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Abstract 

Some zero-knowledge interactive proofs (Zh ' lPs )  have divertibility, that is, 
evidence of proof' issued by a genuine prover, A ,  can be transferred to plural 
verifiers, B and then C, where the intermediate verifier, B ,  acts as A ,  with A's 
help, to  confound the other verifier C without revealing the relation between the 
A-B interaction and the B-C interaction. This property is a serious problem 
in practice, e.g.  the mafia. fraud attack on identification scheme and the niulti- 
verifier attack against undeniable signatures. 

This paper proposes a new concept, security against divcrtibility , and proves 
that Naor's bit commitment function based on pseuderandom generators is se- 
cure against divertibility under the reasonable assumption. Usage of this bit 
commitment in Z I i l P  can convert a diuertible ZKIP to a dauertible-free-ZIi'IP 
which is secure against the mafia fraud attack and the multi-verifier attack. 

1 Introduction 
Zero-knowledge interactive proofs [GMR] are an attractive concept in theory 
and in practice [GMW, FS, C]. In zero-knowledge proofs, coin flips of the prover 
are essential for zero-knowledgeness of the proof, while coin flips of the verifier 
are essential for soundness of the proof. 

The usages of randonmess has two sides: one positive and the other negative. 
On the positive side, the prover's randomness can be used to transfer some 
informatmion in order to achieve positive applications, fur example, identity based 
key distribution, digital signatures, etc [C, 00901. On the negative side, it can 
be used to  create a subliminal channel [DGB], where a prover can send an 
authenticated message, which contains a hidden message. 

The verifier's randomness can be also used maliciously to  realize the mnfin 
fraud attack on the Fiat-Shamir scheme [DGB] and the multi-verzfier a t tack  
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against Chaum’s undeniable signature [DY], where an intermediate B can pass 
himself off as the genuine prover A to another verifier C, when A proves her 
identity or her signature to B ,  and B conceals any evidence that he used A’s help. 
This concept was expressed in the dzvertzble zero knowledge znteractrve proof 
and it has been proven that the commutative random-self reducible (CRSR) 
problem satisfies this property [0089] .  It has also been proven that wide classes 
of language, N P ,  have devertzble ZKIP under some assumption [BD]. 

Recently, it has been proven that no undeniable signature scheme is secure 
against a multi-verifier attack provided that half of the verifiers are “honest (for 
their conspiracy)” in a more general setting than the divertible ZKIP, where 
the verifiers collaborate with a sub-protocol hidden from the prover, using the 
concept of secure function evaluations known as “mental games”[DY]. Though 
this negative result is theoretically exciting, there are two problems in practice 
(from the attacker’s side). First, their collaboration can be detected by anyone 
who observes the transmitted data  among users, since the relationship between 
the mental game protocol and the undeniable signature protocol can be traced. 
Second, if the majority of the verifiers are dishonest, the minority can believe 
a false proof by the majority. Therefore, in their protocol based on the mental 
game, a malicious verifier cannot be convinced of the correctness of the proof 
without believing that the majority of the verifiers are honest. 

These problems imply the possibility of constructing a secure undeniable 
signature against a multi-verifier attack under reasonable constrahts such as 
the non-detectivity and the dishonest majority of the verifiers. So, there was an 
open problem whether such a secure undeniable signature against a multi-verifier 
attack under reasonable constraints exists or not. 

In this paper, we solve this problem: we propose a secure undeniable signa- 
ture scheme against a multi-verifier attack under a reasonable scenario satisfying 
the non-detectivity and the dishonest majority of the verifiers. In this scenario, 
the interface between verifiers are based on the basic protocol betweeri the prover 
and the verifier, and the relationship among the interactions cannot be traced. 
Hereafter we call it the ditredible scenarzo. Note that the detection of abuses is 
difficult in this scenario and that this scenario assumes that no verifier is trusted 
to be honest by the others (or t,hP majority of the verifiers can be dishonest). 
Therefore, this scenario satisfies the non-detectivity and the dishonest majority 
of the verifiers. 

In order to  construct this secure undeniable signature scheme against a 
multi-verifier attack, we propose a new concept, secure bit commztment func- 
tzon agaznsi diverizbzlity, and prove that Naor’s bit commitment function [N] 
based on pseuderandom generators is secure against divertibility under the rea- 
sonable assumption. Implementation of dzverizble Zh‘IP using hlie secure bzt 
commitment function agaznst diverlibzlily ensures invulnerability against multi- 
verifier attacks. 

