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1. Introduction 

In a celebrated complexity-theoretic paper [9], Euby and Rackoff described a 
construction of a pseudorandom permutation generator from any pseudorandom 
function generator that was motivated by a study of the Data Encryption Stan- 
dard (DES, cf. [4]). Much research has recently been based on this paper (e.g., 
[ll], [la], [13], [14]). The main goal of the present paper is to give a simplified 
and generalized treatment of the results of [$I] by suggesting an information- 
theoretic rather than complexity-theoretic interpretation bawd on the concept 
of locally random functions whose treatment is an independent goal of this pa- 
per. It is shown that the proof of the Main Lemma of [Y], which originally re- 
quired three pages of highly technical definitions, claims and arguments, can be 
strongly simplified and interpreted essentially as an application of the birthday 
paradox, thus providing much more insight. Moreover, the central proposition 
of [Y], which was used to establish the relation between probability-theoretic 
arguments and complexity-theoretic results and which was unfortunately stated 
without proof, is shown to be unnecessary and somewhat misleading. 

Local randomness is an important concept in theoretical computer science 
with several applications. Intuitively, a family of functions is locally random of 
degree k if for every set of at most k arguments, the function values for these 
arguments for a randomly (from the family) chosen function are independent 
and uniformly distributed. In other words, a randomly (from the family) chosen 
function behaves precisely like a truly random function as long as it is evaluated 
for at most k arguments. Similarly, a sequence generator is locally random of 
degree L [lo] if for a randomly selected seed, every subset of k (or less) digits 
is completely random. Clearly, a locally random sequence generator can be 
obtained from a locally random function by “reading out” the function values 
for a given enumeration of the arguments, but the converse is not true in general 
because a sequence generator need not have the property that arbitrary digits can 
be accessed efficiently (only consecutive digits must be efficiently computable). 

The usefulness of local randomness has previously been observed (e.g., [l], 
[3], [6], [7]) and was referred to as k-wise independence. However, our treatment 
is more general in that (1) families of functions that are only “almost” locally 
random of degree L and (2) polynomial-time computable functions with super- 
polynomial degree of local randomization are considered, allowing applications 
in complexity theory as well as for the design of practical block ciphers. 

The results of Luby and Rackoff are discussed in Section 3. Locally random 
functions are introduced in Section 4 ,  and an alternative interpretation and 
generalization of the results of Luby and Rackoff based on this new concept are 
described Section 5. Some further applications of locally random functions and 
a new design strategy for block ciphers are discussed in Section 6 .  
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2. Terminology 

Our terminology is similar to that of [9]. Let (0 , l ) "  denote the set of binary 
strings of length n,  let F" denote the set of all 2"'" functions (0 , l ) "  -+ {0, l}", 
and let P" denote the subset of functions of F" that are permutations of (0, l}", 
i-e., invertible or one-to-one. For f1 E F" and f2 E F",  fi o f2 denotes the 
composition of fi and fi, i.e., f1 o fz(x) = fz(f~(x)). 

For two binary strings a and b,  a b denotes their concatenation and when a 
and b have the same length, a @ b  denotes their bit-by-bit ezcluszve or. The string 
consisting of the t rightmost bits of a string a is denoted by [ . I t .  In particular, 
[ill for a non-negative integer i < 2' denotes the representation of i by t bits 
(with possible leading zeroes). 

When an argument of a function is replaced by a set of arguments this will 
denote the multiset of resulting function values. In all cases, a random choice 
of an object x from a set or multiset S of objects (denoted by x ER S )  will 
be such that each object is equally likely to be chosen, taking into account 
multiple occurrencies in multisets. We refer to Section 4 of [9] for definitions of 
a pseudorandom number (or bit) generator (PRNG), of a pseudorandom function 
generator (PRFG) and of a pseudorandom permutation generator (PRPG). A 
function f : IN -+ IN is called superpolynomial if for every polynomial Q, f(n) > 
Q(n) for all sufficiently large n. Finally, # S  denotes the cardinality of the set 
or multiset S, and all logarithms in this paper are to the base 2. 

