The Use of Fractions in Public-Key Cryptosystems

Hartmut isseihorst

Gesellschaft für elektronische informationsverarbeitung Oxfordstr. 12-10, D-5300 Eonn 1
West Germany

Abstract. This pape: discusses an asymmetric cryptosystem based on fractions. the R^{k}-system, which can be implemented fast using only additions and multiplications. Also it is very simple to initialize the system and to generate new keys. The R^{k}-system makes use of the difficulty to compute the numerator and the denumerator of a fraction only knowing the rounded floating point representation. It is also based on the difficulty of a simultaneous diophantine approximation with many parameters and only a little error bound.

INTRODUCTION

Many known public-key cryprosystems deal with integer probiems like factorization, discre:e logarithms or knapsacks. Searching for another foundation of security we allow the use of real numbers, especially fractions.
Everyone knows that it is easy to choose two primes p and q and to compute the product $n=p$. q. But up to now it is difficult to calculate the factors p and q only knowing n. if n is greater than 10^{200}. But knowing n one has enough information to compute p and q, because factorization is deterministic. To avoid this one can try the following: Allowing real numbers it is possible to :eplace the multiplication by the division. To be more precisely, we pose the

[^0]
Problem

Let a and p be integers with $1<a<p<10^{1000}$ and $\operatorname{gcd}(a, p)=1$. Denote

$$
\left.x_{\mathrm{n}} \cdot 10^{-n} \cdot \mathrm{~L} 10^{n} \cdot \mathrm{a} / \mathrm{p}\right\rfloor \cdot \mathrm{n} \in \mathbb{N} .
$$

1. Is it possible to compute a and p from x_{n} with a suitable parameter n ?
2. Is it possible to choose the parameter n in a way such that it is impossible to calculate a and p from x_{n} ?

The following theorem solves the problem.

Theorem 1

Let a, p, k be integers with $10^{k-1}<p<10^{k}, 1<a<p$. gcd $(a, p)=1$.

1. Only knowing $x_{2 k}$ it is easy to compute a and p.
2. One cannot calcuiate a and p from x_{n}, if $0<n<2 k-50$ and p is a prime.

Proof:

1. Let $0<s<t<1$ and $s=/ s_{1}, \ldots, s_{r} /, t=/ t_{1} \ldots, t_{m} /$ (the continued fractions of s and t). Put formally $s_{i}=\infty$ for all $i>r$ and $t_{i}=\infty$ for all $i>m$. Then find j with $s_{i}=t_{i}$ for all $i \in[1 ; j]$ and $s_{j} \neq t_{j}$. Define

$$
q= \begin{cases}s_{j}+1 & j \in 2 \mathbb{N}, j \geq I \\ s_{j} & j \in 2 \mathbb{N}, j \geq I \\ t_{j}+1 & j \in \mathbb{N}+1, j<m \\ t_{j} & j \in 2 \mathbb{N}+1, j \geq m .\end{cases}
$$

Then $v=/ s_{1}, \ldots, s_{j-1}, 9 /$ is the irreducible fraction in $[5, i]$ with the lowest denominator ([Knuth 81. p.006]).
If a / b and c / d are consecutive fractions in the Farey-sequence $\mathrm{F}_{\mathrm{n}}, \mathrm{n} 22$. it holds

$$
|a / b-c / d|=\frac{1}{b d} \quad 2 \frac{1}{n(n-1)}
$$

([Niven and Zuckeman 70, p.180])
Hence $a / p \in\left[x_{2 k}, x_{2 k}+10^{-2 k}\right] \cap F_{10} k=\{a / p\}$.
So the algorithm acove computes a and p from the input $s=x_{2 k}, t=x_{2 k}-: 0^{-2 k}$.
2. If $a / p, c / d$ are consecutive fractions in F_{p} we have

$$
\left[x_{n}, x_{n}+10^{-n}\right] \cap F_{p}=\{a / p\} \Leftrightarrow 10^{-n} \leq\left|\frac{a}{p}-\frac{c}{d}\right|=\frac{1}{d p} \Leftrightarrow n 2 \log _{10}(p \cdot d)
$$

From [Horster and Isselhorst 89, p.101] we have

$$
\frac{1}{\left|F_{p}\right|} \cdot \sum_{\substack{\frac{a}{b} \cdot \frac{c}{d} \in F_{p} \\ \text { consecutiv }}} \log _{10}(b \cdot d) \approx 2 \cdot \log _{10}(p+1)-\frac{1}{\log _{e}(10)}
$$

so to compute a and p one needs to know x_{n} with $n=2 \cdot \log _{10}(p)$ almost everytime. Knowing only $2 \cdot \log _{10}(p)-50$ digits, one has to guess 50 sequential digits following x_{n} or approximately 50 partial quctients of a / p ([Isseinorst 88 , p.1041).

