Varyins Feedback Shift
Registexrsgs

Yves ROGGEMAN
Université Libre de Bruxelles
Laboratoire d’Informatique Théorique
Campus Plaine - CPZ212
boulevard du Triomphe
B-1060C Bruxelles
Belgium

1. Context
It is well known that a stream cipher system can be described

in terms of a Vernam scheme using a Pseudo-Random Number
Generator as key generator. Each character m¢ of the plaintext

{viewed as an integer) is enciphered by adding tbe
corresponding pseudo-random key character st. Deciphering 1s
obtained by subtracting the same value stream from the

ciphertext (see Fig.l).

Seed —— | Key Generator }—————}
X___—q Ciphertext
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Fig.1

my + s (1)
E(m¢) - su = m

E(my)
D(E{m¢})

A Lehmer Linear Congruential PRNG or a Linear Feedback Shift
Register (LFSR) cannot be used in cryptographic systems because
they can be cracked. In order to obtain Crypteographically
Strong Number Generators, we can use Non-Linear Feedback Shift
Registers. But a general model of such a NLFSR is diftficult to
implement and to study.

In another way, non-linearity is simulated in models involving
more than one LFSR: product of sequences, cascade scheme, flip-
flop, multiplexed LFSR, clock variation, a.s.o. But in most of
these systems, every component can be isolated and/or the
pseudo-random sequence is not always produced at a constant
rate.

In this paper, we describe a new model based on FSR producing
non-linear sequences, but which is easy to implement and can be
used at a constant rate.
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2. Classical theory

2.1. FSR

A k-satge FSR is a machine involving k memory cells Xo, X1, «¢..
Xk-1 (see Fig.Z2). At each clock pulse, every value is shifted
one position 1left, the leftmost value 1is output and the

rightmost cells is filled with a +value depending on the k
previous ones.

Xx-1

OUT <« r{jl T {'_%[(2————-1—-[]@—
[ i S

¢« vw

Fig.2
A solution (st) is an infinite sequence satifying
Stexk = F(8t, Ste1,y +vev Stek-1) (2)

for some feedback function F. Such =a solution is univokely
determined by its initial state [8¢, Sty ..., Sk-11].

Classically, s belongs to a finite field GF(q) (GF(2) in most
cases) and F is a rational function on GF(q). Such a register
is noted FSRkx(q).

2.2. Period and singularity

Each solution of a FSR is ultimately periodic. Its period and
its singularity are the smallest integers n and o satisfying

Sts+x T St ¥t 2020, n >0 {3)

A FSR is said to be ‘non-singular it every solution 1is non-
gingular. This is achieved iff

Fla, x1y «v.o Xx-1) = F(B, X1, .v. Xx-1)} =2> a =0 (4)

In cryptographic applications, registers have to be non-
singular and with maximal period.

A k-stage Linear Feedback Shift Register LFSRx{q) is detfined by

k=1
Stek = T Ci 8Bt t

L, 0, <o € GFiq) (5)

v

or I:bo cy St+i = 0 with cx = -1 (6)

Such a register is non-singular itf

Co %O (7)
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The monic polynomial

fix) = - £ o x (8)

1 =0

is called the characteristic polynomial associated with the
LFSR:(q). :

Its maximal period is (qk-1) which is reached iff f(x) is a 80-
called primitive polynomial on GF(q).

The minimal polynomial of a periodic sequence 1is the
characteristic polynomial of the smallest LFSR that' can
produced this sequence. Its degree is called the linear

complexity of the sequence.

2.4. Transition matrix

The companion matrix C of -f(x) is

c=1|0 | I (9)
“Co 1 C1 ... Ck-1
Its characteristic polynomial is (-1)kf(x), and its determinant

is (-1)k-1¢p. C is called the transition matrix of the
LFSRk (q) .

If we define the (transposed) state vector
8t' = [8v, St+1, v+, Sttk-1] (10)
the «'» indicating transposition, we have
Si+1 = C By (11)
The so-called generating functions for Ct' and s: are resp.
G(z) = ¢ 2zt C = (I -z C)-1! {12)
and g(z) = L st zt = §(z)/det{I-zC) (13)

where deg(¢) < k.
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3. Generalized LFSR

3.1. Non-degenerated solution

Generalizing Eq.11, we define a GLFSR*(q) by
I“—lox ZMFL (14)
for any matrix M and TW’ = [riv,0, +++ Ci,k-11.

