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Abstract 
Several major improvements to the Jacobi sum primdity testing algorithm will speed it up in such 
a way that proving primality of primes of up to 500 digits will be a matter of routine. Primes of 
about 800 digits will take at most one night on a Cray. 

Primality Testing and Factoring 
Primality testing is one of two closely related classical problems in computational number theory, 
the other being that of factoring integers. Usually, if a positive integer n is composite, it is easy 
to find a proof for that. Since such a proof generally does not provide factors of n, for composite 
numbers the problem of factoring n remains. But if a number does not seem to be composite, one 
would like to find a proof for its primality; this is the object of primaIity testing and the subject of 
this paper. A primality test is an algorithm that gives a rigorous proof for the primality of prime 
numbers; one inputs an integer and the algorithm either yieids a proof that n is prime, or it MS, 
indicating that n must be composite. 

In this paper we describe several major improvements to the Jacobi sum primality test. As a 
consequence we will soon be able to prove the primality of prime numbers of up to many hundreds 
of digits routinely. Our estimates show that in the worst ca5e proofs for 900 digit primes will take 
at most one night on a Cray. Furthermore, our implementation allows distribution on almost any 
number of processors; in this way we can achieve an m fold speedup by running the test on m 
identical machines. 

There exist very fast compositeness tests, also calfed pseudo-prime tests, that on input n 
either give a proof for the fact that n is composite, or tell you that r~ is probably prime. A proof of 
compositeness usually consists of exhibiting an integer, called a witness to the compositeness of n, 
which has a special property (for instance concerning its order in the multiplicative group module 
n) that no integer can satisfy if n were prime. In particular, these proofs for compositeness do not 
give any clue as to the divisors of n; finding these is very hard in general, which is the raison d’ktre 
of the ‘factoring industry’. 

In the case of Rabin’s compositeness test [R] the probability that a random integer is a witness 
to the compositeness of some composite number, is at least t. Since such a test can be repeated 
independently as many times as one would like, the probability that a composite integer is declared 
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probably prime can be made arbitrarily small. 
So the main problem in primality testing is that of proving the correctness of an answer that 

is easily obtained; in factoring it is just the other way around: there it is very hard t o  obtain the 
result ( a  factorization), but  one checks its validity immediately (by multiplying out the factors). 

But if one is willing to  accept a small probability of giving the wrong answer, it is easy to 
answer the question whether a given integer n is a prime or a composite number. Thus the following 
paradoxical situation arises: for most practical purposes, one is perfectly happy with pseudo-prime 
tests, but this is mathematically unsatisfactory; on the other hand, it is easy to s ta te  sufficient 
conditions for primality, but it is much harder to make these criteria practical, i.e., t o  devise an 
efficient test! It should be remarked however, that primality testing is commonly regarded as 
"easier" than factoring, in terms of computational complexity. 

TO substantiate this belief, we mention here that under the assumption of some unproved 
hypotheses from analytic number theory, viz. sufficient generalized Riemann hypotheses, for every 
composite n there exists a witness a for the compositeness of n smaller than 2(logn)' (cf. [Ball. 
Thus, under these hypotheses, primality testing is "polynomial time" [Mi]. 

Primality Tests 
Two types of primality test ought to be distinguished: firstly, those tests that work only for primes 
with special arithmetic properties, and secondly, the general purpose type tests. Usually tests of 
the first type exploit divisibility properties of n - 1 or n +- 1, more generally of n" - 1 for small 
values of W. The classical examples give criteria for Fermat primes (i-e., primes of the form 2" + 1) 
and Mersenne primes (of the form Zk - 1) respectively. In both cases a property is used that  is 
necessary as well as sufficient and that  can be checked very quickly. It is these type of test that 
make headlines, because they are used to find gigantic primes, of u p  to tens of thousands of digits. 

We will call these tests of Lucas-Lehmer type. In general they give a sufficient criterion for the 
primdity of n that is applicable in case enough factors of n-  1, nz - 1,. . . can be found; here "enough 
factors" means that their product exceeds 6. Therefore these tests will only work for primes with 
very special arithmetic properties. Since they depend on the (hard) problem of factoring, there 
scope for general purposes is limited; in particular problems arose for certain primes of around 30 
digits, for which not enough information on divisors could be gathered to complete a proof. 

