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Abstract  
Most security results can be established both in the non-uniform and the uni- 

form model of cornpulatiori. Noiietlieless, non-uniform results are oftcn much easier 
to obtain than their uniform version. In this paper we initiate a general framework in 
which the classical sampling technique can be applied to obtain uniform results. Our 
main theorem gives sufficient conditions under which a non-uniform result can be 
extended to a uniform one. As a consequence, we derive the uniform version of Schrift 
and Shamir’s generalization of Yao’s theorem on the universality of the next-bit test. 

1 Introduction 

A (perfect) pseudorandom source of bits is a probability distribution which cannot 
be distinguished in probabilistic polynomial time from a truly random source. 

This notion was defined by Yao [S], who also showed that it is equivalent to the 
following simpler one: no bit of the source can be predicted from the previous ones in 
probabilistic polynomial time with probability significantly greater than 1/2. In other 
words, if all the bits Uresist” to be predicted by some probabilistic polynomial time 
adversary, then the source can be used hy probabilistic polynomial time algorithms 
as a truly random source of coin tosses. In short, this result states the universality 
of the next-bit test. 

More generally, two distributions are indistinguishable if they cannot be distin- 
guished by a probabilistic polynomial-time algorithm. 

Schrift and Shamir [7] generalized Ym’s rcsult by finding a suitable version 
of the next-bit test (which they called the comparative next-bit test ”) which is 
universal for two arbitrary distributions. 

In fact, their proof is established in the non-uniform model of security, where 
adversary algorithms are non-uniform Turing machines or sequences of boolean cir- 
cuits, without any assumption on the computability of the sequence. 
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In general, in computational security, most results have a non-uniform and a 
uniform version (depending on which model of security is chosen). Historically, non- 
uniform results were obtained first, and extending them to the uniform case is often 
a hard task. 

Thc main technique for obtaining uniform results is now classical. It  an be 
found in Levin [5]: it consists in replacing true probabilities by approximations com- 
puted from random samplings. 

The purpose of this paper is twofold. We prove that Schrift and Shamir’s next- 
bit test remains universal in the uniform model of security. More importantly, we 
initiate a general framework in which the sampling technique can always be applied 
to obtain uniform results. Our main theorem specifies some conditions which are 
sufficient to extend a non-uniform result into a uniform one. 111 fact., Ihe universality 
of the next-bit test becomes a consequence of our main theorem. 

The theory of one-way functions and pseudorandom generators involves dif- 
ferent notions of resistance of some object against an adversary. Two distributions 
are indistinguishable if they resist to be distinguished by a probabilistic polynomial- 
time adversary. A one-way function is a function which resists to be inverted. A bit 
is hard-core on a function f if it resists to be predicted using the knowledge off(.). 

Several well known results can he restated in terms of reduction of one notion 
of resistance to another. For example, the universality of the next-bit test can be 
expressed as follows: the resistance of two distributions against an arbitrary adversary 
reduces to their resistance against the particular one who tries to distinguish them 
by the next-bit prediction. Let us quote a few other: 

- Goldreich-Levin [2]: “if thcrc cxists a one-way furiclion, then there exists a 
function with a hard-core bit”. This result has been proved in [2] in both models of 
security. 

- Impagliazzo-Levin-Luby: “if there exists a one-way function, then there 
exists a pseudorandom generator”. This theorem was first proved under different 
types of restrictive assumptions ([1],[5]), then in the general case in [4], in the non- 
uniform model of security. It was then proved in the uniform model by Hastad [3]. 

- Rompel [6 ] :  “if there exists a one-way function, then there exists a secure 
signature scheme”. 

In section 2, we give a few notations and some basic definitions about uniform 
and non-uniform computation. In section 3, we formalize the very general notion 
of resistance by defining a security scheme and the resistance of a security scheme. 
Basically, a security scheme is a predicate saying that some algorithm significantly 
succeeds in attacking some object. Then we define the reduction between two security 
schemes (reduction of a scheme to another means that the problem of proving the 
resistance of the former reduces to the same problem for the latter). Finally we illus- 
trate our definitions by restating several theorems in terms of reducibility between 
security schemes. 