’Though [ISS] tried to construct the divertidle zero knowledge interactwe proof for IP, 
their delinition of divertibility was wrong. So the construction of d iver f ib l e  Z K P  for IF‘ is 
still open problem. 
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In other words, we show the way to convert a dzvertzble Z I i IP  to  a drvertzble- 
free-ZKlP by using a secure bit, commitment function against divertibility. There- 
fore, a divertible ZKIP tan be converted to a divertible-free-ZKIP assuming the 
existence of a one-way function [N, ILL,  HI. Then, any negative side of a divert- 
ible ZKIP, such as the mafia fraud attack and the multi-verifier attack, can be 
protected by the usage of a secure bit commitment function against divertibilitr 

Note that  a “[ion-malleable” bit commitment scheme proposed by Dolev, 
Dwork and Naor [DDN] can also solve this divertible problem. Although their 
scheme has broader applications than ours, since their scenario does not require 
the non-detectivity, their scheme is, however, much less efficient than our solu- 
tion. Thus there is a tradeoff hetween the applicablc scenario and the efficiency. 

2 Problems in Divertible Scenario 
First wr will explain problems in the divertible scenario in this sect,ion. We 
will define a new security concept in the divertible scenario, and cla.rify some 
properties in the next section. 

Recently, new digital signature schemes having the following properties were 
proposed based on ZKIP [C, 00901:  

(1) Only signer A can prove the validity of a message to  any verifier B by using 
A’s public key or A’s idcntity. 

(2) Verifier B cannot prove the validity of the message to another verifier C 
(non-transitivity). 

Though it, was hoped that the non-transitivity property w a s  useful in many 
applications, for example, undeniable signature is suitable to  software distribu- 
tion [C],  where only paying customers are able to verify the signaturc of softwarc 
supplier with undeniable signature procedure, its weakness was pointed ou t  in  
[DY, OOFl]. 

We will explain the problems in the divertible scenario using Chaum’s unde- 
niable signature in more detail. 

2.1 Undeniable Signature 
Although an undeniable signature is similar to a digital signature in that it 
is a number issued by a signer that is related to  the signer’s public key and 
his message, it cannot be verified without the signer’s cooperation. In order 
to  check the validity or invalidity of the signature, this scheme consists of two 
parts, confirmation and disavowal protocols. Hereafter, we will explain only the 
confir mation protocol, 

Center generates a large prime number p and selects a primitive element g of 
field GF(p) as common inrvrrnation in the system. Signer A generates his secret 
key t, and computes y (= g x  (mod p)). He publishes y as his public key. 
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Signer A generates signature s (= rn' (mod p ) )  corresponding to a message 

Verifier B verifies the validity of signature s for a message r n  by cooperating 
m from p and his secret key x, and sends ( m ,  s) to  verifier B .  

with signer A using the following procedures. 

Protocol 1 (Confirmation Protocol) 

Step 1: Verifier B generates two random integers a and b ,  calculates 

X = m" . y b  (mod pj 

and sends X with m. t,n signer A .  
Step 2: Signer A generates a random integer q ,  computes 

Y = X . g q  (mod p )  

2 = Y" ( m o d p )  

and sends (Y1 2 )  to verifier B .  
Step 3: Verifier B sends a and b to signer A .  
Step 4: Signer A checks the following equation 

X 2 ma . g b  (mod p ) .  

If the check succeeds, A sends q to verifier B. If the check fails, the 
procedure halts. 

Step 5: Verifier B checks the following equations 

Y A ma . g b S q  (mod p )  

2 sa . y b + q  (mod p ) .  

If both checks succeed, B accepts the validity of (m, s). Otherwise, B 
does not accept the validity of ( m , ~ ) .  

This protocol satisfies non-transitivity, because it is ZKIP  and its view of 
communication between a prover and a verifier can be simulated easily. Thus 
the view is not regarded as evidence of a signature. 

2.2 Abuse of Undeniable Signature 

We will describe a n  attack tha t  allows plural verifiers to check the validit,y of a 
signature simultaneously, in which if a malicious person takes part as one verifier, 
the non-transitivity of a signature is suspect. 

Suppose software supplier A believes that there is only paying verifier B1, 
but unfortunately B1 is malicious. Since B1 can convince another verifier B2 
of the software's validity using the following attack, B1 can be paid by B'. AS 
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a result, B1 can use the genuine software without paying his own money. Note 
that  supplier A does not know that there are plural verifiers in this case. 

