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Abstract

Some zero-knowledge interactive proofs (ZKIPs) have divertibility, that is,
evidence of proof 1ssued by a genuine prover, A, can be transferred to plural
verifiers, B and then C, where the intermediate verifier, B, acts as A, with A’s
help, to confound the other verifier C without revealing the relation between the
A-B interaction and the B-C interaction. This property is a serious problem
in practice, e.g. the mafia fraud attack on identification scheme and the multi-
verifier attack against undeniable signatures.

This paper proposes a new concept, security against divertibility, and proves
that Naor’s bit commitment function based on pseudo-random generators is se-
cure against divertibility under the reasonable assumption. Usage of this bit
commitment in ZKX{P can convert a divertible ZKIP to a divertible-free-ZKIP
which is secure against the mafia fraud attack and the multi-verifier attack.

1 Introduction

Zero-knowledge interactive proofs [GMR] are an attractive concept in theory
and in practice [GMW, FS, C]. In zero-knowledge proofs, coin flips of the prover
are essential for zero-knowledgeness of the proof, while coin flips of the verifier
are essential for soundness of the proof.

The usages of randomness has two sides: one positive and the other negative.
On the positive side, the prover’s randomness can be used to transfer some
information in order to achieve positive applications, for example, identity based
key distribution, digital signatures, etc [C, O090]. On the negative side, it can
be used to create a subliminal channel [DGB], where a prover can send an
authenticated message, which contains a hidden message.

The verifier’s randomness can be also used maliciously to realize the mafia
fraud attack on the Fiat-Shamir scheme [DGB] and the multi-verifier attack
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against Chaum’s undeniable signature [DY], where an intermediate B can pass
himself off as the genuine prover 4 to another verifier C, when A proves her
identity or her signature to B, and B conceals any evidence that he used A’s help.
This concept was expressed in the divertible zero knowledge interactive proof
and it has been proven that the commutative random-self reducible (CRSR)
problem satisfies this property [O089)]. It has also been proven that wide classes
of language, NP, have divertible ZKIP under some assumption [BD]. !

Recently, it has been proven that no undeniable signature scheme is secure
against a multi-verifier attack provided that half of the verifiers are “honest (for
their conspiracy)” in a more general setting than the divertible ZKIP, where
the verifiers collaborate with a sub-protocol hidden from the prover, using the
concept of secure function evaluations known as “mental games”[DY]. Though
this negative result is theoretically exciting, there are two problems in practice
(from the attacker’s side). First, their collaboration can be detected by anyone
who observes the transmitted data among users, since the relationship between
the mental game protocol and the undeniable signature protocol can be traced.
Second, if the majority of the verifiers are dishonest, the minority can believe
a false proof by the majority. Therefore, in their protocol based on the mental
game, a malicious verifier cannot be convinced of the correctness of the proof
without believing that the majority of the verifiers are honest.

These problems imply the possibility of constructing a secure undeniable
signature against a multi-verifier attack under reasonable constraints such as
the non-detectivity and the dishonest majority of the verifiers. So, there was an
open problem whether such a secure undeniable signature against a multi-verifier
attack under reasonable constraints exists or not.

In this paper, we solve this problem: we propose a secure undeniable signa-
ture scheme against a multi-verifier attack under a reasonable scenario satisfying
the non-detectivity and the dishonest majority of the verifiers. In this scenario,
the interface between verifiers are based on the basic protocol between the prover
and the verifier, and the relationship among the interactions cannot be traced.
Hereafter we call it the divertible scenario. Note that the detection of abuses is
difficult in this scenario and that this scenario assumes that no verifier is trusted
to be honest by the others (or the majority of the verifiers can be dishonest).
Therefore, this scenario satisfies the non-detectivity and the dishonest majority
of the verifiers.

In order to construct this secure undeniable signature scheme against a
multi-verifier attack, we propose a new concept, secure bit commitment func-
tion against divertibility, and prove that Naor’s bit commitment function [N]
based on pseudo-random generators is secure against divertibility under the rea-
sonable assumption. Implementation of divertible ZKIP using the secure bt
commilment function against divertibility ensures invulnerability against multi-
verifier attacks.