Here one should observe, that the probability of a / p having a short period is nearly zero, because there are only a few primes q having a short period in $1 / q$ ([Horster and Isselhorsi 89, p. 89]).

Remark

Now it is possible to use the fraction a / p with $2 \cdot \log _{10}(p)-50$ digits as a public key, because it is impossible to compute a and p having not enough information about a / p.

THE PROPOSED PUBLIC-KEY CRYPTOSYSTEM

Knowing the results about fractions we look for a way to use them for buiding a public-key cryptosystem. One possibility to do this is based on the computation with a real modulus:

$$
\begin{gathered}
a \equiv b(\bmod c) \Leftrightarrow(a-b) / c \in \mathbb{N}, a \cdot b \cdot C \in \mathbb{R}^{+} \\
a M O D b:=a-\lfloor a / b\rfloor \cdot b
\end{gathered}
$$

The following lemma zombines the results about fractions with a real mociuis.

Lemma

Let p be a prime, $:>0, a, a^{*}:[1: p-1]$ with $a \cdot a^{*} \equiv 1(\bmod p)$ and denote

$$
\begin{gathered}
c:=: \cdot a / p \\
E(x):=(c \cdot x) M O D t, x \in[O: p-i]
\end{gathered}
$$

$$
D(y):=\left(y / t \cdot p \cdot a^{*}\right) M O D p
$$

then $D(E(x))=x$ for all. $x \in[0: p-1]$.

Proof:
Since a / r MOD $b / r=a / r-\lfloor(a / r) /(b / r)\rfloor \cdot b / r a(a \operatorname{MOD} b) / r$ for all $r>0$ we get

```
D(E(x)) = (( t\cdota/p\cdotx MOD t)/t\cdotp\cdota*) MOD p
    = (( t/p\cdot(a\cdotx MOD p))/t\cdotp\cdota*) MOD p
    -(a\cdotx MOD p) · a* MOD p a x.a
```

This can be interpreted as a model of a cryptosystern, which uses the fraction a / p in the encryption function $E(x)$, but uses the integer $p \cdot a^{*}$ in the decryption function $D(y)$. Here it is important to see, that the integer $p \cdot a^{*}$ is not the same as the fraction p/a.
However it works only if one uses exact arithmetic, it is possible 10 get a and p knowing c. But when the system is made fault tolerant with rounded numbers, it can be secured and implemented using the results above.

So the lemma can be improved to a public-key cryptosystem, which will be discussed here:

The R^{k}-System

Assumptions: Let - p be a prime, $p>10^{250}, k \in \mathbb{N}+2$

$$
\begin{aligned}
& -A=\left(a_{i, j}\right) \in \mathbb{Z}_{p}^{k \times k}, \operatorname{det}(A) \neq O(\bmod p) \\
& -A^{*} \cdot\left(a_{i, j}^{*}\right) \in \mathbb{Z}_{p}^{k \times k} \text { with } A \cdot A^{*} \equiv I(\bmod p) \\
& -t \in(0, p)(\text { for example } t=1) \\
& \left.-z=\Gamma \log _{10}(4 \cdot p / 0)\right\rceil \\
& -c_{i, j}^{n}=10^{-n}\left\lfloor 10^{n} \cdot t \cdot a_{i, j} / p\right\rfloor \cdot C_{n}=\left(c_{i, j}^{n}\right) \in \mathbb{R}^{k \times k} \text { with } \\
& n=\left\lceil 2 \cdot \log _{10}(p)-50-\log _{10}(t)\right\rceil
\end{aligned}
$$

Plaintext: $\quad-X \in \mathbb{Z}_{m}^{k}$ with $m a\left[\frac{\mathrm{p}}{10^{50} \cdot 4 \mathrm{k}}\right\rfloor$
Encryption function: $\quad E(X)=10^{-2}\left\lfloor 10^{2} \cdot\left\{\left(C_{n} \cdot X\right) M O D t\right\}\right\rfloor$

Public keys: $\quad-C_{n}, i, z$
Decryption function: $\left.\quad D(Y)=\left(A^{*} \cdot L Y \cdot p / t+1 / 2\right\rfloor\right)$ MOD p
Secret keys: - p. A*

Theorem 2

The R^{k}-system holds $D(E(X))=\mathrm{X}$ for all $\mathrm{X} \in \mathbb{Z}_{\mathrm{m}}^{\mathrm{k}}$.

