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Abstract. This paper discusses an asymmetric cryptosystem based on fractions,
the Rk-system, which can be implemented fast using only additons and
multiplications. Also it is very simple to initialize the system and to generate new
keys. The Rk-system makes use of the difficulty to compute the numerator and the
denumerator of a fraction only knowing the rounded floating point representation.
It is also based on the difficulty of a simultaneous diophantine approximation
with many parameters and only a litlle error bound.

INTRODUCTION
Many known public-key cryplosystems deal with integer proclems like
factorization, discrete logarithms or knapsacks. Searching for another foundation of
security we allow ithe use of real numbers, especially fractions.

Everyone knows irat it is easy to choose two prmes p and g and (o compuie
the product n - p + q. But up o now it is difficult to calculate the factors p and
g only knowing n. I n is greater than IOZOO‘ But knowing n one has enough
information to compute p and g, because factorization is deterministic. To avoid
this one can iy the fcillowing: Allowing real numbers it is possible to replace the

multiplication by the divisicn. To be more precisely, we pose the
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Problem
Let a and p be integers with l<a<p<10 and gcd(a, p)=1. Denote
xq - 107 - L 10" - a/p 4. el
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L Is it possible to compute a and p from x, with a. suitable parameter n?
2. Is it possible to choose the parameter n in a way such that it is impossible to
calculate a and p from x.?

The following theorem solves the problem.

Thecrem 1

okl

Let a. p, k be integers with | < p< 10X, 1<a< p. ged{a,p)=1

L Cnly knowing Xo

2. One cannot calculate a and p from x, if 0<n<2k-50 and p is a prime.

it is easy to compute a and p.

Proof:

1 Let O<s<t<l and s = /5;.5/, t = /Ylp/ (the continued fractions of s and t).
Put formally s;= = for all i>r and t;= = for all i>m. Then find j with s;= t for all
ie[l:j11 and sj * tj. Define
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Then v = /51""51'-1'0/ is the irreducible fraction in [s.!] with the lowest denominator
{({Knuth 81, p.c0e&l).

If a/b and c/d are consecutive fractions in the Farey-sequence F. nzZ. it holds

A IR S S
|a/b-cra |= 53 * T
([Niven and Zuckerman 76, pi86])

Hence a/p ¢ [xy iy + 10751 n Pt Larm)

So the algorithm acove computes a and p from the input s=X,. t=><2k—10'2k .

2. If a/p, c/d are ccnsecutive fractions in Fp we have
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[xn,xndO'n]n Fp= fa/p} & 101 < !a - Eil —5}— & n 2 logg(p-d)

From [Horster and Isselhorst 89, pl0l) we have

.

= logplb-d) » 2-logyp(pet) - log; o)
D
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so to compute a and p one needs to know X, with n = 2-log.LO(p") almost
everytime. Knowing only 2-legjq(p)- 50 digits, cne has 10 guess 50 secuential
digits following x, ©r approximately 30 partial quctients of a/p ( [Isseincrst 88,
p.104D. ‘

Here one should observe, that the probability of a/p having a short period is
nearly zero, because there are only a few primes g having a short petiod in 1/q
([Horster and Isselherst 89, p. 8971,

Remark

Now it is possible ic use the f[raction a/p with 2-lcglo(p)~50 digits as a public
key, because it is impossible to compute a and p having not enough information
about a/p.

THE PROPOSED FUBLIC-KEY CRYPTOSYSTEM

Knowing the results about fractions we look for a way to use them for buiding a
public-key cryptosystem. One possibility to do this is based on the comrutation
with a real modulus:
2 = b {mod ¢) & (a-b)/c ¢N, abceR”
a MOD b :=a -la/blib

The icllowing lemma compines the results about fractions with a real moculius.

Lemma
Let p be a prime, :>C, a. a"« [(l:p-1] with a-a”= 1 (mod p) and denote
c:=1t1-a/p
E(x} = {c'x) MOD t, x¢[Cip-l]
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D(y) := (y/t-p-a™) MOD p
then D(E)) - x  for all- x ¢ [O:p-1l.

Proof:
Since a/r MOD b/t = a/t - [(a/1)/(b/1) |- b/t = (a MOD b)/r for all 1>0 we get
DEX) = (( tra/p-x MOD t ) /t-p-a") MOD p
=({ /p-(a-x MOD p)) /t-p-a’) MOD p
@ (a-x MOD p)-a" MOD pm x.0O

This can be interpreted as a model of a cryptosystem, which uses the fraction
a/p in the encryption function E(x), but uses the integer p-a® in the decryption
function D(y). Here it is important to see, that the integer p-a” is not the same as
the fraction p/a.

However it works only if one uses exact arithmetic, it is possible to get a and
p knowing c. But when the system is made fault tolerant with rounded numbers,
it can be secured and implemented using the results above.

So the lemma can be improved to a public-key cryptosystem, which will be
discussed here:

The Rk-System
Assumptions: Let - p be a prme, p>10250, keN+2
S A - (a)<Z5% | delld) 40 (mod p)
AT (aifj)ezg"k with A-A"= [ (mod p)
- te(0p) (for example t=1)
-z = [ logg(4:p/t)7]
- el = oMty /pl, Oy = (€f)) ¢ REK with

n = [2logp(p) - 50 - logyn(t]
Plaintext: X ez withm o L —-LJ
m 1099. 4k

Encryption function: E(X) = 107 [10% - {(C-X)MOD1) |
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Public kevys: - Cn' 1,z

Decryption function: DY) = (AL Y-p/t +1/2]) MOD p
Secret kevys: -p A

Theorem 2

The RCsystem holds D(E(X) - X for all XeZE.