In section 4, we introduce the notion of a virtual algorithm which will be crucial 
for extending non-uniform results to uniform ones. Intuitively, a virtual algorithm 
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can compute in a single (virtual) step the accepting probability of a probabilistic 
polynomial-time algorithm. Then we define approximations of virtual algorithms, 
where the virtual steps are replaced by approximations with polynomially small 
error. Our main theorem states that under some technical assumptions, if a reduction 
is achievable using some approximations of a virtual algorithm, then i t  is in fact 
achievable in the uniform model. We show then that Schrift and Shamir's reduction 
[7] can be extended to satisfy the assumptions of our main theorem. This will prove 
our second theorem about the uniform universality of the next-bit test. 

2 Uniform vs. non-uniform algorithms 

No tat ions 
We write C for the set {0, I}; C' denotes the set of all finite strings of bits, and EN 
the set of all infinite strings of bits. For a string x E C', 1.1 denotes the length of r, 
xi the i-th bit of z, and 4 the substring of x from bit i to bit j. The concatenation 
of z and y is denoted by zy. Following the usual definition, a distribution ensemble is 
a sequence ( D n ) n E ~ ,  where D, is a probability distribution on C". We write 2 ED E 
when x is picked up at random in the set E according to distribution D. U, denotes 
the uniform distribution on C". U denotes the usual distribution on EN (infinite 
sequence of independent and unbiased coin tosses). 

When not specified otherwise, all the algorithms we consider are supposed to 
run in polynomial time. As usual, a uniform algorithm is a Turing Machine (or 
any equivalent model of coniputatiori). A non uniform algorithm is a Turing machine 
provided with a sequence ( ~ , , ) , , ~ m  of advices in C' (it  can also be viewed as a sequence 
(C,) of boolean circuits of polynomial size). When not specified, these algorithms are 
supposed to be probabilistic. For simplicity of the notations, we represent the sequence 
of random coin tosses by a random input which is an infinite string w EV EN. In the 
probabilistic w e  the algorithms run in time bounded by a polynomial function of 
the input length, independently from the random string w. 

Definition 1 A distribution ensemble (Dn) is uniformly samplable tfthere e ~ i h  

a unijorm algorithm A(n ,w)  such that, jor every n, D,  is the distribution generated 
b y  taking w Eu C N  and applying A(n,  .). 

In other words, for every n and every event E we have: 
Pr[y E E] = Pr[A(n,w) E El, where y ED, E and w €u E N 

3 Security schemes 

Definition 2 A security scheme is a predicate P(+, n, c), whose free variables are 
supposed to be some function 4, an integer n, and a positive constant C .  
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In the following definition and the rest of the paper, we will often identify an 
algorithm with the function it computes. 

Definition 3 We say that an algorithm A breaka the security scheme P (or is a 
breaker of P )  if there exists a constant c such that, for an infinite number of values 
n ,  P(A,n,c) is true. 

Definition 4 A security scheme P is resistant in the non-uniform ( m p .  uni- 
form) model of securi ty if no non-uniiorm (mp.  uniform) algorithm can break 
P.  

Definition 5 Given two security schemes P and Q, we say that P is reducible to 
Q if the resistance of Q implies the resistance of P. 

The notion of reducibility depends on the model of security (uniform or non- 
uniform). We will always lake the same model for both p and Q (that is: the  adver- 
sary algorithms A and B are of the same nature: both uniform or not). 

Example 1 
Let (Dn) and (DL)  be two disLribution ensembles. Let Pl(A,n,c) be 

' I Pr[A(z ,w)  = 11 - Pr[A(y ,w)  = 111 > 5 
where x ED, C", y ED:, C" ,  w 'Eu EN 

We call l'l the distinguishing scheme of (Dn) and (Dn). Resistance of PI means that 
(Dn) and ( D k )  are indistinguishable. 

Example  2 
Let (Dn) and (Dk) be two distribution ensembles. Let P 2 ( A , n , c )  be 

' A on input  n computes some integer i such that 1 5 i <_ n - 1, then acts 
on C' and satisfies P r [ A ( z i , W )  = I;+~] - Pr(A(y;,w) = y,+~] > 5,  where 

PZ is the nezt-bit distinguishing scheme of (D,,) and (Pn). Reducibility of PI to p2 
means that the next-bit test is universal. Schrift and Shamir [7] proved that indeed, in 
the non-uniform model, PI reduce.. to Pz. Our notion of rcsistance of PI corresponds 
to their notion of "passing the comparative next-bit test". Note that they took 
the difference of t h e  two probabilities in absolute value, but the absolute value ca~l 
obviously be dropped in the non-uniform model by considering the complementary 
event if necessary. 