Proof (sketch):
The central step is

$$
\left.O \leq\left[\left(\sum_{j=1}^{k} c_{i, j}^{n} \cdot x_{j}\right) M O D t\right] \cdot \frac{P}{t}-\left[10^{-Z} L 10^{z}\left(\sum_{j=1}^{k} c_{i, j}^{n} \cdot x_{j}\right) \operatorname{MOD} t\right]\right] \cdot \frac{p}{i} \leq \frac{1}{4}
$$

With [Isselhorst 88, p. 131-134] we also have

$$
\begin{aligned}
& \left|\left[\left(\sum_{j=1}^{k} t \cdot a_{i, j} / p \cdot x_{j}\right) \operatorname{MOD} t\right] \cdot p / t-\left[\left(\sum_{j=1}^{k} c_{i, j}^{\Gamma} \cdot x_{j}\right) M O D t\right] \cdot \frac{p}{t}\right|= \\
& \left|\left(\sum_{j=1}^{k} a_{i, j} \cdot x_{j}\right) M O D p-\left[\left(\sum_{j=1}^{k} c_{i, j}^{n} \cdot x_{j}\right) M O D t\right] \cdot \frac{p}{t}\right|<1 / 4
\end{aligned}
$$

Taking both inequalities together implies

$$
\begin{aligned}
& \left|\left(\sum_{j=1}^{k} a_{i, j} \cdot x_{j}\right) M O D p-\left[10^{-z}\left[10^{z}\left(\sum_{j=1}^{k} c_{i, j}^{n} \cdot x_{j}\right) M O D t\right]\right] \cdot \frac{p}{t}\right|< \\
& \left|\left(\sum_{j=1}^{k} a_{i, j} \cdot x_{j}\right) M O D p-\left[\left(\sum_{j=1}^{k} c_{i, j}^{n} \cdot x_{j}\right) M O D t\right] \cdot \frac{p}{t}\right|+ \\
& \quad\left|\left[\left(\sum_{j=1}^{k} c_{i, j}^{n} \cdot x_{j}\right) M O D t\right] \cdot \frac{P}{t}-\left[10^{-z}\left\lfloor 10^{z}\left(\sum_{j=1}^{k} c_{i, j}^{n} \cdot x_{j}\right) M O D t\right]\right] \cdot \frac{P}{t}\right|<\frac{1}{4}-\frac{1}{4}=\frac{1}{2}
\end{aligned}
$$

and finally $\left(\sum_{j=1}^{k} a_{i . j} \cdot x_{j}\right) \operatorname{MOD} p=L\left[10^{-z}\left[10^{z}\left(\sum_{j=1}^{k} c_{i, j}^{n} \cdot x_{j}\right)\right.\right.$ MOD t $\left.\left.]\right] \cdot \frac{p}{t}+\frac{1}{2}\right] \cdot \square$

DISCUSSION

a) SECURITY
i) The R^{k}-system with carameter $k=1$ is not secure. It is easy to approximate the number $c_{n} / t \approx e / f$ by continued fractions. Then one can simulate the original
R^{1}-system with e/f instead of a / p. So one can break a R^{i}-system without knowing the secret keys a and p.-
ii) With $k z 2$ one can try the same attack: one looks for an approximation of $c_{i, 1}^{7 / t}$ $\approx e_{i, j} /$, which is a simultaneous diophantine approximation.
But note the following facts:

- the number of simultaneous diophantine approximations increases quadratically with k
- the error bound is always very small ($\sim 10^{50} / \mathrm{p}^{2}$, [Horster and Isselhorst 89])
- the common denominator f has to be bounded: is $10 \cdot \mathrm{p}$.

Furthermore the best algorithm to solve simultaneous diophantine approximation problems of this kind would in my opinion Lagarias' algorithm [Lagarias 85]. which uses $O\left(k^{12} \cdot\left(k^{2} \cdot \log _{2}\left(10^{n}\right)+\log _{2}(p)\right)^{4}\right)$ bit-operations to find some approximation. It is not guaranteed that solutions found by this procedure will work.

b) ADVANTAGE

i) The advantage of the R^{k}-system is, that it works fast. To encrypt and decrypt k integers out of $[0: \mathrm{m}]\left(\mathrm{m} \approx \mathrm{p} \cdot 10^{-50}\right.$) there are $\left(2 \mathrm{k}^{2}+10 \mathrm{k}\right)$ operations like addition, multiplication and reduction. (With $k=10, t=1$ there are 9 additions, 10 multiplications and 1 reduction to encrypt or decrypt one number). It is possible to choose $t=1$, so that the reduction mod t is very simple.
ii) It is easy to initialize the R^{k}-system and to generate new keys, because one needs only one prime p and an invertible matrix A with the \mathbb{Z}_{p}-invers A.
iii) To strengthen the system one can select a higher dimension k without the need to use larger rumbers as in the RSA-scheme.
iv) The F^{k}-system prcvides another way to build a public-key cipner without using the well known arithmerical problems like factorization or knapsacks.

c) DISADVANTAGE

i) The security of the \mathbb{R}^{k}-system is not proved.
ii) The size of the public and the secret key might be regarded as a disadvantage. But uniike knapsack-schemes within the R^{k}-system one encrypts $\log _{2}(m) / k \gg 1$ bits with every component of the key.