3. Luby-Rackoff Pseudorandom Permutation 
Generators 

Levin [S] gave a construction of a PRNG from any one-way function, and Gol- 
dreich, Goldwasser and Micah [5] devised a method for constructing a PRFG 
from any PRNG and hence, by Levin's result, also from any one-way function. 
(As a by-product of this research a simpler construction of a PRFG from any 
PRNG will be described in Section 4.) A PRNG can be used for encryption in a 
so-called additive stream cipher but a PRFG cannot directly be used for (block) 
encryption because pseudorandom functions are not invertible in general. Luby 
and Rackoff considered the problem of constructing a secure block encryption 
algorithm, i.e., a (secure) pseudorandom permutation generator, from any (se- 
cure) PRFG, and hence from any PRNG or from any one-way function. We 
refer to [9] for definitions. 

Motivated by the round structure of the Data Encryption Standard DES (cf. 
[4]), Luby and Rackoff defined a mapping H : F" x F" x F" -+ Pzn assigning 
every triple of functions in F" a permutation in P'". Let L and R denote the 
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left and right half of a Pn-bit string L R and let for f E F" the permutation 
f E P2" be defined as 
- 

- 
f ( L  R)  = R [L CE !(@I, 

i.e., the right half of the argument appears unchanged as the left half of the 
result and the right half of the result is equal to L @ f ( R ) .  This corresponds 
to one round of DES. For a list of functions, f1,. . . , fs E F", let the function 
(actually a permutation) $(PI,. . . , fs) : (0, l}2n -+ (0, 1}2n be defined by 

- 
$( f l , - . , f d  = f l O - - ' O f J ,  

- -  
i.e., +(f i , .  . , , f , ) ( L  0 R) = fJ(fsVl(. . .T,(L 0 R) . . -)). Note that H can now 
be defined by H(fi, fz, f3) = $(fi I f2, f3) (cf. Figure l), where 

Luby and Rackoff considered the problem of distinguishing, by use of an 
oracle circuit, a function randomly chosen from FZn from a function randomly 
chosen from the much smaller set * ( F " ,  F" ,  F") .  An oracle circuit Czn is a 
circuit with oracle gates, i.e., gates with a 2n-bit input and a 2n-bit output, 
where all oracle gates in a circuit evaluate the same fixed function in F2" (for 
details see [9]). Let 

P[C,n(f)=1: ~ E R  +(F" ,  F" ,  F")] 

and 
~ [ C a n ( f )  = 1 : f ER F2n] 

denote the probabilities that Can outputs 1 if the oracle gates are evaluated for 
a function chosen randomly from $ ( F " ,  F", F" )  and from F2n,  respectively. We 
hope that this notation, which differs slightly from that of [9], is more intuitive. 
The Main Lemma of [9] is as follows. 

Main Lemma of [9j. Lei Czn be a n  oracle circuit with k oracle gales  such  that 
no input value is repeated t o  an oracle gate. T h e n  

From the following discussion it will become clear that the restriction to 
circuits whose oracle gates must have different inputs, and hence also the propo- 
sition stated (unfortunately without proof) in [9] above the Main Lemma, are 
unnecessary and somewhat misleading. The result can be stated as a purely 
probability-theoretic result having no direct relation to complexity theory, and 
will in Section 5 be interpreted as a result on locally random functions. 
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Let g : ((0, 1)2n)k --+ {0,1} be a function taking as input k 2n-bit strings. 
For a given set of k arguments z1 , .. . , zk, let in analoe to the above definitions 

P[g(f(zi) ,  . . . , f ( z k ) ) =  1 : ~ E R  $!(F". F", F")] 

and 
pg P [ g ( f ( z l ) ,  . . . ~ f ( $ k ) ) = l :  f E R  F2"] (1) 

be defined as the probabilities that g(f(zl), . . . , f(zk)) = 1 when f is chosen 
randomly from $(F" ,  F",  F")  and from F2n, respectively. Note that Pg can 
alternatively be defined as 

where rl ,  . . . , r k  are independent and randomly selected from (0, 1}2n. Again 
equivalently, Pg can also be defined as 

# ( ( r 1 , . .  . ,  r k )  E ((0, I) '")~ : g(rl.. . .:n) = 1) Pg = 22nk 

Clearly, Lemma 1 is also true for every function g : ({o,~)"")' - {0,1) 
with k' < k. It demonstrates that there exists no set of k arguments, whether 
adaptively chosen or not, and whether distinct or not, that would allow an oracle 
circuit with these arguments as the inputs to the oracle gates to achieve 

I P [ c z n ( f ) = l :  f E R  $(F"I F",  Fn)]  - p [ c  zn( f )=1:  f E R  F q  > k2/2". 