The reason for the non-uniformity of their result is that the integer i is obtained 
by the pigeonhole principle, and therefore not computed from n. Here we derive the 
uniform version as a corollary of our main theorem. In the uniform version, we obtain 
a stronger result i f  we drop the absolute value, since the sign, a priori, cannot be 
computationally decided. 

N n  z ED, En, 3' ED; C",wELrC . 
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Example 3 
Let (fn) be a polynomial-time computable sequence of functions : C" --+ C". Let 
& ( A ,  n, c)  be 

Pr[A(f,,(z),u) E f;*(f,,(z))] > 5 where x €urn C", w €u CN "- 
P3 is the inversion scheme of (f,). Resistance of P3 means that (fn) is a one-way 
function. 

Example 4 
Let (f,) : C" -+ C", and (6 , )  : C" -+ C, and let P4(A1n ,c )  be 

"Pr[Atfn(z)iw) = bn(z)1 > T (  1 + 4) where z EU, C", w Ev EN". 

P4 is the prediction scheme of the bit family (b,) from (f,,). Resistance of p4 means 
that (b,) is hard-core on (fn).(cf. [2]) 

Example 5 
Let ( f n ) :  C" ---t C", and Pd(A,n ,c)  be 

"Pr[A(r,  f , ( z ) ,w)  = r Q z] > f(1 + 5 )  where z , r  EU, C", w Eu EN". 
where r 0 x denotes the boolean inner product of r and x. Ps is the inner product 
prediction scheme of (fn). The theorem of Goldreich and Levin (21 asserts that  Ps is 
reducible to P3, in both models of security. 

4 Obtaining uniform results 

Looking carefully to the proof of the universality of the next-bit test in [7], one can 
see that the problem of achieving the uniform universality of the next-bit test comes 
from the non-computability (in polynomial time) of Pr,[A(z,w) = 11, when given an 
algorithm A ( s , w ) .  In fact, this is a rather general phenomenon: many non-uniform 
results can be trivially extended to the uniform c a e  under the condition that we can 
compute such probabilities. Unfortunately, this is in general not the case since the 
straightforward computation of this probability takes e-xponential time in n. 

Txvin [5] showed that  the exact probability computation is not really necessary. 
In fact, it can be replaced by a suitable approximation, such as the median of average 
values of random samplings. In this section, we form'alize this general phenomenon 
and specify when this sampling technique can be applied. Then we can derive easily 
the uniform version of Schrift and Shamir's result. 

Definition 6 A virtuul algorithm i s  a deterministic uniform algorithm for which 
the evaluation of ezacl probabililies is allowed and regarded as an elementary opera- 
tion. 
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In other words, a virtual algorithm M can use a "black box" which receives as input 
some subroutine A : EN 3 C of MI and outputs Pr,[A(w)] = 11. 

Given n real number r ,  we call an t-approximation of r any real number r' 
such that 1. - r'I <_ t .  

Definit ion 7 Given a virtual algorithm M ( z )  , an integer n, and some positive 
constant c,  an ( n ,  c)-apprvxirnation of M is a virtual algonthm which runs like 
M and f o r  which, on every input 1x1 of length n ,  the black boz gives, instead of its 
normal output, an n-"-approximation. 

For all other inputs, we do not require any specific behaviour from the algo- 
rithm. We do not require either that an (n,c)-approximation run in polynomial 
time. (In fact, it is easy to construct a virtual algorithm M such that a suitable 
(n ,  c)-approximation of M might run forever, even on inputs of length n). 

Definit ion 8 A security scheme P is accessible i jfor every algorithm A ( x , w ~ , w z )  
which g e t s  two random inputs w, and wz, and f o r  a n y  positive constants C ~ , C Z  such 
that CI > c2, we h a w  for n large enough: 

Pr[P(A(. , . ,w2) ,n ,cz)  is false] 5 2-" + P(a,n,cl) is  Iruc. 