FURTHER RESEARCH

i) Look for other attacks for the R^{k}-system: One is to try to get the prime p with a simultaneous diophantine approximation with oniy a few components of the key matrix C_{n}.
ii) Examine if the security of the R^{k}-system holds when p is an arbitrary integer and not necessarily a prime, and $\operatorname{det}(A) \neq 0(m o d p)$. So the initialization becomes easier.
iii) Examine if one can select a small number $k \in[2: 10]$, such that the R^{k}-system is very fast. This should be used for messages which have to be secret only for a short time (like one hour or one day e. g. in military use).

CONCLUSION

The paper shows how to use fractions in a public-key cryptosystem. which is based on the problem of a simultaneous diophantine approximation with many parameters. The rew R^{k}-system can be implemented in a fast way using only addition and muiticiication with only one reduction. Also new keys can be produced very simply, so that one can use a different pair of keys in every communication.

REFERENCES

[Horster and Isselinorst 89]:
F. Horster, H. Isseihorst, Approximative Public-Key-Kryptosysteme, Informatik-Fachberichte 200 (Heideiberg: Springer, 1989)
[Isselhorst 88]:
H. Isselhorst. Ein Beitrag zur Verwendung rationaler Zahien in Public-Key Kryptosystemen (Heidelberg: Hüthig, 1988)
[Knuth 81]:
D. E. Knuth, The Att of Computer Programming Vol.2. Seminumerical Algorithms. 2ed (Reading: Addison Wesley. 198i)
[Lagarias 85]:
J. C. Lagarias. The Computational Complexity of Simultaneous Diophantine Approximation Problems," SIAM J. Comput. Vol.14 Nol (1985), p.190-209
[Niven and Zuckemman To]:
I. Niven, H. S. Zuckerman, Einführung in die Zanlentheorie I Mannheim: Bibliographisches Institut, 1970)

SYMBOLS

$\mathbb{N}=\{0,1,2,3, \ldots\} \quad \mathbb{N}+i=(i, i+1, i+2, i+3, \ldots\}$
$\mathbb{Z} \cdot(\ldots,-2,-1,0,1,2, \ldots\} \quad \mathbb{Z}_{p}=\{0,1,2, \ldots, p-2, p-1\}$
$\mathbb{R}=$ real numbers
$\lfloor x\rfloor=$ greatest integer less than $x \quad\lceil x\rceil=$ lowest integer greater than x $\operatorname{gcd}(a, b)=$ greatest common diviso: of a and b
$[a: b]=\{a, a+1, a+2 . \ldots, b-1, b\}$
I = unit matrix

SMALL EXAMPLE

The prime:
The dimension

$$
p=64301
$$

$$
k=2
$$

The invertible matrix $\quad A=\left(\begin{array}{ll}5387 & 2993 \\ 7461 & 4001\end{array}\right)$

The inverse matrix

$$
A=\left(\begin{array}{cc}
14109 & 19322 \\
59703 & 52039
\end{array}\right)
$$

the modulus
The constants
The key-matrix
$\mathrm{t}=1$
$n=9, z=0$
$c_{n}=\left(\begin{array}{ll}0,083777857 & 0,0465467 \\ 0,116032410 & 0.06222298\end{array}\right)$
Plaintext
$\binom{x_{1}}{x_{2}} \in \mathbb{Z}_{1000}^{2} \cdot m=1000$

Encryption
$E\binom{x_{1}}{x_{2}}=10^{-6} \cdot \operatorname{L10^{6}} \cdot\left[\left(C_{0} \cdot\binom{x_{1}}{x_{2}}\right)\right.$ MOD 1 $\left.]\right\rfloor$
$D\binom{y_{1}}{y_{2}}=A^{-1} \cdot L\binom{y_{1}}{y_{2}} \cdot 04301+1 / 2 J M O D 04301$
$E\binom{500}{501}=\binom{0.20883}{0.189918}, D\binom{0,208830}{0,189918}=\binom{500}{501}$

[^0]: J.J. Quisquater and J. Vandewalle (Eds.): Advances in Cryptology - EUROCRYPT '89, LNCS 434, pp. 47-55, 1990.
 (c) Springer-Verlag Berlin Heidelberg 1990