The Main Lemma of [9] is hence an immediate consequence of Lemma 1. (It is 
easy to see that the converse is also true.) Moreover. it is obvious that prob- 
abilistic strategies cannot be better than deterministic ones for distinguishing 
a function from a random function since the deterministic function g could be 
defined as that resulting for the optimal choice of the randomizer. 

Proof of Lemma 1. Let fi , fi and f3 be functions randomly chosen from F",  
and let f = +(.fl, fz, f3). Let 2, = Li R, for 1 5 i 5 k be the k arguments of 
f, and define Si, and V, for 1 5 i 5 k as follows (cf. Figure 1 ) :  
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and 
v = f3(T1) @Si. 

Note that when the evaluation off for the argument z i  is viewed as a three- 
round process (similar to three rounds of DES), the outputs of the first, second 
and third round are R, 0 Si, Si 0 T, and Z K = f (L i  0 R,), respectively. We may 
for the rest of the proof assume without loss of generality that the zj ,  1 5 i 5 k, 
are distinct. Choosing identical arguments provides no new information and can 
thus certainly not help. 

Figure 1. Computation of $(f l l f2 , f3)(111 e R )  as T, e V,.  For the 
sake of simplicity, the swaps of left and right half between 
rounds are not shown explicitly. 

Let Es  and & denote the events that S1 , . . . , s k  are distinct and that TI , . . . , T k  

are distinct, respectively, and let & be the event that both €s and €T occur. If 
fs occurs, then TI = R1 CB fi(S~), . . . , T k  = R k  @ f i ( s k )  are completely random 
because f2 is a random function and hence f~(S~),. . . , f2(Sk) are completely 
random. Similarly, if ET occurs, then VI = S1 @ f3(Tl),.  . . , vk = Sk @ f 3 ( 7 ' k )  

are completely random because f 3  is a random function. Thus if both €s and 
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&T occur, f ( 2 1 )  = VI,. . . , f ( 2 k )  = Tk V k  are completely random and thus 
f = $(fi, f2 ,  f3) behaves precisely like a function chosen randomly from F2". 
Therefore the distinguishing probability is upper bounded by 

We now derive an upper bound on 1 - P [ f ]  = P [ r ] ,  where c denotes the 
complementary event of &. is the union of the (i) events {S; = S;) for 
1 - < i < j 5 E and the (i) events {T,  = T j )  for 1 5 i < j 5 k. The probability 
of the union of several events is upper bounded by the sum of the probabilities; 
and hence 

For i # j we have 

2-" if .& f Rj 
0 if R, = R,. P[S; = S;] = 

Note that when R, = Rj, then P[Si = Sj ]  = 0 since by 
Lj Rj and hence Li # L j .  Equation (3) shows that 

(3) 

assumption Li R, # 

P[Si = Sj] 5 2-" 

for i # j. By a similar argument we obtain 

for i # j .  The total number of terms on the right side of (2) is 2(:) = k(E - 1) < 
k2. Lemma 1 follows. 

An interpretation and generalization of this result based on locally random 
functions, which are introduced in the following section, will be presented in 
Section 5.  

4. Random Functions and Locally Random Func- 
t ions 

A random function r : (0,1}" -+ (0 , l ) "  is a function that assigns to all ar- 
guments 2 E (0,l)" independent and completely random values r(z) E (0, l}". 
The trivial implementation of a random function as a table requires the genera- 
tion of n2" random bits during a precomputation phase and n2" bits of memory 
to store the table. 
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A random function can alternatively be implemented as a device (or pro- 
cedure) that, when given as input an argument z that was never given before, 
generates a random output r(z) and stores the pair (2, r ( x ) )  in a table ordered 
according to z, and when. given as input an argument z for which r was pre- 
viously evaluated, outputs ~ ( z )  stored in the table. An advantage of the latter 
implementation is that when r needs to be evaluated for at  most t arguments, 
2tn bits of memory are required and at most 2tn random bits need to be gener- 
ated. However, the computation time for each argument is O(1ogt) compared to 
0(1) for an implementation based on a pregenerated table (of exponential size), 
and hence depends on the number t of arguments. 

When the computation time of an algorithm accessing a random function, 
implemented as described above, is polynomially (in n) bounded, so are the total 
computation time and memory requirements of the resulting algorithm, includ- 
ing the random function. In other words, although a random function seems at 
first to require an exponential amount of memory, any polynomial-time algorithm 
using random functions can be implemented in polynomial time and polynomial 
space. This observation is the key argument of the proof of Theorem 1 of [9] .  We 
would like to point out (without making further use of this result) that the same 
observation can be used to present a construction of a PRFG from a PRNG 
that is much simpler (albeit less practical) than that proposed by Goldreich, 
Goldwasser and Micali [5] for proving the following proposition. 

