication by a(-)
the coordinates of a point P on the curve

the factorization of the order of P on E

For example, here is the first block of proof for a 50-digit prime:

n0=35090920174233837395447134480305116522935098213281
D=4
m=35090920174233837395447125326861763110277715724842
r1=937

853
13
2

0
a=6
b=O
~=7778128793230599416235595023534938267181834875
y=18796494177062591514397495874290295720055455015935
f=1688623335721461035951533562150236430435197
0

It is also possible to give a very short label to a certificate, which I call a primaIity path. It
consists in some brief informations on the discriminants used and the actual value of m choosen (see
[26]). For example, for the above mentioned prime, the path is: 4dl - 1 + 1 + 3 f l + l+.

An independant verifier can check the proof by simply coding the necessary basic operations on
elliptic curves.

The size of the whole program is about 230 kbytes (about 6500 lines of Le-Lisp) using 370 kbytes
of data (the polynomials HD and the primes below ZI5). The code needed for verifying a certificate
is about 74 kbytes. Moreover, the time needed to verify a certificate for a 100-digit prime is about
one fifth the time needed t o build it.

6. Further directions of research. In the future, I intend to optimize my code a little further,
namely using special techniques for gcd’s, . . . It d also be interesting to use the hardware multiplier
built by J. Vuillemin and his team at INRIA and DEC-PRL [5] to speed up the modular operations.

A p d from this technological research, it is possible to give some hints concerning the analysis
of the algorithm and also what a bad number is for ATK.

7. Conclusions- If we try to answer our original questions in brief, we see that CL2 gives a succinct
proof in a short time on a huge computer, taking 90 times more time than four executions of MR;
on the other hand, ATK gives a lengthy proof that can be v e d e d in a small fraction of the time

634

needed to establish it, and it works well on a small computer, achieving a ratio of 150 with ~ x M R ,
which is not too bad compared to CL2, since the arithmetic is approximately fifteen times slower.

Acknowledgments. I wish to thank A. K. Lenstra for some useful comments on the first version
of this article and S. S. Wagstaff, Jr. for his careful reading of this article.

References
[I] L. M. A D L E M A N ? C . P O M E R A N C E , A N D R . S . RUMELY. On distinguishing prime numbers

from composite numbers. Annals of Math., 117:173-206, 1983.

[2] L. M . A D L E M A N , R. L. RIVEST, A N D A . SHAMIR. A method for obtaining digital signatures
and public-key cryptosystems. Comrn. ACM, 21(2):120-126, 1978.

[3] A . 0. L. ATKIN. Manuscript. August 1986.

[4] P. BEAUCBEMIN, G . BRASSARD, C . CREPEAU, C . GOUTIER, A N D C . POMERANCE. The
generation of random numbers that are probably prime. J . Cryptology, 1:53-64, 1988.

[5] P . BERTIN, D . R O N C I N , A N D J . VUILLEMIN. Introduction to programmable active memories.
In Proc. of the Internat. Conf. on Systolic Arrays, 1989.

[6] W . BOSMA A N D M . - P . V A N D E R HULST. Faster prirnality testing. In Proc. Eurocrypt '89,
1989.

[7] J . BRILLHART, D . H. L E H M E R , A N D J . L . SELFRIDGE. Xew primality criteria and factoriza-
tions of 2" * 1. Math. of Comp., 29(130):620-647, 1973.

(81 J. BRILLHART, D . H . LEHMER, J . L. SELFRIDGE, B . TUCKERMAN, A N D S . S . WAGSTAFF
(JR .) . Factorizations of b" i 1, b = 2,3,5,6,7,10,11,12 up to high powers. Number 22 in
Contemporary Mathematics. AMS, 1983.

[9] J. W . S. CASSELS. Diophantine equations with special references to elliptic curves. J. London
Math. SOC., 41:193-291, 1966.

[lo] H. COHEN A N D J R H . W . LENSTRA. Primdity testing and Jacobi sums. Math. of Comp.,
42(165):297-330, 1984.