Hereafter, we consider the simple case, where only two verifiers, B1 and Bz, 
use the protocol. Two verifiers, B1 and B2, can verify the validity of ( r n , ~ )  in 
cooperation with signer A using the following procedures in the confirmation 
protocol. Since A and BZ act in the same way as Protocol 1, we will describe 
only the procedure of B1. 

Protocol 2 

Step 1: Verifier B1 generates two random integers a and b ,  calculates 

X1 = XZ m a .  g b  (mod p )  

and sends XI with m to signer A ,  where Xz is calculated by B2 using 
step 1 of Protocol 1. 

Step 2: Verifier B1 calculates 

Y2 = Yl / (m"  . g 4 )  (mod p )  

2 2  = Z l / ( s a .  yb) (mod p )  

and sends (Yz, 2 2 )  to  verifier B2, where (Y1,Zl) is calculated by A using 
step 2 of Protocol 1. 

Step 3: Verifier 81 checks the following equation 

X2 maa . g b 2  (mod p ) .  

If the check succeeds, B1 sends a1 = a2 + a (mod p - I), bl = b? + b 
(mod p - 1) to  signer A ,  where ( a , , b z )  are sent by B2 at step 3 of 
Protocol 1. If the check fails, the procedure halts. 

Step 4: Verifier B1 checks the following equations receiving q from A 

YI &. mal . g b L t 9  (mod p )  
? 

Z1 = . (mod P). 

If both checks succeed, B1 accepts the validity of (m, s )  and sends q to 
verifier B2. Otherwise, B1 does not accept the validity of ( r n , ~ )  and 
sends q to B2, 

Remark 
Strictly speaking, the above attack is detectable, since the same value, q ,  is 
transferred between A-81 and B 1 - 8 ~ .  The typical attacks proposed in [0089,  
BD, 00F2] are based on the divertible property. which is not detectable. 
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2.3 Discussion 
Why does the above attack succeed? Because plural verifiers can verify the 
validity of a signature using the same challenges, X, and the  same responses, Y 
and 2, simultaneously. 

Though we will explain the challenge case, a similar discussion is true for 
in the response case. Denote the generation of X as  X = f(a,b) = ma . g 
(mod p ) .  Then XI = Xz . f(a,b) = f(a2,bz) . f(a,b) = f(u2 + a,b2 + b )  holds. 
Therefore, B1 calculates the value of XI = X2 . j ( a ,  b) (= f(a1, bl)), where X z  
is issued by B2 arid ( a , b )  are generated by B1, without knowing the values of 
al and bl a t  Step 1 of Protocol 2,  and calculates the values of a1 (= a2 + u )  
and bl (= b2 + b)  using (u2, b2) issued by Bz at Step 3. 

The above attack depends on the homomorphism of functions which are 
used to generate a challenge, X,  by a verifier B ,  and responses, Y and Z ,  by 
a prover A .  Recently, it was proven that if probabilistic encryption hornomor- 
phism exists, then all language in NP have divertihlp ZKIP hased on ‘swapping 
techniques’ [BD]. Since a pvblic coin type ZIi lP is used in their construction, 
where the committed bit by a verifier is sent publiclq-. the homomorphism of the 
bit commitment from a verifier also holds. 

Therefore i t  is important for a protocol designer to provably overcome the 
homomorphism of either the challenge generating function or the response gen- 
erating function. 

b 

Remark 
This attack is applicable even if verifiers cannot trust each other. Since B1 
engages A with a protocol similar to protocol 1. B1 can trust the result of 
Step 4 of protocol 2 .  Note that the usage of raridurriness, a arid b,  by verifier 
B1 is necessary in order to prevent the conspiracy of false A and B z ,  because 
the communication between A and B2 is simulated easily if B1 doesn’t use 
randomness (zero-knowledgeness of protocol 1). 

2.4 

Hereafter, we discuss a ZKZP protocol against a multi-verifier attack under a 
reasonable scenario, which we call the divertible scenario,  where the interface 
between verifiers are based on the basic protocol between the prover and the 
verifier and the relationship among the interactions cannot be traced. Note that 
the detection of abuses is difficult in this scenario and that this scenario assumes 
that no verifier is trusted to be honest by the others (or the majority of the 
verifiers can be dishonest). Therefore, this scenario satisfies the non-detectivity 
and the dishonest majority of the vcrificrs. 