We turn to general purpose primality tests, The straightforward method of proving the primal- 
ity of n by showing that  no prime number smaller than fi divides n,  using trial division, rapidly 
betcomes too time-consuming with increasing n, and a table of all primes up to fi is needed. In 
fact, the trial division method can be  employed quite efficiently for sieving out all composite integers 
UP to a given bound, thus producing tables of primes; this is known as the sieve of Eratosthenes. 

The first practical general purpose algorithm for primality proving was the Jacobi sum test. 
Based on observations made by Adleman, Pomerance and Rumely [APR], it was made practical by 
improvements of Cohen and H.W. Lenstra [CL]; in the implementation of A.K. Lenstra and Cohen 
[LC] it can routinely handle primes up to  212 digits and yields primality proofs rbr such numbers 
within 2 minutes on a Cray. Basically one restricts the possible divisors of the integer n t o  a t  most 
t different residue classes modulo s, for certain auxiliary integers t and s. If s > 6, then a t  least 
one divisor of n must be among these residues; if also their number t is not too large, one can thus 
prove the primality of n by showing that  none of these residues does in fact divide n. It was proved 
that his gives rise t o  a subexponential algorithm. Below we will give a somewhat more detailed 
description of this algorithm. 

Here we should also mention a n  important idea of H.W. Lenstra [I,]. He proved tha t  there can 
be a t  most 11 divisors of n in any given residue class modulo 3 if s exceeds 6. Moreover there is 
an efficiect algorithm for finding them. Therefore both the bound to be exceeded by the product of 
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the factors found in the Lucas-Lehmer type tests, and the bound to be exceeded can be lowered to  
fi, if one is willing to  spend a little more time on checking the possibilities in each residue class. 
This idea was for instance used i n  proving the primality of the number all of whose 1031 decimal 
digits are equal t o  1 (by means of Lucas-Lehmer type tests) [w]. 

In recent years, the theory of elliptic curves har been successfully applied, to the problem 
of primality testing (as well as t o  factoring). Analogues of the Lucas-Lehmer type tests were 
devised using factorizations in the ring of integers of a quadratic number field that is the complex 
multiplication ring of an elliptic curve [Bo]. One should think of this as replacing the multiplicative 
group of integers modulo n by the group of points on certain elliptic curves . 

An algorithm of Goldwasser and Kilian [GK] gives primabty proofs for almost all primes in 
expected polynomial time. But  it relies on an algorithm of Schmf [S] to compute the number of 
elements on an elliptic curve that  - though polynomial - is considered to be too slow for practical 
purposes. A variant of this idea, working on hyperelliptic curves, by Adleman and Huang, [AH] 
yields primality proofs in expected polynomial time for all primes. 

It seems that  Atkin’s method of using elliptic curves with complex multiplication for a general 
purpose test has proven to  be practical (recently it was reported that it has been applied to primes 
of up to  564 digits [Mo]); in fact this formed a mayor incentive to improve the Jacobi sum algorithm 
as reported here, in order to let it  maintain it’s leading rde.  Very roughly, Atkin tries a list of 
elliptic curves until one is found for which the number of points on it, defined modulo n, is of the 
form kq, with k small and w i t h  q a number that is proven prime recursively. Although heuristically 
Atkin’s algorithm is polynomial time, a rigorous analysis h a s  not been given yet. 

The Jacobi sum test 
The Jacobi sum test can be roughly described as follows. 

Select integers t and s such t h a t  s = n q is the product ofprimes q with the property that  q - I l t  
and such that J > fi. For every pair (pkl q) ,  with q a prime divisor o f s  and p’ the highest power of 
the prime p dividing q - 1, perform a Jacobi sum test, which consists roughly of raising an element 
in z[Cpk] /nZ[CPh]  to the poucr n. Finally check that the integers 1 < r ,  5 fi do not divide n, 
where ri = n’ mod s for i = 1,2 , .  . . , f. 