A GLFSRX(q) is non-singular iff

det(M) # O (15)
Let Ro = [Fo, T1, ... Tx-1] be the matrix whose columns are the
first k states of a solution (T¥:), this solution is called non-

degenarated if det(Ro) £ O.
We have the following property: if (F.) is non-degenerated, it

has the same minimal polynomial as M. Moreover, it 1is the
characteristic polynomial of M.

3.2, Similar LFSR

Let C be the companion matrix of the monic characteristic
pelynomial of M. C is the transition matrix of a LFSR*(q)
similar to the GLFSR¥(q) defined by M. If (Tv) is a non-

degenerated solution of M, 1let (s:) be the solution of C
corresponding to S¢' = (0, ... 0, 1] (the impulse), and let
S8 = [80, ++. Sx-1], we have

C = S¢e Ro-! M Ro So-t {16)

' = Re So-! S,

Thus, each non-degenerated GLFSR*(q) is similar to the LFSRK({qg)
corresponding to the same characteristic polynomial.

3.3. Affine LFSR

Let A be any lxk-matrix, B be any l-vector and (s:) be any
solution of a LFSR¥(q). The l-state sequence (T:} defined by

rn =AS +F (17)
is the solution of a so-called Affine LFSR. It verifies

Eoei Tver = ('Ler) Bz oJe] T s -f(1) B (18)

If Re = [T, ... Tt+x-1] (@ lxk-matrix),

Res: = Ry C {19)
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4, Varying FSR

4.1. Definitions

Modifying Eq.2 as
Biek = Ft(Bt, Bte1, ... Brtex-1)} {20)

we define a FSR with varying feedback functions (F.}). If there
exist ¢ and v such that

Ft = Fiax ¥t 2o (21)

every solution of Eq.20 (s:) is ultimately periodic and the
register is called a Periodic FSR.

If ¢ = 0 and F. is a linear function for every t, the PFSR is
called a t-PLFSRk{q) defined by

L Ct,i Btei = Ct’» 8t (22)
+

Such a <t©-PLFSR:(q) is equivalent to a classical LFSR¥(q) iff
T =1,

4.2. Generating function

Let C: be companion matrix of €., the generating tunction
associated with the t~PLFSRk(q) is

G(z) =2 2t Ct-1 ... C1 Co (23)
= (I + z Co + ... 4+ 2%t Cqg-2 ... Cop) (I - 2zt C)-1
where C = C¢-1 ... C1 Co.

Let Dt = Cv-1 ... Ci Co, we have C = D¢ ,
St+1 = Ci St = De+: So (24)
and G(z) = (:E: zt De) (I - z7 C)-1' = [{z) GelzT) (25)

In Eq.25 we note Gec(z) the generating function asscciated to
the LFSR¥(q) with transition matrix C (see Eq.12).

It m(x) is the minimal polynomial of (s:), and mc(x) the
minimal polynomial of C,

m{x) mec (x¥) (26)
and the linear complexity of any solution of a t-PLFSRk(q) is
at most tk
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4.3, Period and mingularity

The state of a t-PLFSRt(q) does not only depend on the value of
81. It includes the feedback index: t (mod t). In this context,
such a register is non-singular iff

Ct, o ;!0 ¥ t (271}
(gy)of =a

Let =x be the actual period of any solution
t-PLFSRk(q), its state-period is p = lemix, t).

It can be shown that any solution (8:) of a t-PLFSRK(q) with
actual period x ocan be produced by ‘a B8-PLFSRX(q) with
6 = ged(x, t). Thus, if v 4is a prime, any solution can either

be produced by a classical LFSRr({q), or satisfies =t | X = M.

6. Coupled LFSR

§.1. Definitions
In order to generate periodically varying feedback functions,
we can use anaother LFSR. So we define a k,l-stage Coupled LFSR

noted CLFSRk:! (q) a8 a <t-PLFSR! (q) where each cit is the state
of an Affine GLFSRx(q)} (see Fig.3).

S 5 S1-1
<

Rl A I g s 2% ) OSEY
b
]
l

Pa

Fig.3

Such a model corresponds to equations

} =

Bis+1 = J§: Yi, 4 Bty

veos = “Eloas,i o xee 4 by J=0 ... 1-1 (28)
K=~

Xt+k = Z:; CI Xt
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It depends on kl+k+l parameters: the matrix A and the vectors )
and b.
Such a CLFSRk:! (q) is non-singular iff

Yi,0 = bo £ O ¥t (29)
i.e. bo # 0 and ac,: = 0, i=0...k~1.

We shall only consider non-singular CLFSR.