1Though [ISS] tried to construct the divertible zero knowledge interactive proof for IP,
their definition of divertibility was wrong. So the construction of divertidle ZKIP for IP is
still open problem:.
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In other words, we show the way to convert a divertible ZKIP to a divertible-
free-ZKIP by using a secure bit commitment function against divertibility. There-
fore, a divertible ZKIP can be converted to a divertible-free-ZKIP assuming the
existence of a one-way function [N, ILL, H]. Then, any negative side of a divert-
ible ZKIP, such as the mafia fraud attack and the multi-verifier attack, can be
protected by the usage of a secure bit commitment function against divertibility.

Note that a “non-malleable” bit commitment scheme proposed by Dolev,
Dwork and Naor [DDN] can also solve this divertible problem. Although their
scheme has broader applications than ours, since their scenario does not require
the non-detectivity, their scheme is, however, much less efficient than cur solu-
tion. Thus there is a tradeoff between the applicablc scenario and the efficiency.

2 Problems in Divertible Scenario

First we will explain problems in the divertible scenario in this section. We
will define a new security concept in the divertible scenario, and clarify some
properties in the next section.

Recently, new digital signature schemes having the following properties were
proposed based on ZKIP [C, O090]:

(1) Only signer A can prove the validity of a message to any verifier B by using
A’s public key or A’s identity.

(2) Verifier B cannot prove the validity of the message to another verifier C
(non-transitivity).

Though it was hoped that the non-transitivity property was useful in many
applications, for example, undeniable signature is suitable to software distribu-
tion [C], where only paying customers are able to verify the signature of softwarc
supplier with undeniable signature procedure, its weakness was pointed out in
[DY, OOF1].

We will explain the problems in the divertible scenario using Chaum’s unde-
niable signature in more detail.

2.1 Undeniable Signature

Although an undeniable signature is similar to a digital signature in that it
is a number issued by a signer that is related to the signer’s public key and
his message, it cannot be verified without the signer’s cooperation. In order
to check the validity or invalidity of the signature, this scheme consists of two
parts, confirmation and disavowal protocols. Hereafter, we will explain only the
confirmation protocol.

Center generates a large prime number p and selects a primitive element g of
field GF(p) as common iuformation in the system. Signer A generates his secret
key z, and computes y (= ¢ (mod p)). He publishes y as his public key.
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Signer A generates signature s (= m*® (mod p)) corresponding to a message
m from p and his secret key z, and sends (m, s) to verifier B.

Verifier B verifies the validity of signature s for a message m by cooperating
with signer A using the following procedures.

Protocol 1 (Confirmation Protocol)

Step 1: Verifier B generates two random integers a and b, calculates
X =m®-g¢" (mod p)

and sends X with m to signer A.

Step 2: Signer A generates a random integer ¢, computes

Y = X-g¢7 (modp)
Z = Y% (mod p)
and sends (Y, Z) to verifier B.

Step 3: Verifier B sends a and b to signer A.
Step 4: Signer A checks the following equation

X=m® g (mod p).

If the check succeeds, A sends q to verifier B. If the check fails, the
procedure halts.

Step 5: Verifier B checks the following equations

me . gb+q

Y
Zz

(mod p)

(1

a b+q (

sty mod p).

If both checks succeed, B accepts the validity of (m, s). Otherwise, B
does not accept the validity of (m,s).

This protocol satisfies non-transitivity, because it is ZKIP and its view of
communication between a prover and a verifier can be simulated easily. Thus
the view 1s not regarded as evidence of a signature.

2.2 Abuse of Undeniable Signature

We will describe an attack that allows plural verifiers to check the validity of a
signature simultaneously, in which if a malicious person takes part as one verifier,
the non-transitivity of a signature is suspect.

Suppose software supplier A believes that there is only paying verifier By,
but unfortunately B; is malicious. Since B; can convince another verifier B,
of the software’s validity using the following attack, B; can be paid by Ba. As
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a result, By can use the genuine software without paying his own money. Note
that supplier A does not know that there are plural verifiers in this case.

Hereafter, we consider the simple case, where only two verifiers, By and B,
use the protocol. Two verifiers, By and B, can verify the validity of (m,s) in
cooperation with signer A using the following procedures in the confirmation
protocol. Since A and Bj act in the same way as Protocol 1, we will describe
only the procedure of B;.

Praotocol 2
Step 1: Verifier By generates two random integers a and b, calculates
Xi=X, m®- gt (mod p)

and sends X; with m to signer A, where X, is calculated by Bj using
step 1 of Protocol 1.