It can be shown that, in order to get 9 > J;;, i t  suffices to take t = (logn)0(’og106’o~n). For 
instance, for proving the primality of integers up to 212 digits, one could take t equal to  ( a  divisor 
of) 55440. 

We have made practical improvements on this algorithm in several directions. In the first place, the 
Jacobi sum test can be combined with the Lucas-Lehmer type tests; roughly speaking, this means 
that for every factor found in n”’ - 1 the bound that the auxiliary number s for the Jacobi sum part 
of the combined test need to exceed, can be lowered by the same factor. Since the (modified) Lucas- 
Lehmer type tests are usually much cheaper than the Jacobi sum tests, this can be a tremendous 
gain. Of course one should compare this gain to the time needed to find more factors in n”’ - 1, 
for small values of w.  Using heuristics on the expected size of the factors that are to  be  found, a 
reasonable decision can be made here. 

Secondly, it is possible to reduce the amount of work done in carrying out the Jacobi sum 
tests. Instead of doing the n- th  powerings in the extension rings z [ ( , ~ ] / n Z [ ( , ~ )  of degree $ ( p k )  
over Z/nZ, where q5 is Euler’s function, it is possible to  work in ring extensions of degree equal to 
order(n E Z/pkZ), which is a divisor of q5(pk), and which may be considerably smaller. 
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Thirdly, it is possible to combine several tests for pairs (p ' ,q )  into one luger  test, provided 
that the primes p are different. The  tests consist of n-th powerings of elements in a ring extension 
of degree u,  which will be  represented as polynomials of degree u on integer coordinates modulo 
n. Suppose that one test has to be done in an extension of degree u1 and another in an extension 
of degree u2; then they can be combined into one test in an extension of degree Icm(ul,u2). Of 
course that only makes sense i f  the combined test is cheaper; making the realistic assumption 
that multiplication is quadratic in the number of coordinates, combining the two tests is only 
advantageous if Icrn2(ul, u z )  < u: + u:. But we are only able to deal with extensions of relatively 
small degree, and then it is easily seen that combining is only profitable if u1 divides u2 (or the 
other way around). In general, combinations should be made for degrees ul, u2, .  . . ,uk with the 
property that every u,  divides may( u l ,  u 2 , .  . . , uk). There is an easy, efficient procedure for finding 
the optimal combination, once the coUection of all pairs ( p k , q )  is known. 

This combination method introduces another interesting optimalization problem: which choice 
of auxiliary numbers 1 and s leads to the least expensive collection of tests, i.e., of pairs ( p k , q ) ?  
Although some NP-complete parts of this problem prevented us from efficiently finding a solution 
that is guaranteed to be optimal, a procedure was found for generating a solution that is within a 
few percents of the optimal solution, in an amount of time that is negligible compared to the time 
saved in performing the rest of the algorithm using this solution. 

Finally, Lenstra's idea of divisors in residue classes modulo $5 applies here as well, which 
means that with some care the bound for 3 can be lowered to 6. 

Predictions 
Although there has been no time yet to experiment extensively with the improved primality testing 
algorithm, some predictions can be made. We expect that in the very worst case, testing an integer 
of 800 digits for primality would take one night on a Cray. Here the worst case means that  no 
factors are found for the Lucas-Lehmer part of the algorithm and moreover that the order of tl is 
maximal modulo every divisor of the auxiliary number t .  Also, the fi idea is not used here. 

Experiments have shown tha t  on the average, numbers of the same size will require about one 
third of the time to test the worst possible case; we expect that these experiments are reliable, even 
though they are only based on the optimalization part of the algorithm, since only the size of n 
and its residue class modulo the divisors oft determine the time needed for the Jacobi sum part of 
the test. 

Taking into account that  the algorithm is very well suited for parallelization (both of the time 
consuming steps, the Jacobi sum tests and the final trial divisions, can be performed in parallel), 
we predict that it  will be possible, using this algorithm, to give primality proofs for random primes 
of up to  1000 digits in a few days, using either supercomputers or a network of small processors. 

Thus the improved Jacobi sum test will once more prove to be the most powerful general 
purpose primality testing algorithm. 
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