[ll] H. C O H E N A N D A . K . LENSTRA. Implementation of a new primality test. Math. of Comp.,
48(177):103-121, 1987.

[12] c . COUVREUR A N D J . J . Q ~ ~ I S Q U A T E R . An introduction to fast generation of large prime
numbers. Philips J . Research, 37:231-264, 1982.

[13] W . DIFFIE A N D 51. E. H E L L M A N . New directions in cryptography. IEEE Trans. on I n f o n a t i o n
Theory, IT-22-6, nov 1976.

[14] S. GOLDWASSER A N D J . KILIAN. Almost all primes can be quickly certified. In Proc. 18th
STOC, pages 316-329, Berkeley, 1986.

[15] D . G O R D O N . Strong primes are easy to find. In Proc. Eurocrypt '84, pages 216-223. Springer,
1984.

[16] J R . H. W . L E N S T R A . Factoring integers with elliptic curves. Annals of Math., 126649-673,
1987.

635

[17] J.-C. H E R V ~ , F . MORAIN, D . SALESIN, B . SERPETTE. J . VUILLEMIN, A N D P . ZIMMER-
M A N N . Bignum: A portable and efficient package for arbitrary precision arithmetic. Rapport
de Recherche 1016, INRIA, avril 1989.

[18] D . HUSEMXEOLLER. Elliptic curves, volume 111 of Graduate Texts in Mathematics. Springer,
1987.

[19] D . E. K N U T B . The A r t of Computer Programming: Seminumerical Algorithms. Addison-
Wesley, 198 1.

[20] A . K. LENSTRA. Data concerning the implementation of the Jacobi sums algorithm on a cray-1.
Personnd Communication, April 1989.

[21] H. W . LENSTRA. Elliptic curves and number theoretic algorithms. Technical Report Report
86-19, Math. Inst., Univ. Amsterdam, 1986.

[22] U . M. MAURER. Fast generation of secure RSA-products with almost maximal diversity. In
Proc. Eurocrypt '89, 1989.

[23] F. MORAIN. Distributed primality proving. In preparation.

[24] F. MORAIN. Implementation of the Atkin-Goldwasser-Kilian primality testing algorithm. Rap-
port de Recherche 911, IYRIA, Octobre 1988.

1251 F. MORAIN. Construction of Hilbert class fields of imaginary quadratic fields and dihedral
equations modulo p. Rapport de Recherche 1087, INRIA, Septembre 1989.

[26] F. MORAIN. Elliptic curves and primality proving. In preparation, 1989.

[27] F. MORAIN. RCsolution d'kquations de petit degrC modulo de grands nombres premiers. Rapport
de Recherche 1085, INRIA, Septembre 1989.

[28] F. MORAIN A N D J. OLIVOS. Speeding up the computations on an elliptic curve using addition-
subtraction chains. Rapport de Recherche INRIA 983, INRL4, Mars 1989.

[29] D . A . PLAISTED. Fast verification, testing and generation oflarge primes. Theoretical Cornputre
Science, 9:l-16, 1979.

[30] C. POMERANCE. Very short primality proofs. Math. of Camp., 48(177):31&322, 1987.

[31] V. R. PRATT. Every prime has a succint certificate. SIAM J . Cornput., 4:214-220, 1975.

[32] R . S C A O O F . Elliptic curves over finite fields and the computation of square roots modp. Math.
of Camp., 44:483-494, 1985.

[33] J . T. TATE. The arithmetic of elliptic curves. Inventzones Math., 23:179-206, 1974.

(341 M. C . W U N D E R L I C H . A performance analysis of a simple prime-testing algorithm. Math. of
camp., 40(162):70!3-714, 1983.

	ATKIN’S TEST: NEWS FROM THE FRONT
	Abstract
	1. Introduction
	2. A brief description of Atkin's test
	3. Atkin’s algorithm
	4. Implementation and empirical comparisons
	5. Generalized certificate of primality
	6. Further directions of research
	7. Conclusions
	Acknowledgments
	References