Step 2: Verifier By calculates
Y, = Yi/(m®.g’) (modp)
Zy Zy/(s* ‘yb) (mod p)

and sends (Y3, Z3) to verifier By, where (Y1, Z;) is calculated by A using
step 2 of Protocol 1.

Step 3: Verifier By checks the following equation

Xy = me . gh? (mod p).

If the check succeeds, By sends a; =a;+a (mod p—1), by = by + 0
(mod p — 1) to signer A, where (ag,b,) are sent by B, at step 3 of
Protocol 1. If the check fails, the procedure halts.

Step 4: Verifier B; checks the following equations receiving ¢ from A

Y1
A

m® . g"* (mod p)
br+q (

il

s

-y mod p).
If both checks succeed, By accepts the validity of (m, s) and sends ¢ to
verifier By. Otherwise, B; does not accept the validity of (m,s) and

sends ¢ to Bs.

Remark
Strictly speaking, the above attack is detectable, since the same value, g, 1s
transferred between A-B; and B;-B,. The typical attacks proposed in [0089,
BD, OOF?2] are based on the divertible property, which is not detectable.
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2.3 Discussion

Why does the above attack succeed? Because plural verifiers can verify the
validity of a signature using the same challenges, X, and the same responses, Y
and Z, simultaneously.

Though we will explain the challenge case, a similar discussion is true for
in the response case. Denote the generation of X as X = f(a,b) = m? . g°
(mod p). Then Xy = X, - f(a,b) = f(az,b:) - f(a,8) = f(ay + a,by + b) holds.
Therefore, B; calculates the value of X1 = X5 - f(a,b) (= f(a1,b1)), where X»
is issued by Ba and (a,b) are generated by Bj, without knowing the values of
a; and b; at Step 1 of Protocol 2, and calculates the values of a; (= az + a)
and by (= by + b) using (a2, bz) issued by B; at Step 3.

The above attack depends on the homomorphism of functions which are
used to generate a challenge, X, by a verifier B, and responses, ¥ and Z, by
a prover A. Recently, it was proven that if probabilistic encryption homomor-
phism exists, then all language in NP have divertible ZKIP bhased on ‘swapping
techniques’ [BD]. Since a public coin type ZKIP is used in their construction,
where the committed bit by a verifier is sent publicly. the homomorphism of the
bit commitment from a verifier also holds.

Therefore 1t 1s important for a protocol designer to provably overcome the
homomorphism of either the challenge generating function or the response gen-
erating function.

Remark
This attack is applicable even if verifiers cannot trust each other. Since B
engages A with a protocol similar to protocol 1, By can trust the result of
Step 4 of protocol 2. Note that the usage of randomness, a and b, by verifier
B, is necessary in order to prevent the conspiracy of false A and Bs, because
the communication between A and B, is simulated easily if B, doesn’t use
randomness (zero-knowledgeness of protocol 1).

2.4 Divertible Scenario and Divertible-freeness

Hereafter, we discuss a ZKIP protocol against a multi-verifier attack under a
reasonable scenario, which we call the divertible scenario, where the interface
between verifiers are based on the basic protocol between the prover and the
verifier and the relationship among the interactions cannot be traced. Note that
the detection of abuses is difficult in this scenario and that this scenario assumes
that no verifier is trusted to be honest by the others (or the majority of the
verifiers can be dishonest). Therefore, this scenario satisfies the non-detectivity
and the dishonest majority of the verifiers.

Moreover, we call a ZKIP divertible-free if the ZKIP is secure against multi-
verifier attacks in the divertible scenario.
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3 Secure Bit Commitment in Divertible Sce-
nario

3.1 Definition of Security

We can counter the attack based on homomorphisin described in the previous
section by using the following concept, secure bit commitment function against
divertibility, to generate the challenges. Intuitively it satisfies the following
property: A committer who doesn’t know the value of @ and & cannot calculate
the value of f(a,b). Remember that B, can calculate the value of f(a;,b;)
without knowing the value of a; and b, at Step 1 of protocol 2 in the above
example.