Proof (sketch):
The ceniral step is

1
YRS ) MOD u]-% <

k k
n -Zy1nZ n
s[(j%c:u +x; JMOD t}-8 - [107110 (j‘_;l el
With [Isselhorst 88, p. 131-134] we also have

Kk ‘ Kk
I[(z t-a;/p-x) MOD t ]-p/t - [(J_z_:lc{j +x; ) MOD ][R | -

k n
J):I a;;%; )MOD p - I:(j%ci’j %) MOD (}F | < va.

Taking both inequalities together implies

K k
[ (JS_,:I a;;°%; ) MOD p- [10 ZLI0%( ;lc{j‘.xj)MOD )R <

k
| (J?_:l 3y

—,

%, )MOD p - [(Zc -x; )MOD t}R | -

i Lo

< k
I[(Zef ) Mo 2 'DO'ZUOZ(%‘I ¢% s, )MOD 1 []-R [« oL <1,

k
and finally ( Z a:-X

R ¥
£ ageven oL [o2t0% f o

;) MoD ¥ -5 0

DISCUSSION
a) SECURITY

i) The Rk-system with carameter k=l is not secwe. It is easy to approximate the
number cn/t ~ e/f by continued fractions. Then one can simulate the original
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Rl-system with e/f instead of a/p. So one can break a R'-system without knowing
the secret keys a and p.-

ii) With k22 one can ty the same attack: one locks for an approximation of cf"]-‘/t

~ ei,j/f' which is a simultanecus diophantine approximation.

But note the following facts:

- the number of simultaneous dicphantine apptoximations increases quadratically
with k

- the error bound is always very small (~ 1050/;32, [Horster and Isselhorst 8%7)

- the common denominator { has to be bounded: { < 10 p.

Furthermore the best algorithm to solve simultaneous diophantine approximation

problems of this kind would in my opinion Lagarias’ algorithm [Lagarias 851

which uses O(k!2- (12 - 1og2(1o“) +log,(p)) 4 bit-operations to find some approximation.

It is not guaranteed that solutions found by this procedure will work.

b) ADVANTAGE

i) The advantage of the Rk-system is, that it works fast. To encrypt and decrypt
k integers out of [0:ml] (m%p-10'5o) there are (2k%-10K) operations like addition,
multiplication and reduction. (With k=10, t=l there are 9 additions, 10 multiplications
and 1 reduction to encrypt cr decrypt one numper). It is possible to choose t=,

so that the reduction mod t is very simple.

ii) It is easy to initialize the R%-system and to generate new keys, because one

needs only cne prime p and an invertible matrix A with the Zp-‘mvers AT

iii) To strengthen the system one can select a higher dimension k without the
need to use larger rnumbers as in the RSA-scheme.

iv) The Rk-system cicvides another way to build a public-key cipher without
using the well known arithmetical problems like factorization or knapsacks.

c) DISADVANTAGE

i) The security of the R¥-system is not proved.
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ii) The size of the public and the secret key might be regarded as a
disadvantage. But uniike knapsack-schemes within the Rk-system one encrypts

logo(m)/k >>1 bits with every component of the key.

FURTHER RESEARCH

1 . .
i) Look for other attacks for the R-system: One is to try to get the prime p with
a simultaneous diophaniine approximation with only a few components of the key
matrix Cp.

ii) Examine if the security of the Rk-system holds when p is an arbitrary integer
and not necessarily a prime, and def{A) ¢ O(mod p). So the initialization
becomes easier.

iii} Examine if one can select a small number ke[2:10], such that the Rk-system is
very fast. This should be used for messages which have lo be secret only for a
short time (like one hour or one day e. g. in military use).

CONCLUSION

The paper shows nhow to use fractions in a public-key cryptosystem. which is
based on the preklem of a simultaneous diophantine approximation with many
parameters. The new Rk-system can pbe implemented in a fast way using only
addition and muiticiication with only one reduction. Also new keys can be
produced very simply, sc that one can use a different pair of keys in every
communication.
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SYMBOLS

N={0123 .] N+ = {i, I+, 142, i+3, ...]

Z-(. 210172 .1 Zp = {0, 1 2 .. p2 pll

R = real numbers

Lx] = greatest integer less than x [x] = lowest integer greater than x

ged(ab) = greatest common divisor of a and b
fa:b] = {a, a+, a+2. .., b-l b}
[ = unit matrix

SMALL EXAMPLE

The prime: p = 64301

The dimension k=2

The invertible matrix A = 5367 2903)
7461 4001

The inverse matrix A" a ( 14106 19322 )

59TC3 52039



the modulus
The constants

The key-matrix

Plaintext

Encryption

Decryption:

E(
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t =1
n=9z-:=6
Cn_ ( 0,083TTT85T 00465467 ]

0116032410 006222298
1) . z2 - 1000
Xy ¢ £1000 - M=

E(;Czl) = 1070110 {(Co- (};21) ) MOD 1} |

Y1 -1 b4
D (Yz) AL (Yz) 64301 « /2| MOD 64301

1l

o 812809831% ) D( 0.208830 )_(500)

0189918 301
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