Moreover, we call a ZKIP divertibie-free if the ZKIP is secure against multi- 
verifier attacks in the divertible scenario. 

Divertible Scenario and Divert ible-freeness 
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3 Secure Bit Commitment in Divertible Sce- 
nario 

3.1 Definition of Security 

We can counter the attack based on homomorphism described in the previnus 
section by using the following concept, secure bzt  commztment fanc fzon  agaznst 
dzveriahlzly,  to generate the challenges. Intuitively it satisfies the following 
property: A committer who doesn’t know the value of a and b cannot calculatc 
the value of f ( a , b ) .  Remember that R1 can calculate the value of f(a,,b,) 
without knowing the value of n l  and bl at Step 1 of pro tocol  2 in the above 
example. 

Definition 3.1 (Secure Bit Cotnmitmcnt Function) 
Let Y ( z , b )  be a 6il commitment function, where b E {0,1} is a conirnitted 
bit and z E ( 0 ,  I}* is a random string [N]. We say that Y is securc agninst 
divertibility, if in the case where t = O(poly(Jy(z,b)])) > 1, there is no triple 
of expected polynomial time probabilistic Turing machines ( M ,  B, X) such that, 
M(y1 , . , . , y t )  = Y(z*,  b’) holds with non-negligible probability, where yi = 
y(z;,6i) ( i  = 1 ) . . .  , t ) ,  b* = B ( b l , . .  . , b t ; y ~ ,  . . . ,  yt) and x* = K ( z 1 ,  . . . ,  rt, y l ,  
. . . , yt), and in the case where 1 = 1, for any 2 (1x1 5 O(poly((Y(z,6)1))) there 
is no triple (MI B, X )  such that M(yl , x) = Y(z*, h*)  holds with non-negligible 
probability, where y1 = Y(zll b l ) ,  b* = 13(61,z, y l )  and z* = X ( z l )  z, yl). Here 
L3 and X satisfy the following properties in subsec t ion  3.3. 

Remark 
The reason why the €unct!ion y is applied to  all (xi) 6 i )  is that verifier Bj engages 
prover A or verifier Bibl with a basic protocol. Note that verifiers, (B1, .  . . , Bt), 
cannot trust  each other in the divertible scenario. 

Definition 3.2 (Secure Bit Commitment Function for multiple b i t s )  
Let be a &bit string, blll6211. . . I l 6 k ,  where I( means concatenation. We call 
y’ a secure bit  c o n m i ~ w e n t  function for multiple bits if y(6,.’) = Y(b l  , z1)11 . . . 

I I Y ( b k l  zck), where Y is it secure bit commitment function, and 3c’= zl)l . . . [ J z k .  

3.2 

Chaum’s scheme becomes secure against multi-verifier attack when verifier B 
sends w ( =  P(allb,z)) with (X,m) to signer A at Step 1, B sends z with ( a , b )  
to A at Step 3 and A checks w A $(allb, z) at Step 4 during the confirmation 
protocol (Protocol I). 

Why is this modification secure in the divertihle scenario? Let us corisider 
the following situation: signer A convinces verifier B of the validity of A’s signa- 
ture in the confirmation protocol using the above protocol, and plural verifiers, 

An Application of Secure Bit Commitment Function 
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Bi (i  = 1,. . . , t ) l  try to share the validity of A's signature through B issuing 
yi = $(ai[ lb i ,x i )  t o  B.  

Assume that  verifier B ,  which is a polynomial time probabilistic Turing ma- 
chine, succeeds the multi-verifier attack, that  is, B could commit the value w cal- 
culating from y1, . . . , yt at Step l of Protocol l ,  where we denote this function 
as M ,  i.e., w = M ( y 1 , .  . . , yt), and could open the values al[b and 1: calculating 
from a1 I J b l  . . . , at I Ibt , x1 . . . , zt such that w = ( b ,  x) a l  Step 3 of protocol 
1, wherewedenote thesefunct ionsasgandz , i . e . ,  4 a lJb= ~ ( ~ ( a l ( ( b l ,  . . . ,  a t J l b l , y l ,  
" ' I  Y t ) ,  x =  K ( z l r . . . , X t , Y 1 , . . . , y t ) .  

Since B is a polynomial time probabilistic Turing machine, the triple (MI a', 2) 
is so. This is a cvrilradictiori of Lhe definition of y'. Thus the multi-verifier attack 
fails if we use a secure bit commitment function, 3, in this modification. 