Definition 3.1 (Secure Bit Commitment Function)

Let Y(z,b) be a bit commitment funclion, where b € {0,1} is a committed
bit and z € {0,1}* is a random string [N]. We say that Y is secure against
divertibility, if in the case where t = O(poly(|V(z,b)|)) > 1, there is no triple
of expected polynomial time probabilistic Turing machines (M, B, X’) such that,
M(yy, ..., u) = Y(z*,b*) holds with non-negligible probability, where y; =
y(l'{,b,') (7. = 1,...,1), b* = B(bl, ,..,bg,yl,...,yt) and z* = A’.’(Il,...,l‘z, Y1,
...» Y1), and in the case where t = 1, for any z (|z| < O(poly(|¥(z,b)|))) there
is no triple (M B, X) such that M(y,,z) = Y(z*,b*) holds with non-necgligible
probability, where y; = Y(z1,b1), b* = B(by,z, ) and z* = X(z,,z,y;). Here
B and X satisfy the following properties in subsection 3.3,

Remark
The reason why the function J is applied to all (z;, b;) is that verifier B; engages
prover A or verifier B;_ with a basic protocol. Note that verifiers, (Bq,..., Bi).

cannot trust each other in the divertible scenario.

Definition 3.2 (Secure Bit Commitment Function for multiple bits)

Let & be a k-bit string, by||bs]l. .. ||be, where || means concatenation. We call
YV a secure bit commitment function for multiple bits 1{)7(5, )= Y, z)] -
||V (bk, zx ), where Y is a secure bit commitment function, and ¥ = 1| ... {Jz&.

3.2 An Application of Secure Bit Commitment Function

Chaum’s scheme becomes secure against multi-verifier attack when verifier B
sends w(= Y(allb,z)) with (X, m) to signer A at Step 1, B sends z with (a,b)
to A at Step 3 and A checks w Z V(aljb, z) at Step 4 during the confirmation
protocol (Protocol 1).

Why 1s this modification secure in the divertible scenario? Let us cousider
the following situation: signer A convinces verifier B of the validity of A’s signa-
ture in the confirmation protocol using the above protocol, and plural verifiers,
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B; (if 1,...,1), try to share the validity of A’s signature through B issuing
yi = Y(a;||b;, 2;) to B.

Assume that verifier B, which is a polynomial time probabilistic Turing ma-
chine, succeeds the multi-verifier attack, that is, B could commit the value w cal-
culating from yi, ..., at Step 1 of Protocol 1, where we denote this function
as M, 1e., w= M(yi,..., ), and could open the values a[{b and z calculating
from ay||by, .. .,a¢||bs, Z1, . .., T, such that w = Y(a|[b, £) al Step 3 of protocol
1, where we denote these functlons as Band X ie. ,allp = (alﬂbl,. o adllbe, v,

e W), T = A(zl,...,xt,yl,...,yt).

Since B is a polynomial time probabilistic Turing machine, the triple (M, B, f)
is so. This is a contradiction of the definition of . Thus the multi-verifier attack
fails if we use a secure bit commitment function, J_/’, in this modification.

More generally, we can prove the following theorem.

Theorem 3.3 (Conversion of divertible ZKIP to divertible-free ZKIP)
Let (A, B) be a divertible ZKIP repeating the following procedure:

step 1: A sends a message ¢’ to B.

step 2: B selects a random bit b € {0,1} and sends it to A.

step 3: A sends a message z to B.

step 4: B checks whether (z',b, z) satisfies a relation.

Case a) If we construct (A, B) using a secure bit commatment function Y as
follows:
step la: B selects a random bit b € {0,1} and a random string z € {0,1}*,
calculates y= Y(z,b) and sends it to A
step 2a: A sends a message &’ to B.
step 3a: B sends the bit b and the string = to A
step 4a: A checks whether y = Y(z,b) holds. If the check succeeds, A sends a
message z to B.
step 5a: B checks whether (z',b, 2) satisfies a relation.

Then (A, B) is a divertible-free ZKIP.

Case b) If we construct (A, B) using a secure bit commitment function Y as
follows:
step 1b: A calculates two random values 75, 37, where 73 corresponds to the
message at step 3 when it receives a bit b at step2, selects two random strmgs
€9, 21 € {0, 1}*, calculates y; = y(:z:,,z.)(z =0,1) and sends them with z' to B.
step 2b: B sends a bit b to A,
step 3b: A sends the message 7y and the string % to B.
step 4b: B checks whether v, = Y(43, %) holds. If the check succeeds, B checks
whether (z',b, z;) satisfies a relation.
Then (A, B) is a divertible-free ZKIP.

Sketch of Proof:
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We will discuss Case a) (¢ > 1) only. The similar discussion holds for Case
a) (t = 1) and Case b).

