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We examine cascades of clock-controlled shift registers where registers are 
clocked by more general schemes than simply “stop-and-go”. In particular, 
we consider the relation between the stepping function and the number of 
keys of such a cascade. 

1 Introduction 

The history of stop-and-go generators can be traced back to mechanical de- 
vices where a rotor is stepped if and only if a pin in a controlling wheel 

has been set. In an electronic device clock-control can be easily general- 
ized to arbitrary stepping functions and it seems plausible that the security 
of a generator can be improved by choosing a stepping function other than 
stop-and-go. Indeed, several attacks on “clock-controlled” rotor machines 
rely on the fact that rotors do not step on input 0. We extend results for 
“stop-and-go”-registers to registers with more general stepping functions, in 
particular, we examine the existence of equivalent states in such cascades. 
Clock controlled shift registers of length 3 will demonstrate the influence of 
the stepping function on the cryptographic merits of the resulting cascade. 
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2 Cascades of clock-controlled shift registers 
We consider cascades of clock-controlled cyclic shift registers over GF(2)  (see 
Fig.1). A stepk,,,,-register steps k times on input 0 and m times on input 1. 
Stop-and-go is thus The output of a register and the input to its clock 
are added modulo 2 to give the input to the clock of the next register (or the 
output of the cascade respectively). No register shall be loaded with 0 . . - 0  
or 1 . . . 1. Properties of stepo,l-cascades have been reported e.g. in [2,3] and 
are stated in the following theorem. prob,(w) will denote the probability to  
observe a binary word w in the output sequence generated by a cascade of n 
registers when the input to  the cascade is constantly 1. 

Theorem 1 Stepo,l-cascades of n clock-controlled shift registers of length p ,  
p 2 3 prime, generate sequences with 

periodp" 

linear complexity greater or equal d s  where d is the degree of the 
irreducible polynomials with period p and p2/1 2 P - I  - 1 

0 lim prob,(w) = - 
n-xm 214 

0 diferent output sequences for all (2p - 2)" legul initial states. 

1 

Stepo,l-cascades are invertible and the inverse cascade can be synchro- 
nized [2]. If the initial states of all registers are known but for their rotations 
these can be deduced with high probability by feeding the output sequence to 
the inverse cascade. The security of the cascade should thus not be related to 
(2" - 2)", the number of legal initial states, but to ((2P - 2 ) / p ) " ,  the number 
of equivalence classes modulo rotation of registers. 

0 1 0 -  0 1 0 -  0 0  1- 

c I o c k  c I o c k  clock 

Figure 1: A cascade of clock-controlled shift registers of length 3 
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3 Properties of stepk,,-cascades 

Most of the properties of stepo,l-cascades also hold for stepk,,-cascades. We 
first state a simple but fundamental lemma on the period of the output 
sequences. 

Lemma 1 A cascade of n stepk,,-registers of length p ,  p 2 3 pr ime ,  k # m, 
generates sequences w i th  period p". 

Proof. One may show by induction that sequences generated by a cascade 
of length n have period p" and contain a number of 1's which is coprime to 
p .  More details can be taken from the proof for stepo,l-cascades given in [3]. 

0 

Given the period of the sequences we can state a lower bound for their 
linear complexity. 

Lemma 2 A cascade of n stepk,,-registers of length p ,  p 2 3 p r i m e ,  p2/I 
2p-' - 1, k # m, generates  sequences with linear complexity greater or equal 
d(p" - l ) / ( p  - 1 )  where d is defined a s  in Theorem 1. 

Proof. The last register in the cascade contributes at least one polynomial 
f(zP"-l)  to the generating polynomial of some given output sequence where 
f(z) is an irreducible polynomial of period p .  With [l], Theorem 6.23, we find 
that f(zp"-') decomposes into irreducible factors of period p". [I], Theorem 
6.52 and p2(  2P-1 -1 imply that f(xp"-') is irreducible and has degree d.pn-'. 
Again, arguments from [4] can be used to construct a detailed proof. 0 

The results from [2] also can be extended to stepk,,-cascades. The impact 
on the security has already been stated above for stepo,l-cascades. 

Lemma 3 A stepk,,-register of length p ,  p 2 3 prime,  k + m, is invertible.  
T h e  inverse a u t o m a t o n  can  be synchronized. 