Proposition 1 [5]. Pseudorandom function generators exist i f  and only i f  pseu- 
dorandom number generators exist. 

Randomness is often an expensive and limited resource. Moreover, a depen- 
dence of the function evaluation time and memory requirement on the number t 
of arguments for which a function is evaluated is most often intolerable. There- 
fore, an important concept is that of a locally random function, i.e., a function 
that behaves like a random function as long as it is evaluated for at most k 
arguments for some parameter k. 

Definition 1. A family Fz = (fz : z E 2) of functions fz : (0, 1)" -+ (0, l}m is 
an ( n ,  m, k) locally random function (LRF)  with key space 2 if for every subset 
{XI, I . . , zk} of (0, l}", fZ(q),.. . , f z ( z k )  are uniformly distributed over (O,l}" '  
and jointly statistically independent, when z is randomly selected from 2. 

F'2 could alternatively be viewed as a single function 2 x (0,1}" --+ (0, I}*. 
A random function (0,l)" -+ (0, I}" is an (n ,  n ,  2n) LRF. The restriction to 
binary digits is made without essential loss of generality. The above definition 
is purely combinatorial, i.e., no restriction on the computation time is made. 
LRFs will be generalized below to take into account both minor deviations from 
c.omplete randomness of any k function values and efficient (i.e., polynomial- 
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time) computability. 
An important question is for which choices of parameters n, rn, L and 121 there 

exist LRFs. Because it is impossible to expand deterministically a sequence of 
random bits into a longer sequence of (independent) random bits, it is obvious 
that for an (n, m, k) LRF with key space 2, 

must hold. It may appear to be somewhat surprising that, for any n ,m  and k 
with rn = n or m a multiple of n ,  equality in (4) can be achieved. This follows 
from the folIowing well-known proposition, which can be proved by observing 
that the d+ 1 coefficients of a polynomial of degree d over a field can be interpo- 
lated from any set of d + 1 arguments and the corresponding polynomial values. 
When m < n, equality in (4) cannot be achieved. 

Proposition 2. Let PO,. . . , p k . - 1  be randomly selected n-bit strings. The func- 
tion 

p : (0, l}n - (0,l)" : 5 H p ( z )  = pk-&l + . . . + p1z  +PO, 

where all quantities are considered as representations of elements of the finite 
f ie ld  GF(2"), is a (n, n, A) LRF with minimal key  space 2 = {0 ,  l}kn. 

For the sake of completeness we state the following proposition, which is an 
immediate consequence of Theorem 1 in [lo]. Let Z = {0,1}", i.e., the key 
consists of v binary digits. 

Proposition 3. There exists a (n , rn ,L)  LRF if 
V 

mk 5 
n + h g v n  

and there exists no (n ,  1, k) L R F  i f  

2(v + n + 1) ' n - l o g z v + l '  

In order to state our results on PRFGs and PRPGs in terms of LFFb, we need 
to generalize the concept of LRFs in two different ways. As a first generalization, 
the condition of true randomness of any k function values must be somewhat 
relaxed. Instead of introducing the new concept of "almost" locally random 
functions we generalize LRFs by introducing a fourth parameter, 6 ,  believing 
that this generalization will be intuitive rather than ambiguous. (Note that a 
(n, rn, k, 0) LRF will be the same as a (n, m, k) LRF.) 

Definition 1'. A family 3i = {fz : z E 2 )  of functions f z  : { O , l } "  -+ (0, l}m 
is an (n, m, k, c) locally random function with key space 2 if for all functions g : 
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((0, l}m)k --t {0,1} and for every subset (21,. , . , zk} of (0, l}n, for z randomly 
selected from 2, 

Ip[g(.fz(zl), * .  . 3 f z ( r k ) )  = 13 - p[g ( r l , .  . . Tk) = 111 5 6 ,  

where 71,. . . , Tk are independent and randomly selected from (0, lIffl 

Note that 

Clearly, an (n, m, k, E )  LRF is also an (n, m, k’, 6’) LRF for every k’ 5 k and 
6’ >_ E .  Moreover, a (n, m, k, E )  LRF can easily be modified by deleting some 
output bits to yield a (n, m’, L, E )  LRF for any rn’ < rn. Conversely, a (n, cm, k, E )  

LRF with key space 2“ can for c > 1 be obtained from a ( n ,  m, k, 6) LRF Fz 
with key space 2 by a simple concatenation of c copies of Fz with independent 
keys. 