Assume that (A, B) is not divertible-free, that is, there exists verifier B suc-
ceeds the multi-verifier attack in the divertible scenario, where signer A convinces
verifier B of the validity of 4’s proof using the above protocol, and plural ver-

ifiers, B; (:=1,...,t), try to share the validity of A’s proof through B, where
B; issues y; = Ji(a:,, ;) to B.

B could commit the value y* calculating from y1,...,y: at step 1la, where
we denote this function as M, 1e., ¥* = M(y1,..., %), and could open the
values b* and z* calculating from &;,...,by, and zy,...,z,, such that y*

it n

Y(b*,z*) at step 3a, where we denote these functions as B and X, i.e., b*
Bby,...,b,,y1,...,y) and 2* = X(zy,..., 2,01, ., %) 2

Since Bisa polynomial time probabilistic Turing machine, the triple (M, B, X')
is so. This is a contradiction of the definition of V.

(Q.E.D. Theorem)

3.3 Properties of Functions

We will clarify some properties of X', B introduced in the above definition. The
following properties come from the divertible scenario, where verifiers cannot
trust each other. That is, verifier B; is afraid of the conspiracy of false A and
other verifiers B; (7 # ). So, the values of b* and z" should depend on all b;
and z; components equally.

Properties
1) Bf‘""’b““)'b(‘“’""’b‘ Dby — B(bi, . by bis By, -, be): bijective for
any 1 (1<i< I) We call this the bijective property of B.
2) Xxl‘ GBI Cxy — Xz, ... B(iw1)y Tir T(it1)r -+ T.) bijective
for any ¢ (1 <1 <t). We call this the bljectlve property of &.

Remark

These assumptions imply that (t — 1) verifiers can neither guess the hidden bit,
b;, nor control the value b* in a conspiracy.

4 Naor’s Bit Commitment is Secure against Di-
vertibility

We will discuss the security of the bit commitment function based on Naor's
idea [N].

?Note that our framework, where z* = X{z1,..- r;, Y1,-...y) and b* =
Bby,... b, ya,.. y;) is slightly restricted than the case, where = X({z1,b1),.. ., (ze, bt )
and 6* = B((rl,!n o {x,be)), since y; = V(b)) (i = 1,...,t) hold. So the secunty in

the latter case is an open problem.
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4.1 Naor’s Bit Commitment Function

Let G be a pseudo-random generator, and G;(z) be the i-th bit of the output of
G(z).

Commit stage:
step 1: Verifier B selects a random vector r = (r,...,ra,), where r; € {0,1}
for 1 €1 < 3n, and sends it to committer A.
step 2: A selects a seed x € {0,1}" and sends to B the vector y = (dy, ..., d3,)

where
di = G;(x) if T = 0
r Q(:r)@b if7‘i~_—1

and b € {0,1} is the bit A is committed to, where & denotes the exclusive-or
operation.

Reveal stage:
A sends z and B verifies that for all 1 < i < 3n

if r; =0 then d; < Ci(z)
if r; =1 then d; = G;(x) 3 b

Notation: Hereafter, we denote y = Y<">(z,b) = G®")(z)@br, where G
means the first 3n-bits output of G(z).

Assumption 4.1 There exists a pseudo-random generator G®*) : {0,1}" —
{0,1)3" satisfying the following property: for any polynomial time relation R :
{0,1}" x {0,1}* — {0,1}, there is no expected polynomial time probabilistic
Turing machine D : {0,1}3" x {0,1}*® — {0, 1} such that D(g,g") = R(z,z")
holds with non-negligible probability, where g = GG™)(z) and ¢’ = Gm)(z'). We
call this assumption the independence of G.

Remark
Generally PSRGs do not always satisfy this assumption. There are two directions
to avoid this assumption, which are open problems:

(1) The construction of PSRG which satisfies the independence of PSRG: Note
that it was proven that if there exists a one-way function, then there ex-
ists a pseudo-random generator (PSRG) [ILL, H]. So, there might be some
construction technique based on a one-way function.