Lemma 4 Cascades of stepk,,-registers of length p ,  p 2 3 pr ime ,  k # m, 
generate sequences with 

lim prob,(zo) = - 
n-oo 214 * 

Proof. We adapt the corresponding proof from [3]. We have to prove that 
for any initial state q of a cascade of length n, any input 2 and output y of 
length n there exists a state q' so that 

1 

- - 
- 
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0 there exists an input sequence that sends the cascade from - -  q to q' 

0 input 2 applied to the cascade in state - q' generates output - y. 

Assume that this proposition holds up to some given n. Prefix 2 and - y with 
new bits PO and yo respectively and consider a cascade of length n + 1 with 
initial state (q, qn+l). Without loss of generality we choose qn+l, the state of 
the last register, so that if the last register is turned back k steps its output 
is yo and if it is turned back rn steps its output is go. 

As stepk,,-registers are invertible, there exists a word g of length n SO 

that g generates the internal signal 2 after n stages of the cascade and output 
- y. Furthermore, there exists a state so that ro sends the first n registers 
of the cascade from to q, generating some output bit c. If c = 0 we start 
the last register with qnfl turned back k steps, i.e. with yo in the output 
position, thus the overall output is also yo. If c = 1 we start the last register 
with qn+l turned back rn steps, i.e. with go in the output position, thus the 
overall output is 1 @ yo = yo. 

As a next step, for any s >, 1 and any cascade of length n,  consider 
2" x 2"-matrices where the entry in position r , y  , 1 1. z,y 5 2" gives the 
number of states where input 2 produces output y, g and y are the binary 
representations of 5, y. Divide all entries by l / p n ,  The matrix corresponding 
to a cascade is the product of the matrices of the individual stages, these 
matrices are contraction operators with the equidistribution of s-tupels as 
fixed point (see [3]). Thus the output distribution of s-tupels will converge 

0 

- 

to equidistribution as the length of the cascade goes to infinity. 

The rate of convergence that follows fiom the above proof is in general 
much slower than the rate observed in practice. However, in the particular 
case of ~ tep~,~-cascades  of registers of length 3 the output sequences can be 
proven to have almost ideal statistical properties. The distribution of s- 
tupels in the output is nearly flat for all s 2 1. Words of the same length 
appear with probabilities differing at most by 1/3n. We have 

Remark 1 Stepl,z-cascades of n clock-controlled shift registers of length 3 
generate sequences with 

Proof. Consider a register with initial state 001. We will see later (Lemma 
6) that this is no undue restriction. Let 2122 denote an input string and 
~ 1 ~ 2  the corresponding output. Map the states (100,001,010) to ( 0 , 1 , 2 }  
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a s  follows, 100 + 0,001 t 1,010 + 2. Let q ( 0 )  be the initial state of the 
register and q ( i )  the state after processing z1 . . . xi, i 2 1. Tabulate z152 and 
q(2)  in dependence of y1g2 and q(0) .  

~~ ~! 
01 11 00 

1 0 0  11 00 10 
2 2 2  11 10 01 i l  

On inspection we see that the above tables define the computation 

Z = 3 . f + q ( 0 )  (mod 4) 
Y = i(3 a Y + ~ ( O ) I / ~ J  

where Z = 252 + 21, fj = 2y2 + yl. The final state q(2 )  serves as a carry that 
is handed on to the next inputs and outputs of length 2, say 2 3 5 4  and y3y4. 
Repeating the above argument we get for z1 . . . z,, y1 . . . ym, m even 

i = 3 + ij + q(0)  (mod 2") 

fj = i(3 . t + ~ ( o ) ) P J  
with 

+ ' . * + 5 : 2 2 + q ,  
ij = ym2m + y,-12"-1 + . . . + v 2 2  +Y1 . 

i = Zm2" + 5,-1 2"-1 

For odd m we find the same relation between inputs, outputs, and the states 
of the register. However, in this case we have to invert the odd bits in input 
and output. Now consider a cascade of length n. We get 

i = 3" - ij + + (mod 2") - 
n 

with 

- 4. = C 3'- 'qj(O) 
j=1 

where q j (0 )  is the initial state of the j t h  register. As the cascade has period 
3", - + will take on all values in [0,3" - 11 exactly once. Hence 

is] 5 2 (mod 2") I 

and the same holds for the outputs f if the input 5 is fixed. 0 
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4 Equivalent states in step+-cascades 

Two states of a finite automaton are called equivalent when, for any input, 
both will produce the same output. A finite automaton is called minimal if 
equivalence implies equality. (For more details see e.g.[5]). 