A second generalization of LRFs is necessary in order to be consistent with 
other asymptotic definitions in complexity theory, in particular those used in [9]. 

Definition 2. A locally random function generator (LRFG) with key length 
function l (n)  and degree of local randomization k(n) is a family T = {F~o,ll,~n~ : 

n E IN}, where T~o,l l lc , , ,  is a (n, n ,  k(n), ~ ( n ) )  LRF with key space (0,  l]’(n) 
that is (for every given argument and key) computable in time polynomial in n,  
independent of the number of previous evaluations, where ~ ( n )  vanishes faster 
than l/Q(n) for every polynomial Q(n) (i.e., l / ~ ( n )  is superpolynomial in n). 

5. Complexity-theoretic Applications of Locally 
Random Functions 

The construction of [9] for a PRPG is based on the following observation 
which can be formalized. Let T be a LRFG (or LRPG) with key length function 
l (n)  whose degree of local randomization k ( n )  is superpolynomial in n (which 
implies that I(n) is superpolynomial in n). Let T‘ be the PRFG (or PRPG) 
resulting from T when the n l ( n )  random bits are substituted by a function 
generator G generating the corresponding amount of (pseudorandom) bits. Then 
T’ is a PRFG (or PRPG) under the assumption that G is a PRFG. 

For PRFGs, this construction seems to be of little value because a PRFG 
is required for constructing another PRFG. For the case of a PRPG, however, 
this observation allows to relax the problem of constructing a PRPG to  the two 
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problems of constructing a PRFG and a LRFG with superpolynomial degree of 
local randomization that is also a permutation generator. 

For the construction of a LRF described in Proposition 2, the evaluation 
time is proportional to  the degree k of local randomization because for every 
z, #(z) depends on every internal random bit, i.e., on all the coefficients of 
the polynomial p ( z ) .  A different construction for which every function value 
depends only on an negligible fraction of the key bits must hence be used for 
obtaining a superpolynomial degree k of local randomization while retaining the 
polynomial evaluation time, as is required for a generalized interpretation of the 
Luby-Rackoff results. Before presenting such constructions we point out that 
the mapping H : F" x F" x F" + P2" gives a construction of LRFGs from 
other LRFGs. 

Theorem 1. 
@(&, Fz, Fs) is u (272,272, k, c) L R F  for  all k, where E = k22-" + €1 + €2 + €3, 

Let 3 ,  for i = 1,2,3 be three independent ( n , n , k , c i )  LRF's. 

Proof. The fact that  3i is a (n, n, k ,  ci)  LRF can be expressed as 

(5) 

where Pg is defined in (1) with F2" replaced by F" .  Since using a randomized 
strategy for distinguishing 3 i  from a random function cannot be better than us- 
ing the best deterministic function g, as mentioned before, inequality (5) implies 
that 

lP[g(f( 21 ) 7 . . ., f ( zk )) = 1 : f E R  d'(F" F" F" )] 

-P[g(f(Zl), . . - , f ( Z k ) ) = l :  f E R  $'(319Fn,Fn)]1 5 €1 

and 

and 

The proof is completed by combining these three inequalities with Lemma 1 
and observing tha t  these four probability differences define four adjacent (but 
possibly overlapping) subintervals of [0,1] whose total span can be at most the 
sum of the four interval lengths. 0 
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Note that the functions of $(31, Fz, T-3) are actually permutations. Lemma 1 
follows immediately as a corollary of this theorem since F" with key space 
{0, l}n2n is an (n ,  n, 2", 0) LRF. 

Instead of implementing the functions f1, fz, fa in the Luby-Rackoff con- 
struction H ( f 1 ,  fi! f3) directly as some pseudorandom functions, the construc- 
tion I? can be applied iteratively. For instance, a pseudorandom permuta- 
tion f : (0, l}4n --r (0, 1}4" can be implemented as f = H ( f l , f Z ,  f 3 )  where 

fij are pseudorandom functions (0, 1)" ---+ (0, l}". Let 
fl = H(f11, f12, f13), f 2  = H(fZ1, f22, f23) and f3 = H(f31, f32, f33) and where 

H(")  : (F")3a --+ p2.n 

be the s-fold iterative application of the Luby-Rackoff construction H which 
requires 3" functions {0,1)" -+ (0,l)" as inputs. The following Corollary to 
Theorem 1 gives a characterization of this iterative construction as a result on 
locally random functions. 