It is easy to see that schemes P2, P3, P4r Ps in the examples of section 3 are 
accessible. More generally, any security scheme which says that some "suitable" ex- 
pectation (depending on A ,  and taken over inputs 2 of length n and w € EN) is 
greater than 5,  is accessible. Note that this is not the case for PI, since this schema 
corresporids to an expectation which is taken in absolute value. 

T h e o r e m  1 (Main) Let P and Q be two security schemes, such that Q is accessible. 
Assume that jor  every positive constant c, there exist positive constants c1, c2, c3 and 
a virtual algorithm M ( A )  (Teceiving A as a subroutine) such that for  n large enough, 
every (n ,  cz)-approzimatian h?;I(A) uf M ( A )  satisfies the following two conditions: 

I .  M ( A )  has running time bounded by nc3 on inputs of length n 

2. P ( A , n , c )  =$ Q ( h ( A ) , n , c 1 )  
Then P is uniformly reducible to Q .  

We begin the proof with some lemmas which will be our tools for the sampling 
tcchniquc. 

Lemma 1 For every positive constant c, there exists a polynomial-time probabilistic 
algorithm M ( A ,  2, w' )  which, when given some algorithm A(w) as a subroutine and 
x = 1" as input, computes with probability at least 6 (on w') an n-'-approximation 
I; o f p  = Pr (A(w)  = 11. 

Proof 
The algorithm M is defined as follows: 



303 

c o m p u t e  N = rznzC1 
pick u p  independently at random w l I . .  . , WN 

(the collection < w, , . - - , WN > will form w')  

c o m p u t e  = +( number of i s.t. A(w, )  = 1) 

Let X,(q;. , W N )  = A(w;) .  Then the Xi's are independent Bernouilli random vari- 
ables with expectation E ( X ; )  = p and variance V(X;) = p ( 1  - p )  5 1/4. Chebyshev's 
inequality gives 

V(Xi)nZ' rak 1 I-<- 
N 4N - 8 PrjlP - PI 1 n-7 I 

Lemma 2 Let (Xi)llis~.s+1 be independent random variables and p,e  such that 
Pr[lX; - 2 €1 5 1/8. Let Y denote the median of the Xi 's. Then 

I 
Pr[lY -PI 2 €1 L: -j 

r=S+1 p?) ( t ) ;  (1 - :) 

Proof 

We have Pr[lY - p /  2 c]= Pr[lX; - pi 2 6 for at  least S + 1 subscripts i ] 
= p + 1  2S+1-i 

I c;:'=",*:, (,s,,) (d)S+l 
< - ps+1 (,),,I 
- 1  - p z I ?  

Corollary 1 For every positive constant c,  there exists a probabilistic polynomial- 
time algorithm M ( A , x , y , w ' )  which, on inputs x = 1" and y = lS, computes a 
tz-c-approzirnation o f p  = Pr,[A(w) = 11 with probability ('on w') at least 1 - 2-' 

Proof 
Just repeat 2s + 1 times the algorithm of lemma 1 with independent random sam- 
plings, then take t h e  median, and apply lemma 2.0 

Proof of theorem 1 
Let A be a uniform breaker of P.  Then there exists c such that, for an infinite 

number of values n, P ( A , n ,  c)  is true. Let C ~ , C ~ , C ~ , M ( A )  be such that they satisfy 
the two conditions of the theorem. 

We define an algorithm B which will be a uniform breaker of Q: El on input 
2, computes s = n + [c3 log, n1, where n = 1.1. Then it simulates M ( A )  while the 
number of computational steps of M(A) does not exceed nQ. Whenever this number 
of steps is not sufficient to finish the simulation, B stops (and fails). Moreover, 
each time M ( A )  makes a call to the black box for computing some probability p ,  B 
replaces this call by computing itself an n-"-approximation p' of p with probability 
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of failure 2-' (cf. Corollary I ) ,  using indepcndent random samplings for all t h w  
computations. 

The total number of calls of M ( A )  to the black box is a t  most nc3. Moreover, for 
each call we have Pr(lfi-pI > n-'Z] 5 2-', so with probability 2 l-nC32-' 2 1-2-", 
B is a (n,  cz)-approximation of M ( A ) .  Whenever this happens, the forced halt does 
not occur before the end of the execution. 