More generally, we can prove the following theorem. 

Theorem 3.3 (Conversion of divertible ZKIP to divertible-free ZKIP) 
Let (A ,  R )  be a divertible ZICIP repeating the following procedure: 
step 1: A sends a message x' to B .  
step 2: B selects a random bit b E {0,1} and sends it to A .  
step 3: A sends a message z to B. 
step 4: B checks whether (zll b ,  z )  satisfies a relation. 

Case a) If we construct (A, B) using a secure bzt commztmenl funclzon Y as 
follows: 
step la: B" selects a random bit b E ( 0 , l )  and a random string I E (0, I}", 
calculates y = y(zl b )  and sends it to A. 
step 2a: 2 sends a message x' to B. 
step 3a: B - sends the bit b and the string x to 2. 
step 4a: A checks whether y = y ( z ,  b )  holds. If the check succeeds, 2 sends a 
message z to B .  
step 5a: 
Then (2,.6) is a divertible-free ZKIP. 

- 
checks whether (z', 6 ,  2 )  satisfies a relation. 

4 

Case b) If we construct (A,  B )  using a secure bit commitment func t ion  Y as 
follows: 
step lb: A calculates two random values z;, ii, where z: corresponds to the 
message z at step 3 when it r e c e e s  a bit b at step2, selects two random strings 
x;, x'; E (0, l}*, calculates = y ( 5 ,  <)(i = O , 1 )  and sends them with x' to B.  
step 2b: B sends a bit b to A. 
step 3b: A sends the message 6 and the string x; to B. 
step 4b: B checks whether y'b = y(x2 ,g)  ho[ds. If the check succeeds, 8 checks 
whether ( z ' ,b ,  6 )  satisfies a relation. 
Then (A,  B) is a diveriable-free ZKIP. 

Sketch of Proof: 
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We will discuss Case a) (t > 1) only. The similar discussion holds for Case 
a) ( t  = 1) and Case b). 

Assume that (A, B) is not dzverlable-free, that, is, there exists verifier 5 suc- 
ceeds the multi-verifier attack in the divertible scenario, where signer 2 convinces 
verifier - 5 of the validity of 2 's  proof using the above protocol, and plural ver- 
ifiers, B, ( i  = 1, .  . . , t ) ,  t ry  t o  share tlhe validity of Al's proof through g, where 
B,  issues y, = Y ( Z ,  , b,) to B.  

, yt at step la, where 
we denote this function as M,  i.e., y* = M(y1 , .  . , y t ) ,  and could open the 
values b* and z* calculating from b l , .  . . , b t ,  and 21,. . . , z t r  such that y* = 
y(b*, z') at step 3n, where we deriote these functions as t3 and X ,  i.e ~ b' = 

- 
5 could commit the value y* calculating from y1, 

2 B(bl  i . . . j  61 1 YI 7 . . . > yt ) and t* = X( X I  1 , . > xt  7 YI 1 . . I yt). 
Since 5 is a polynomial time probabilistic Turing machine, the triple ( M ,  0, X )  

is so This is a contradiction of the definition of Y .  
(Q.E.D. Theorem) 

3.3 Properties of Functions 
We will clarify some properties of X ,  B introduced in the above definition. The 
following properties come from the divertible scenario, where verifiers cannot 
trust each other. That is, verifier Bi is afraid of the conspiracy of false A and 
other verifiers Nj ( j  # i). So, the values of 6' and x* should depend on all bi 
and xi components equally. 

Properties 
, . . . , b ( ; - ~ ) , ~ ( , + , ) , . . , , ~ ~  

1) 0; 
any i (1 < i < t . We call this the bijective property of 8. 
2) x,xl 
for any i (1 _< i 5 t ) .  We call this the bijective property of 2'. 

These assumptions imply that ( t  - 1) verifiers can neither guess the hidden bit, 
b i ,  nor control the value b" in a conspiracy. 

: bi -+ B ( b l , .  . . , b(i- l ) ,  b i ,  b ( * + , ) ,  , . . , 6 t ) :  bijective for 

: zi --+ X ( r l ,  . . . , Z C ( ~ - ~ ) ,  zg, z ( ~ + ~ ) ,  . . . , z t ) :  bijective 

Remark 

4 Naor's Bit Commitment is Secure against Di- 
vert ibility 

We will discuss the security of' the bit commitment function based on Naor's 
idea [N]. 