(2) Clarify the condition of R which is sufficient for the main theorem: The
relation R used in the proof of main theorem is defined using a function A'.
If we could prove the sufficient condition of R for the theorem based on the
properties of X, the above assumption is avoidable. >

3We conjecture that a sufficient condition of R as follows: for any z, #{z'|R(z,z') =
0}/#{z'} is negligible, where #S means the number of elements of a set S.
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4.2 Main Theorem

Theorem 4.2 If there exists a pseudo-random generator G, then Naor’s bit
commitment function is secure against divertibility, assuming the independence
of G and the bijective properties of B and X, where { = O(poly(|¥(z,b){)). The
random vector r is independently selected for each bit commitment in the case
oft = 1.

Sketch of Proof:

We will discuss the case where ¢ > 2 at first, then discuss the case where
=1.

Caseof t > 2

The proof is by contradiction. Hereafter we prove the situation wlhere the
random vector r is fixed. Since a scheme with the independently selected vector
7 is more intractable than the one with a fixed r, this restriction to » component
1s not considered essential.

Assume that expected polynomial time probabilistic Turing machines, AM(y1,
ca ), Y (5.8 (1< <t), X2y, 20,0 - u) and Blby, ... be
-»Yt) exist such that M(y;, ..., u) = Y<">(z",b") holds with non-negligible

probability(e), where y; = V<72 (z;,b;), 2* = X{(zy,..., &, y1, .--, ), and
b* = B(bl,...,bt,yl, ~-‘,y1)-

We will consider two cases with regard to the output of M:

Case 1) The output y= of M(yy,...,y;) is coincident with some y, or y, o7,
where 1 < o < t, (hereafter we denote the probability that Case 1) occurs
under the existence of (M, Y, X, B) as §.) and

Case 2) All other cases than Case 1).

We will construct an expected polynomial time probabilistic algorithm A
which guesses b from the input y (= 63" (x) @ br), where b is unknown to A, for
Case 1) using (M, Y, X, B). This is a contradiction for the difficulty of guessing
a committed bit in Naor’s protocol, when § is non-negligible.

For Case 2), we will construct an expected polynomial time probabilistic
algorithm D, which, given g and g, decides whether some relation, R(z, :z:’),
holds or not using M, where R is defined with X, y = ¢©®™)(z) and ¢’ =
9(3")( ’). This is a contradiction of the independence of g, when 6 is not non-
negligible.

Case 1)

At first, we will construct A, whose input is y ( G'3)(z) ® br) and output
is a guessed bit of b, as follows:

[Algorithm A]
Fori=1tot do
Repeat N times
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Step 1: Put y; = y.
Step 2: Select z; € {0,1}" and b; € {0,1} randomly (j # 7).
Step 3: Calculate y;5, = Q(J”J(rj) @ bir (J #1) and

y* = M(7) where F=(U1s,, s Yio1b_y Yir Yitlbgrs - Ytb,)-

Step 4: If M succeeds, that is, therc exist o € {1,...,i—1,i+1,...,t} and B €
{0, 1} such that y* = yus, then output ¥ vshlch satlsﬁes B(bl, ey b,
b, biv1, ..., b, §) = 3 as a guessed bit of b such that y = (3”)(1’) @ br
and halt. Otherw1se go to the next iteration.

End repeat

End do [end of Algorithm A]

Claim 1: Algorithm A is polynomial time computable, and it can guess the
value of bit b such that y = G®™)(z) & br with probability significantly better
than %

(Proof of Claim 1)

When there exist (M, )Y, X, B), y" = g(3")(jz')e~5(b1, b, b by, by,
§)r always holds from their definitions, where y = G®")(z;) & br and z* =
X(l‘l, cey i1, Tiy Tig, .- .,.l‘g,g').

Generally, the probability that z and z’ (z £ z’) exist and satisfy ¢0*)(z") —
5(3”)(1‘) & ris at most 277 since r € {0, 1}°" is selected randomly, and both z
and z’ are elements of {0,1}". On the other hand, B(by,...,b;—1,0,biy1,---,b:,4)

;!: B(by,...,b;i-1.1,b;41,...,b:, ¥) holds (Property 1)). So the probability that
Y = Yoo = Yor1 18 at most 27", Therefore, if y* = y,p holds, then z* = z,
and b satisfies B(b1,...,b;—1,b,bi11,...,b;, %) = § with overwhelming probabil-

ity (> 1 - 2,,). Let us call the case, where M finds y* = y.s including the
case where @ = i at Step 4, Case 1), and denote the probability that Case 1)
occurs under the existence of (M, Y, X, B) as é. In the case where o = ¢, since
we don’t know the value of 3, Step 4 does not decide the value of b. Since the
probability that o = ¢ holds at Step 4 is 1 2, 80 the probablhty A outputs b is
(1 — 1)é¢. Note that there is an error probability at most 5% in the output of b
at Step 4.