Corollary 1. When H ( " )  is applied t o  3s dependent  (n ,  n, k, 6 )  LRFs then the 
resulting function is a (2'71, 25n, k, 8) LRF where 8 = k2 Cf=l 3i-12-2'-'n+35~. 

Although the mapping H serves the originally intended purpose of proving 
an important complexity-theoretic result , randomness is used wastefully: The 
degree of local randomization is only on the order of the square root of the 
number of key bits. The best (in terms of efficient use of key bits) previously 
known asymptotic construction is the LRFG {4(Fn, F",  Fn, F", F")  : n E IN} 
with superpolynomial degree of local randomization and with key length func- 
tion I(n) = 5n2", which was proved in [ll] to have degree k(n) = Q(22"/3) = 
!2(I(n)2/3) of local randomization. 

In the following we present an alternative construction of LRFGs that achieves 
a local randomization of degree k ( n )  = R(l(n)") for any a < 1. Such LRFGs 
lead to alternative constructions of PRFGs and PRPGs based on PRFGs. 

: (0, l}t - (0,l)" 
for 1 5 i 5 d be random functions, let c = [log2 4 and let P be a (n + 
c, t ,  2d) LRF. For example, P could be implemented as P(() = k(<)lt (the t least 
significant bits ofp(t)), where p is a polynomial p ( u )  = P2d-1U2d-1+* . .+PI u+po 
of degree 2 d -  1 over GF(2"+') and the key of P consists of the 2d coefficients 
p 2 d - 1 , .  . . , po.  The total number of random bits required for implementing r and 
P is hence I(n) = 2tdn + 2d(n  + c ) .  

Theorem 2. The family offunctions F(") = {fz : z E ( 0 ,  l)'(")) defined by 

Let d be a parameter of the following construction, let 

d-1 

f&) = c T i ( P ( +  [ ~ I e ) ) ,  
i = O  
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where the sum is  bit-wise modulo 2 andthe l (n)  = 2'dn + 2 d ( n  + c )  bits of z are 
used in  some m a n n e r  t o  implement  the functions ri and as the key of P ,  i s  a 
( n ,  n,  k , 7 ( k ) )  LRF f o r  all k, where y(k) = t d + 1 2 - d r .  

Proof. Let aij, 1 5 i 5 d ,  1 5 j 5 k be the input to function r, when F(") 
is evaluated for the j t h  argument z,. Let E be the event that for every xi l  
1 5 j 5 L, there exists an i , ,  1 5 ij 5 d, such that uijj # aijm for all rn # j .  
If E occurs, then for 1 5 j 5 k at least one of the terms in the sum forming 
fz(zj) is a random variable that is completely random and independent of all 
the other terms occurring in the evaluations of fz(q), . . . , fZ((zk), and hence 
fi (XI), . . . , fz ( z k )  are independent and completely random. The complementary 
eventzistheunionover l _ < j _ < k a n d o v e r m ; ~ { l ,  ..., j - l , j+ l ,  . . . ,  k}for 
1 5 i 5 d of the k(k - l)d events 

{u;, = aim, for 1s i 5 d } .  

Because the U i j  are 2d-wise independent, each of these events has probability 
2-d' and hence 

P[q 5 kd+'2--dt . o  

The following argument demonstrates that the construction of Theorem 2 
yields an asymptotically optimal IocalIy random function. Let 

B = { F ( ~ )  : n E IN), (6) 

where F(") is the LRF from Theorem 2 with d = t and t is any function of n 
such that 2 t / t  is superpolynomial in n. For instance, t ( n )  = [(logn)lf61 for 
some fixed 6 > 0. The key length function of is 

l ( n )  = 2t(n + pog,t]) + 2$ tn  = e(2'tn). 

For 
k(n) = 2'('-1)/(*+') 

we have y(k) = 2-$. It is straight-forward to prove that 

for all (Y < 1 and thus we have the following result. 

Corollary 2.  I? as  defined i n  (6) i s  a LRFG with degree of local randomization 
k(n) = R(l(n)*) f o r  any  Q < 1. 