*Note that our framework, where z* = X ( q  ,..., z t ,g1 ,  ..., yt) and b' = 
B(b1,. . . ~ bt,y1,. . . , y t ) ,  is slightly restricted than tlie case, where z* = X((z1, b l ) ,  . . , , ( z t , b t ) )  

and b' = B((r1, bl), . . . , ( r t , b t ) ) ,  since y, = y(z,, b , )  (i = 1 , .  . . , t )  hold. So the security in 
the latter caSe is an open problem. 
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4.1 Naor's Bit Commitment Function 

G ( 4 .  
Let 9 be a pseudo-random generator, and G,(x) be the i-th bit of the output of 

Commit stage: 
step 1: Verifier B selects a random vector r = (PI,.. . , rgn), where r, E {0,1} 
for 1 5 i 5 3n, and sends it to committer A .  
step 2: A selects a seed 2 E (0, I}" and sends to 3 the vector y = ( d l ,  . . . , 
where 

if r, = 0 
if ~i = 1 di = { G , ( z ) @ b  m) 

and 6 E ( 0 , l )  is the bit A is committed to, where 3 denotes the exclusive-or 
operation. 

A sends z and B verifies that  for all 1 5 i 5 371 
Reveal stage: 

7 

if ri = 0 

if ri = 1 then dj Gi(z) 3 b 
t , h m  d; f cj(z) 

Notation: Hereafter, we denote y = y<">(x, b j  = G(3n)(2)$br, where G(3n) 
means the first 3n-bits output of G(z). 

Assumption 4.1 There exists a pseudo-random generator G(3n) : ( 0 ,  l}n - 
(0, 1}3" satisfying the following property: for m y  polynomial time relation 72 : 
{0,1}" x (0,l)" - {0,1), there is no expected polynomial time probabilistic 
Turing machine 'D : (0, l}3n x (0, l}3n - {0, I} such that D(g,g ' )  = Z(Z, z') 
holds with non-negligible probability, where g = G(3")(z) and g' = d3")(2'). We 
call this assumption the independence of G. 

Remark 
Generally PSRGs do not always satisfy this assumption. There are two directions 
to avoid this assumption, which are open problems: 

(1) The construction of PSRG which satisfies the independence of PSRG: Note 
that it was proven that if there exists a one-way function, then there ex- 
ists a pseud-random generator (PSRG) [ILL, HI. So, there might be some 
construction technique based on a one-way function. 

(2) Clarify the condition of R which is sufficient for the main theorem: The 
relation R used in the proof of main theorem is defined using a function X. 
If we could prove the sufficient condition of 72 for the theorem based on the 
properties of X ,  the above assumption is avoidable. 

3We conjecture that a sufficient condition of IZ as follows: for any z, #{~'1z(z,z') = 
O} /#{z ' }  is negligible, where # S  means the number of elements of a set S. 
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4.2 Main Theorem 
Theorem 4.2 If there exists a pseudo-random generator G ,  then Naork bit 
commitment function is secure against diverti bili ty, assuming the independence 
of G and the bijective properties of B and X ,  where t = O(poly((Y(z, b ) ( ) ) .  The 
random vector r is independently selected for each bit commitment in the  case 
o f t  = 1.  

Sketch of Proof: 
We will discuss the  case where t 2 2 at first, then discuss the case where 

t = 1. 

Case oft  > 2 
The proof is by contradiction. Hereafter we prove the situation where the 

random vector r is fixed. Since a scheme with the independently selected vector 
r is more intractable than the one with a f i x d  r ,  this restriction to r component 
is not considered essential. 

Assume that  expected polynomial time probabilistic Turing machines, M ( y ~ ,  
. - . , y t ) ,  Y<r’(z;,bj) (1 5 j 5 t ) ,  ~ ( z ~ , . . , , x t , y 1 ~  . . . , y r )  and B(bl, . .  . , b t , y l :  
. . . , y t )  exist such that  M ( y 1 ,  . . . , yt) = y<“>(zL1 b’ j  holds with non-negligible 
probabilit8y(c), where yj = Y<r’(z,,bj), z* = X ( r l  , _ . .  , zt,yl, . _ .  ,yt) ,  and 
b * = B ( b l , . . . , b t , Y l ,  -.,Yt). 