Since we assume that (M, Y, X, B) exist with non-negligible probability(e),
the algorithm A4 can guess the value of bit b such that y = G©3")(z) & br with
success probability significantly better than % if 6 is non-negligible. This is
because for all sufficiently large n,

ProblA(y) =]
= 1 — Prob[A fails at all round]
= 1 — {Prob[A fails at round 1]}*
> 1—{(1=¢€)+(1—8)e+ 1o+ (1 — L)se}™
>1—{1-(1- )6}

-1
—1l-—e (N = = 2)65)
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where N is selected as O((—tjlﬁs—s) such that this probability is significantly better
than %.

Note that A(y) is polynomial time computable, since t = O(poly(]Y(z,b)]))
and N = O(-(-t—_—lg—)é—e), where both € and 4§ are non-negligible probabilities.

{q.e.d. Claim 1)

Remark

1) If the bijective property of B does not hold, then it might hold that B(é;, ...,
biz1, O,bixy, ... b, 7)) = B(by, ..., bic1, 1, bigr, ..., b, %) = B or B. Here the
value of b is not decided uniquely or there is no value of & that satisfies this
relation.

2) We can not guess the value of b given in both Case 2) and o = ¢, where
Y # Yop, thatis, 2" # 2z, (e € {1,...,4—1,i41,...,t} in each round ¢). Thus,
the following discussion is necessary for Case 2}, where § is not non-negligible.

Case 2)
Let denote Ry, o; i zigr,ezq(, ") = 0iff X2y, .. 2, 2, 2040, 21,

37) =z" hOldSi where 17: (ylbll o Yimab,_ 0 Yivgs yi+1b.+1 yoeoes ,ytb,)-
Next we will construct D and the relation Ry, z,_; ¢4, 2., OB input of

g (= GB®™M(z)) and ¢* (= GB®M(z*)), where = and «* are not known to D, as
follows: A

[Algorithm D]
Fori=1totdo
Repeat N times

Step 1: Put y; — g¢.
Step 2: Select b; € {0,1}, z; € {0,1}" and b; € {0, 1} randomly (5 # 1).
Step 3: Calculate yip, = i @ b, yjn; = GO (z;Y @ b;r (j # 1) and

y* = M(if) where g: (ylbu*")yi—lb.—l)yibi)yi+lb.’+x)"'7ytb¢)-
Step 4: If the following equation holds, then output 0. Otherwise output 1.

y* - g* @B(bla"'lbi-11bi|bi+1i'"ab'hg')r

End repeat
End do
[end of Algorithm D]
We will prove that D(g,9") = Re,,..zicy,ziga,...z0,5(%, 2°) holds with non-

negligible probability, where g (= ¢ (x)) and ¢* (= GC»)(z*)).
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Claim 2: If there exist (M, Y, &, B}, Rz, . z: ) 2041,.,2,7(%, ") = O implies
D(g,g’) = 0, where g = G®*Xz) and ¢’ = GC)(z').
(Proof of Claim 2)

By the definition of R, Rz, . 2., zi4r,.20g(Z,2') = Omeans &’ = X(z,,. ..,
Tio1,Z,Titl, ---, %, ). The existence of (M, Y, X, B) implies that

y‘ = g(3n)(xl) 87 B(bl) ce 76‘7 3}')7'.

Since Step 4 of algorithm D holds, D(g,¢’} = 0 holds, where ¢ = G{3*)(z) and

L (CLY TP
g =Gn() (q.e.d. Claim 2)

Claim 3: If there exist (M, Y, X, B), D(g,¢"*) = 0 implies
Riay,izics zigrynzogl@ 20) = 0, where g = GBr)(z) and ¢* = GBM)(z*) with
overwhelming probability.
(Proof of Claim 3)
By the definition of D, D(g,¢"*) = 0 means

y* = g* @B(bl,.--,bi—l,bigbi-{-l,---1bt,y—7r-

The existense of (M, ), X', B) implies that
y* =GO () @ B(by,... b, P)r,

where x is defined as ¢ = G®®)(z) and 2’ = X(z,...,2i_1,%, Tig1, .-, 0, §)-

These equations imply g* = G37)(2') with overwhelming probability. The
reason is as follows: Generally, the probability that z and 2’ (z # 2') satisfy
GG’y = GB™)(z) is at most 273", since pseudo-random generators pass the
next bit test [Y].