We consider stepk,,-cascades with constant input 1. In the context of 
cryptographic applications, equivalent states are seeds that produce the same 
pseudo random sequence. The set of keys is thus not the set of seeds but the 
set of equivalence classes. Different seeds generate different sequences if and 
only if the cascade is minimal. In a first step we examine the structure of 
internal signals in equivalent states of a stepk,,-cascade. 

Lemma 5 If two two states  - -  q,  q' of a stepk,,-cascade are equivalent t h e n  
corresponding in t e rna l  signals are either identical or bitwise complemented.  

Proof. More generally, consider two states - -  q, q' of a cascade of length n 
producing outputs that are either identical or bitwise complemented and 
assume that the proposition does not hold for the input to the last stage. 
Without loss of generality assume that there exists a time frame (2, i + l), 
where inputs 01 and 11 respectively are fed to the last stage. We know 
from Lemma 1 that the cascade has period pn. If we observe the cascade 
at instances (z + Xpn-',i + 1 + Xpn-'), 0 _< A < p ,  then the inputs to the 
last stage will be repeated but the last register will be in a different rotation 
every time. If q and q' produce the same output then the observations at 
times i + Xpn-'implfthat the number of 1's in the last stage of q is the 
complement (mod p) of the number of 1's in the last stage of q'. From the 
observations at  times i + 1 + Ap"-l we find that both numbers should be the 
same. This is impossible as p is odd. We get the same contradiction when 
the outputs are complemented. By induction, the lemma can be shown to 

0 hold for all internal signals. 

Lemma 6 A Stepk,,-caScade is m i n i m a l  if and only zf k # p - m. 

Proof. Consider two equivalent states q,  q' of a cascade of length n > 1. If all 
internal signals were the same then obviously the states would be the same. 
So we may assume that the inputs to the last stage are bitwise complemented. 

Let (Qn(1)i - - - q n ( P ) )  and (qk(l), . . . , q k ( p ) )  be the respective states of the 
last stages. we know that there must be times i, i + j ,  p/l  j ,  so that the 
cascade starting in p is in the same position, otherwise the last register would 
rotate with period p .  Denote the number of 1's in the interval [z ,  i + j - 11 
by t .  Without loss of generality assume that the output of the last stage is 
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qn(p )  and that the outputs of the last stage for the initial state q' are &(r> 
and qL(r'). Let a,., denote the number of 1's in the input to the-last stage. 
Observing the cascade a t  instances (i + Xp"-', i + j + Xpn-'), 0 I A < P, we 
get 

qL(r - h n ( k  - m ) )  = qn(p  - k , ( m  - k ) )  = qL(r' - h n ( k  - m ) )  ) 

thus the shifts of (qA(l) ,  . . . , q k ( p ) )  corresponding to r and r' are equal. Be- 
cause p is prime we have r = r'. This implies 

hence 

and finally 

t . rn + ( j  - t )  - k = 0 
t . k +  ( j  - t )  .m  E 0 

(mod p )  
(mod p )  

m + k r 0  (modp) . 

5 Conclusion 
We collect our results in 

Theorem 2 A stepk,,-register of lengthp, p >_ 3 prime, k # m, is invertible. 
The inverse automaton can be synchronized. A cascade of n stepk,,-registers 
of length p ,  p 2 3 prime, k # m, generates sequences with 

period p" 

linear complexity >_ d s  where d is defined as in Theorem 1 and 
p242P'' - 1 

1 
lim prob,(w) = - 

n-w 214 
different output sequences for all ( 2 P  - 2)" legal initial states if and only 
if k # -m. 

The minimality of stepk,,-cascades depends only on the choice of the 
stepping function. For stepk,-k the number of useful initial states is reduced 
to ((2P - 2) /2p )"  as we may replace registers which contain more than p / 2  1's 
by registers with less than p / 2  1's. This will invert the internal signal after 
the stage where this replacement had taken place but there also exits a 
modification for the state of the next stage so that we can recover the original 
signal after that next stage. 
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It is interesting to note that sequences from stepl,2-cascades of registers 
of length 3 are at  the same time totally insecure and almost perfect with 
respect to standard criteria like linear complexity or statistical distribution. 
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