We will consider two cases with regard to the output  of ,*!A: 
Case 1) T h e  output  y* of M ( y 1 , .  . . , yt) is coincident with some y, or y, %I T ,  

where 1 5 ct 5 t ,  (hereafter we denote the probability that Case 1) occurs 
under the existence of ( i M , y , K , D )  as 6 . )  and 

Case 2) All other c a e s  than Case 1). 

We will construct an  expected polynomial time probabilistic algorithm A 
which guesses b from the input y (= G(3n)(;c)$br), where b is unknown to A, for 
Case 1) using ( M , y ,  X ,  a). This is a contradiction for the difficulty of guessing 
a committed bit in Naor’s protocol, when S is non-negligible. 

For Case 2 ) ,  we wili construct an expected polynomial time probabilistic 
algorithm 13, which, given g and g’, decides whether some relation, R ( x . z ’ ) ,  
holds or not using M ,  where R is defined with X. y = G(”)(z> and g’ = 
G(3n)(z’). This is a contradiction of the independence of G I  when b is not non- 
negligible. 

Case 1) 

is a guessed bit of b, as follows: 
At first, we will construct A, whose input is y (= G(3n)(~) @ br) and output  

[Algorithm A] 
For i = 1 to t do 

Repeat N times 
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Step 1: Put yi = y.  

Step 2: Select xj E (0, l}" and bj E (0, l} randomly ( j  # i). 
Step 3: Calculate Y j b ,  = ~ 3 ~ " ) ( x c j )  @ bjr ( j  # i) and 

Step 4: If A4 succeeds, t ha t  is, thcrc cxist cy E (1, .  . . , i- 1, i+  1,.  . . , t }  and p E 
{0,1} such tha t  y* = y a p ,  then output b' which satisfies B(b1,. . . , b i - i ,  

b', b i + l ,  . . . , b , ,  y3 = p as a guessed bit of b such that y = G ( 3 n ) ( ~ )  63 br 
and halt .  Otherwise go to  the next iteration. 

End repeat 
End do 

[end of Algorithm A] 

Claim 1: Algorithm A is polynomial time computable, and it can guess the 
value of bit b such tha t  y = G ( " ~ ( I )  @ br with probability significantly better 
than i. 
(Proof of Claim 1) 

When there exist ( M ,  y ,  X ,  a), y* = G ( 3 n ) ( ~ * ) e . L i ( b l , .  . . , b ; - l ,  b ,  bi+l , .  . . , b t ,  
$ 3 ~  always holds from their definitions, where y = $ 3 " ) ( ~ i )  3 br and I* = 

Generally, t he  probability that t and x' (x # d) exist and satisfy G('")(x') - 
G(")(S) @ r is at most 2-", since r E (0, is selected randomly, and both I 
and x' are elements of ( 0 ,  I}". On the other hand, B(b1 , .  . . , b i - I , O ,  b j + l  , . . . , b l ,  3 
# B(b1,. . . , b , . - l q  1, b ; + ~ , .  . . , b l ,  y3 holds ( P r o p e r t y  1)). So the probability tha t  
y* = yao = y a ! l  is at most 2-". Therefore, if y' = yap holds, then 2- = Z, 
and b satisfies B(b1, . . . , bi-1 , b ,  b i t l ,  . . . , bf , y3 = B with overwhelming probabil- 
ity (2 1 - &). Let us call the case, where M finds y* = ynp  including the 
case where cy = i a t  Step 4, Case I), and denote the probability that  Case 1) 
occurs under the existence of ( M ,  y, X ,  8) as 6. In the case where a = i, since 
we don't know the value of p, Step 4 does not decide the value of b. Since the 
probability tha t  cy = i holds at Step 4 is +, so the probability A outputs  b is 
(1 - f ) b c .  Note tha t  there is an error probability at most & in the output  of b 
at Step 4. 

Since we assume tha t  ( M ,  Y ,  K ,  a) exist with non-negligible probability(€), 
the algorithm A can guess the  value of bit b such that y = $ 3 " ) ( x )  @ br with 
success probability significantly better than 5 i l  6 is non-negligible. This is 
because for all sufficiently large n ,  

Prob[d(y)  = b] 

X(ZI,.-.,~~-I? x i ,  z i + l ,  ...,r:t,f), 

= 1 - Prob[d fails at  all round] 
= 1 - {Prob[d fails a t  round i]}' 
> 1 - ((1 - 6 )  + (1 - 6)€+ +bC + & ( l -  f)h€}Nt 

> 1 - { 1 - (1 - +)6f}Nt 
( N =  1 

( t - 2 ) 6 <  1 1  
+ 1 - e-1  
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where N is selected as 0(-) such that this probability is significantly better 
than i. 