Since z* satisfies g* = G®™)(2*), the probability that z* # 2’ holds is negli-
gible (< 5%;) Therefore, 2* =z’ = X(21,...,%i-1, %, Tity,. .., L1, §), that is,
Ry, zios,@ips, sz, (€, %) = 0 with overwhelming probability (> 1 — 5ix).

(q.e.d. Claim 3)

It is clear that if there exist (M, Y, X, B), then D(g,¢*) =
Reryzic1,zig,ze,i(@,2*) holds by combining Claim 2 and Claim 3 with
overwhelming probability (7). Since we assume that (M, Y, X', B) exist with non-
negligible probability (¢) and Case 2) occurs with probability (1-6), D(g1,¢*) =
Retiticr, izl T, ) holds with uon-negligible probability (ye(1 — 8)),
where § is not non-negligible. This is a contradiction of the independence of G.
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Caseof t=1

Finally we will prove the case where t = 1. The proofis also by contradiction.
Differently from the case that t > 1, in this case we assume an additional condi-
tion that random vector r for Naor’s bit commitment scheme is independently
selected for each bit commitment.

Assume that there exists zp € {0,1}" and expected polynomial time prob-
abilistic Turing machines, M, & and B, such that M(y;,zq) = y<T > (z*,b")
holds with non-negligible probability(e), where y; = Y<"1>(z1,b1), " = X (2,
-Z'D)yl) and 6* = B(bl,:ﬂ(),yl).

We will also consider two cases with regard to the output of M:

Case 1) The output y* of M(y,, o) is coincident with y; or y; @ r*, and

Case 2) All other cases than Case 1).

We can construct an expected polynomial time probabilistic algorithm A’
which guesses b from input y (= G'®)(z) @ br). The algorithm A’ is as follows:

Step 1: Determine zp and calculate y* = M(y, zy).

Step 2: Determine b* by checking whether y* is coincident with y or y @ r”.
Then determine b by using &* = B(b, ¢, y*).

Similarly to Claim 1, we can show that algorithm A’ can guess b correctly
with non-negligible probability. This is a contradiction for the difficulty of guess-
ing a committed bit in Naor’s protocol.

For Case 2), we can construct an expected polynomial time probabilistic
algorithm D', which, given g and g’, decides whether some relation, R(z,z’),
holds or not using M, where R is defined with X, ¢ = ¢C®)(z) and ¢' =
G®)(z’). Algorithm D’ can be constructed in a manner similar to algorithm
D, and it can be shown similarly that 7 works correctly with nou-negligible
probability. Hence, this is a contradiction of the independence of G.

These results can be easily extended to any multiple bit case (£ > 1), because
if a mu]tiple bit relation B holds such that b* = B(El,l; #,%2), then the first
elements of b" b and bg satlsfy a relation with the parameters of the remaining
elements of b* bl, bz, #1 and . Therefore, the result that there is no relation

among single blt variables implies that there is no relation among multiple bit
variables.

(Q.E.D. Theorem)

5 Conclusion and Remarks

This paper has proposed a new security concept, the secure bif commitment func-
tion against divertibility. We has shown that Naor’s bit commitment function
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based on a pseudo-random generator satisfies this property under the indepen-
dence of PSRG. Implementation of divertible ZKIP using the secure bit commit-
ment function against divertibulity ensures invulnerability against multi-verifier
attacks in the diverfible scenario where the non-detectivily and the dishonest
majority of the verifiers are satisfied. Thus, any negative attributes of a divert-
ible ZKIP, such as the mafia fraud attack and the multi-verifier attack, can be
removed by using the secure bit commitment function against divertibility.

Note that this conversion from a divertible ZKIP to a divertible-free-ZKIP
by using the secure bit commitment function against divertibility is also effective
against the meddler atiack described in [DY] since the intermediate node uses
the homomorphic property of challenge generating function.

However, there are several open problems:

(1) Security in a more general situation, e.g. where z* = X ((z1,b1),..., (21, b)),
and b* = B({(z1,b1),...,(z¢, by)).

(2) The construction of PSRG which satisfies the independence of PSRG.

(3) Clarify the condition of R which is sufficient for the main theorem.
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