5.2. Transition matrix

The state of a CLFSRks! {(q) is given by the ({(k+l)-vector
)y —

Vi? = [ B’ Xt’) = {(8u, +ev Brar-11Xt, ++. Xiex-1} (30)

So we define the associated transition matrix

0 | I ;
S o
T( = bO ] ﬁ .I___‘i_ ________ (31)
0 | ¢’
where Fi /2 (¥t.o1, ovov Yto1-1] and C° is the classical

transition matrix of the included LFSRk(q).

IfB5°' = (b1, «.. bi-1], we have
Tiv° = AT X + B (32)
Xt+1 = C" Xt
We now define the invertible matrices {33}
(1 0 ; 0 ] (1 0 ' 0 ]
S Bt et I T fomnnfeeoe
x = |9 I | 0 v yi o I { 0
t = t =
. e I ' R e boeeooes
X © 0 ' I 0 ! 0 ! I
r . . 1 r . 7
1 0 0 b 0 0
-__T _________ T _________ _%1+ _________ + _________
0 1 A - I ! 0
A = ] 1 B = i |
e et foomomaee- | wmefoennnes fommmemees
0 | 0 i I o | 0 | I
L ! ' J L i ' J
(1 0 ' 0 ] i 0 Loy 0 ]
At el SN LRSS S St
0 I 0 I o 0
C = ! ! , P = 1 1
e et KR FE L Rt
o | 0 i o 0 PO I
L 1 1] J L ! 3 §
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Using the commutator {Xi ,A-!'] = X:-1! A X: A-!, we have

T C’ Y. P=C" B [X1,A"1]) P (34)

C'" B {CtXoC-t,A-t] P =C’" B [Xo,C-tA-ICt| P

In these formulae, we have the following properties:

- C' can be placed anywhere;

B & [Xt,A~1] commute iff beo = 1 or A° = 0;

B & P commnute iff bo = 1 and ©° 0 (i.e. B = I};

}
n

P & [X:,A-1') commute only if X: € Ker(A").

This last property assure that if (x:) is a solution of a
primitive LFSRk{q}, and if A° = 0, T':+.: can never be expressed
as a linear function of T’:..

5.3. Statistical properties

In order to obtain the best statistical properties for the
solution (s:) of a CLFSRk:! (q), we choose {x:) as a solution of
a primitive LFSRX(q) which has period t B qgk-1.

For coupled registers, it can be proved that the period of-any
non-degenerated solution (s:) is divisible by <. The maximal
period is then {(gqX-1)(q!'!-1) which can be reached only if
{q-1) | 1.

There exist sufficient conditions to assure this maximal
period, but they are not weasy to verify. In practical
applications however, q = 2 and we can choose k and 1 such that
2k-1 and 2! -1 are Mersenne primes. In this case, most solutions
are maximal.

In a maximal solution, the distribution of multigrams
[8¢, «.. St+u] satisfies:

- if w < 1, the null multigram occurs (q'-#-1-1)(qk-1) times
and the other ones occur q! - k-1 (qk-1) times.

- if p = 1, there exist

(q! -q! -7 ) multigrams occurring (q¥-!-1) times
(gq~1)(qt =gl -r) gk-1t

{qi-r-1) (qk-1)
(a~1)(q'-r-1)+q 0

where 0 s r £ 1-1 is the rank of A°. Bigger is r, more
uniform is the multigrams distribution.
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Moreover, the X* of the cross distribution of si and st+u is

e o (a-1)(ax-1)% = 2 B (ak-1)qi-i(at=1)
fa*-1)(al -q) + B2 [((q'-1)-({q-2))2+(q=~2)]]

(35)

X*(8) =

where B eventually depends on the rank of M = [B"}A"].

If p <1, then B = 0 and X*(0) has the same constant value as
in a classical primitive LFSR! (q). -

Ifu-=1,
if rank{(M) = r+l1, then B = 0 as in the previous case;
if rank(M) = r, but B° # 0, then B = q%-7;
if B° = 0, then B8 = (gk-r-1).

In the binary case, Eq.35 corresponds to the auto-correlation

- 21 -1
P(B) = -ET%§~ [1 -8 _ET:T—] (36)

Thus, the classical Golomb’s theorems are locally satisfied for
maximal solutions of a CLFSR.

6. Conclusion

Coupled Linear Feedback Shift Registers are simple designs
involving LFSR producing non-linear pseudo-random sequences.
They seem to be c¢ryptographically strong enough for stream
cipher systems, because the behaviour of one component is not
independent from the other one. Nevertheless, a CLFSR can easy
be implemented as a piece of hardware or software in a very
efficient way.
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