N

N

Faster Fourier Transforms via Automatic Program
Specialization
Julia L. Lawall

» To cite this version:

Julia L. Lawall. Faster Fourier Transforms via Automatic Program Specialization. [Research Report]
RR-3437, INRIA. 1998. inria-00073253

HAL Id: inria-00073253
https://inria.hal.science/inria-00073253
Submitted on 24 May 2006

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.


https://inria.hal.science/inria-00073253
https://hal.archives-ouvertes.fr

ISSN 0249-6399

ZIINRIA

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

Faster Fourier Transforms via Automatic Program
Specialization

JuliaL. Lawal

N° 3437
Juin 1998

THEME 2

apport
derecherche







RENNEsS

Faster Fourier Transforms via Automatic Program Specialization

Julia L. Lawall

Theme 2 — Génie logiciel
et calcul symbolique
Projet Compose

Rapport de recherche n3437 — Juin 1998 — 28 pages

Abstract: Because of its wide applicability, many efficient implementations of the Fast Fourier Transform
have been developed. In this paper we propose that efficient implementations can be produced automatically
and reliably by partial evaluation. Partial evaluation of an unoptimized implementation produces a speedup
of over 7 times. The automatically generated result of partial evaluation has performance comparable to or
exceeding that produced by a variety of hand optimizations. We analyze the benefits of partial evaluation
at both compile time and run time, and survey related hand-optimization techniques.

Key-words: Partial evaluation, compilation, compile-time optimization, run-time optimization, Fast
Fourier Transform

(Résumé : tsvp)

Author’s current address: Computer Science Program, Oberlin College, Oberlin, Ohio, 44074, USA, j11l@cs.oberlin.edu

Unité de recherche INRIA Rennes
IRISA, Campus universitaire de Beaulieu, 35042 RENNES Cedex (France)
Téléphone : 02 99 84 71 00 - International : +33 299 84 71 00
Télécopie : 0299 84 71 71 - International : +3329984 71 71



Génération de transformées de Fourier optimisées par spécialisation
automatique de programmes

Résumé: De part son domaine d’application tres large, la transformée de Fourier rapide (FFT) a fait ’objet
de nombreuses études visant & optimiser son implémentation. Dans cet article, nous proposons d’utiliser la
technique d’évaluation partielle, et plus précisément le spécialiseur Tempo, pour générer de facon automatique
et fiable une mise en ceuvre efficace de la FFT. En spécialisant une implémentation naive de la FFT, nous
obtenons un facteur d’accélération allant jusqu’a 7. De plus, cette FFT optimisée automatiquement est au
moins aussi efficace qu’une implémentation optimisée au moyen de techniques manuelles. Une caractéristique

innovante de Tempo est de permettre la spécialisation soit lors de la compilation ou & I’exécution. Nous
analysons 'utilisation de ces deux stratégies sur la FFT, et décrivons leurs domaines d’application respectifs.

Mots-clé : évaluation partielle, compilation, optimisation & la compilation, optimisation & l’execution,
transformée de Fourier rapide (FFT)



1 Introduction

The Fourier transform and its inverse are widely used in a variety of scientific applications, such as audio
and image processing [32], integration [32], and calculation using very large numbers [3, 33]. The transform
converts a function defined in terms of time to a function defined in terms of frequency. When a function is
defined over the frequency domain, some expensive calculations are more tractable. This technique was made
practical by the development of the Fast Fourier Transform (FFT) [11], which uses a divide-and-conquer
algorithm to calculate the Fourier transform of a function represented as a discrete set of evenly-spaced data
points. The divide-and-conquer algorithm reduces the complexity from O(n?) to O(nlogn), where n is the
number of data points.

Despite the significantly improved performance, the FFT remains an expensive operation. Many com-
putations spend a substantial amount of time performing FFT’s. For example, the 125. turb3d benchmark
of the SPEC95 Benchmark suite [12]| spends about 40% of the time performing FFT’s of 32 or 64 elements,
using a hand-optimized implementation. Much effort has gone into hand-optimizing implementations of the
algorithm. These optimizations include using recurrences to limit the number of calls to sine and cosine,
eliminating the calls to these math library routines completely by reimplementing them more efficiently or
using tables, reducing the number of real multiplications, and unrolling loops.

Hand optimization can be tedious and error-prone. Partial evaluation is an automatic program transfor-
mation that specializes a module with respect to a subset of its input. Partial evaluation performs aggressive,
interprocedural constant propagation based on the known input. Improvements that can be obtained include
constant folding, loop unrolling, strength reduction, and simplification of control flow. In contrast to hand
optimization, optimization by partial evaluation is automatic and reliable. Correctness follows from the
correctness of the partial evaluator.

In this paper we investigate whether partial evaluation is a suitable tool for generating an efficient FFT
implementation. We address two aspects of this question. First, we determine what are the best results
we can obtain automatically by partial evaluation of an unoptimized implementation that directly follows
the mathematical algorithm. To obtain the best results from partial evaluation, we have to modify the
implementation slightly. We find that partial evaluation improves the unoptimized implementation over 7
times when the input contains 16 elements and over 3 times when the input contains 512 elements. Second, we
compare the best results that can be obtained with partial evaluation to the performance of other optimized
implementations. We find that partial evaluation matches or substantially exceeds the benefits of other
implementation techniques.

The rest of this paper is organized as follows: Section 2 presents an overview of partial evaluation. Section
3 assesses the opportunities for specialization in the FFT algorithm, and estimates the speedup that can be
obtained. Section 4 carries out the specialization of a simple implementation of the FFT. In Sections 5 and
6 we slightly rewrite the source program to get better results from compile-time and run-time specialization,
respectively. Next, Section 7 describes optimization techniques that have been applied by hand in FFT
implementations. The implementations considered are all publicly available. We compare the performance
of the specialized code of the simple implementation with that of the hand-optimized implementations, and
with the results of specializing the latter. Finally, Section 8 describes other related work and 9 concludes.

2 Overview of partial evaluation

Partial evaluation is an automatic program transformation that specializes a module with respect to part
of its input. Values that depend only on the known input and on program constants are said to be static.
Other values are said to be dynamic. An expression that can be simplified based on only the static data is
said to be reducible. Other expressions, which must be copied into the specialized program, are said to be
residualizable. We consider only offfine partial evaluation. Offline partial evaluation consists of two phases.
The first! is binding-time analysis, which annotates each expression as either reducible or residualizable. The
second is specialization, which simulates evaluation following the annotations of the binding-time analysis.
A thorough introduction to partial evaluation (in the functional setting) is found in Jones et al.’s textbook
[22].

1Tn practice, many preprocessing analyses may be involved, such as alias analysis, use-def analysis, etc. [9]. For the purposes
of this paper, we refer to all of these as binding-time analysis.

RR n3437