Let n be such that P(A,n,c) is true, and large enough for the conditions of 
the theorem 1 to be satisfied. Then with probability >_ 1 - 2-" Q(B, n, c1) is true 
(using cond. 2). Finally B is a probabilistic uniform algorithm using 2 kinds of 
random inputs (those of A ,  and the random samplings, denoted by w') ,  such that, 
for an infinite number of values of n, with probability on w' greater than 1 - 2'", 
P(B(. ,w') ,n,q) is true (cond. 2). Hence using the accessibility of Q, B is a uniform 
breaker of Q. 0 

From this theorem we derive the following: 

Theorem 2 (Unifomn universality of the next-bit t ex t )  
Given two unijormly samplable distribution ensembles, their distinguishing scheme 
is uniformly reducible to their nczl-bit distinguishing scheme. 

Proof 
We have seen that the iiext-bit distinguishing scheme Pz is accessible. 

We will show that Schrift and Shamir's proof €or the non-uniform universal- 
ity yields in fact constants cl ,czrc3 and a virtual algorithm M ( A )  satisfying the 
assumptions of the main theorem. 

The virtual algorithm M is defined as follows (there are two parts in the al- 
gorithm: first M chooses an integer i in { l; . . , n - l} and then predicts i i f l  from 
4 1- 

for i = 1 t o  n 
compute p ,  = Pr[A(yfz:+,, w )  = 11 and p: = Pr(A(cjz:+,,w) = 11, 

where y ED, C", i ED; C", w EU CN. The computation is possible 
using the "black box" opcration allowed in virtual algorithms: 
since (D,) and (13;) are both uniformly samplable, 
one can generate in polynomial time D, and O', from the integer n, 
using the usual distribution on EN. 

c o m p u t e  q, = p1 - p: 
choose an i (for instance, the first) such that q;+1 - q, > $n-('+'). 

( i f  there does not exist such an a ,  then the algorithm fails) 
(Ilcre ends the first parf, of the algorithm) 

choose at random zi;, EU,,-, En-' and w € a  CN if qi+1 - qi > 0 then 
if A(z;zY++,,w) = 1 then output zi+l else output 1 - zi+l 

if A(ztz?+,,w) = 1 then output 1 - z;+1 else output z;+1 
else 
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Let us  verify that the assumptions of the theorem 1 are satisfied. The existence 
of c3 is obvious, since every approximation of M(A) has the same running time as 
M ( A ) .  Let us take cl, cz > c + 1. Then for n large enough we have 

and 

(2) 
1 

R-fl < -n-('t') 
- 3  

Let A? be a ( R ,  cz)-approximation of M ( A ) ,  that is: fi replaces pi by j i  s.t. Iji-PiI I 
n-Q (and the same for p i )  and therefore Q; by 9; s.t. I i i  - q,l 5 2n-q and Qi+1 - qi 
by qi+1 - q; s.t. 

Suppose now PI ( A ,  R ,  c )  is true, that is: 
l ( i i + l  - ii) - (qi+l - q i ) ]  5 4n-- (3) 

I Pr[A(y,w) = 11 - Pr[A(G,w) = 111 > n-' 

ED; C", w EV EN. Then by the pigeonhole principle (cf. [7])  where y ED, C", 
there exist an i s.t. 1qi+l - q i l  > n-('+'), that is, using (11, 

(4) 
2 

- 3  
- r j i l  2 lq i+I  - q,1 - 4ri-'' > n-'+' - 4n-" > -n-(c+l) 

so fi does not fail and finds such an i. Then for this i we have 

2 -('+I) < [ q i + l  - Gil < Iqi+l - qil + 4n-" < /qi+1 - qiI t i n  - - (c+1)  

3 

Now we have to prove that &f can decide the sign of q;+I - q; by looking at the sign 
ol q i t 1 - + i .  B u t  if  these two quantities were of opposite signs, this would imply, using 
(4) and ( 5 ) :  

and therefore, using (3): 

which contradicts the choice of c2. 

I ( ~ 1 + 1  - i i )  - (qi+1 - qi)l > n-('+') 

4n-c' > n - ( c t ' )  

Now the proof ends as in [i']: it is easy to see that 

and 
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where c denotes the sign of ql+l -9,. Therefore Pr[&f(y;,u') = yi+t] -Pr[fi(Si,w') = 
&+I] is positive, and equals Iq,+l - qil > in-('+*) 2 n-". Hence &(R, n, CI) is true. 
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