We suggest as an open problem to devise a LRFG with superpolynomial key 
length function l(n) and local randomization of degree k ( n )  = R(l(n)). 
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One can prove that even when P I , .  . . , pd  are taken to be the same random 
function r : (0,l)‘  -+ (0 , l ) ”  rather than independent random functions, the 
resulting family of functions is a LRF also satisfying k(n) = n(l(n)”) for any 
a < 1. 

Theorem 3.  The family offunctions F(*) = {fz : z E ( 0 ,  l}r(*l} defined by 
d- 1 

f z ( 4  = c P(P(3: [ i l c ) ) ,  
i = O  

where the I(n) = 2tn + 2d(n + c) bits of z are used in some manner t o  im- 
plement the function I- and as Ihe key of P ,  is a ( n , n , k , y ( k ) )  LRF, where 
7 ( k )  = kd+1(2d2-t)d, f o r  all t 2 m. 

6. Concluding Discussion 

An important application of locally random functions is in the area of prob- 
abilistic algorithms, where randomness is often an expensive resource and there- 
fore simulated by a pseudorandom generator with a random seed. In the analysis 
of a probabilistic algorithm that uses blocks of random bits at various stages it 
is sometimes sufficient to require that the random blocks be only k-wise inde- 
pendent rather than jointly independent. For instance, the “birthday paradox” 
holds not only for independent random birthdays but also when the birthdays 
are only pairwise independent. Furthermore, pairwise independence of a set of 
random variables is sufficient for proving that the variance of the sum of the 
random variables equals the sum of the variances (e.g., see [3]). 

Local randomness has also several applications in cryptography. A first (in 
the author’s opinion misinterpreted) cryptographic application is the design of 
cipher systems “provably secure” against enemies with unlimited computational 
resources. Schnorr [13] suggested to simulate the random keystream of the one- 
time pad by a keystream that is only locally random. If an eavesdropper can 
examine at  most k (arbitrarily chosen) bits of the keystream, where k is the 
degree of local randomization, such a system offers the same perfect security 
as the one-time pad, even if the eavesdropper has infinite computing power. 
Of course, as is pointed out in [lo] where Schnorr’s idea is generalized, the 
drawback of such a system is that clearly k cannot be greater than the length of 
the secret key (the seed) and thus the assumption that an eavesdropper cannot 
obtain more than k keystream bits is generally completely unrealistic. Another 
example is the “provably secure” block cipher described in [14] which suffers 
from an even stronger weakness because the number of plaintext-cryptogram 
pairs an eavesdropper is allowed to obtain is upper bounded by only the square 
root of the key size. Loosely speaking, an enemy is guaranteed to spend at  least 
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100 years breaking the cipher if the user of the system is willing to spend 10’000 
years for only loading the secret key into the system. Clearly, if such a long 
secret key were available, the users would be better off using a one-time pad to 
begin with. 

A related but much more important cryptographic application of local ran- 
domness is the design of conventional cryptographic algorithms using a secret 
key of only moderate size. The basic idea, which could be further formalized, 
is to design a system that uses an (impractically) large amount of secret ran- 
dom bits and to prove it secure against enemies with unlimited computational 
resources for a suitable definition of security. If the random bits are replaced 
by pseudorandom bits generated by a pseudorandom number generator or a 
pseudorandom function generator with only a short secret key, the system can 
clearly not retain its unconditional security. However, failure of this modified 
system to be computationally secure for the same definition of security implies 
failure of the pseudorandom (number or function) generator to be computation- 
ally indistinguishable from a random generator since any breaking algorithm for 
the cryptosystem would yield a distiguishing algorithm for the pseudorandom 
generator. Therefore, the modified system can be proved secure under the as- 
sumption that the component pseudorandom generators are secure. Although 
no pseudorandom generator has been proved secure, to rely on such an unproven 
assumption may be worth-while as it allows to clarify the principles on which a 
cipher’s security is based. 

The most trivial and widely used application of the described idea are con- 
ventional additive stream ciphers which can trivially be “proved” secure under 
the assumption that the keystream generator is a pseudorandom number gener- 
ator according to [a].  Another less trivial application is for the design of block 
ciphers. A block cipher can be obtained from an efficiently computable locally 
random function by replacing the random bits by one or several pseudorandom 
function. 

A further cryptographic application of local randomness may be for the key 
scheduling in secret-key ciphers where a relatively short key must be stretched 
to a sequence of subkeys (e.g. round keys of a block cipher). 
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