Note that d ( y )  is polynomial time computable, since t = O(poly()Y(z,b)l)) 
and N = O(&;), where both E and 6 are nan-negligible probabilities. 

(q.e.d. Claim 1) 

Remark 
1) If the bijective property of 5 does not hold, then it might hold that B(bl . . , 
bi-1, O,bi+l ,  . . . ,  b t l y 3  = 13(bll . . . ,  b i - ~ , l , b i + ~ ~  ..., b,,$ = / ?o r  8. Here the 
value of b is not decided uniquely or there is no value of b that satisfies this 
relation. 
2) We can not guess the value of b given in both Case 2)  and a = i ,  where 
y* # yap I that is, z* # 2, (0 E { 1, . . . , i - 1, i -t 1 , .  . . t }  in each round i). Thus, 
the following discussion is necessary for Case 2 ) ,  where 6 is not non-negligible. 

Case 2 )  
Let denote 2 x 1 ,  , X , - l , X , + l ,  , x t ,y  -(tit") = OiffK(tl,...,.~,_1,e,e,+1 ,... l ~ t ,  

Next we will construct V and the relation Rzl ,  , x , - l , z a + l ,  ,%,,$, on input of 
g (= G(3")(2)) and g* (= G(3")(z*)), where 2: and z* are not known to D, as 
follows: 

8 = e* holds, where Y" (Ylb, 1 . .  . I Y t - l b , - l  1 % b , r  Y a + l b , + ,  , . . . , Y / t b t )  

[Algorithm D] 
For i = 1 to t do 

Repeat N times 

Step 1: Put  y; - g. 
Step 2: Select bi E (0, l}, zj E {0, 1)" and bj E {011} randomly (j # i). 
Step 3: Calculate ylb, = y, @ b i l  yjb, = d3")(zj) @ b 3 ~  ( j  # i) and 

Y* = M ( 8  where c= ( ? J i b ,  I , Y i - l b , - ,  Yib,  yi+ib,+l . . . , Y t b t ) .  

Step 4: If the following equation holds, then output 0. Otherwise outsput 1. 

y* = g* @ B ( ~ I  1 . . . , b i - l ,  bi 1 bi+t  j . . . : bt , $ 3 ~  

End repeat 
End do 

[end of Algorithm P] 

We will prove that  ' D ( g , g * )  = R,,,, . , 5 , - - l , x , + l  ,_.., x l , ~ ( z I z * )  holds wit.h non- 
negligihle probability, where g (= G(3")(x)) and y' (= @3n)(2*)). 
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Claim 2: If there exist ( M , Y , X , B ) ,  Rz,, , z , - l , x ,+ l ,  , x , , q ( x ,  I') = 0 implies 
z)(g,g') = 0, where 9 = (;(3")(z) and g' = 6(3n)(z/). 
(Proof of Claim 2) 

zi-1 , 2, z;+1, , . . , z t ,  8. The existence of ( M ,  Y ,  X ,  B) implies that 
By the definition of R, Rx,, ,x , - l , z ,+ , ,  ,z,,y -(z,z')= O m e a n s ~ '  = X ( z 1 ,  . . . ,  

y* I ($3") (.'> @ qh,. . . , b t ,  y3r. 

Since Step 4 of algorithm 2, holds, V ( g , g ' )  = 0 holds, where g = !$3fl)(2) and 

(q.e.d. Claim 2) 
gf = c$3n)(z'). 

Claim 3: If t,here exist ( M ,  Y, X, a), V(g, g * )  = 0 implies 
RZ, ,..., 2,-1,z,+1, ..., zr,y -(z,z*) = 0 ,  where g = @")(1:) and g* = @3n)(2*) with 
overwhelming probability. 
(Proof of Claim 3) 

By the definition of V ,  V ( g , g * )  = 0 means 

y* = g *  EBO(bi, . . . , b  i - i , b i , b i + i , . . . , b ~ , y 3 r .  

The existense of ( M ,  Y, X ,  0) implies that 

y* =6(3")(z')$B(bl ,  . . . ,  bt,y3r, 

where z is defined as g = 5(3")(2) and 2' = X ( z l , .  . . , 
These equations imply g* = d3")(2') with overwhelming probability. The 

reason is as follows: Generally, the probability that 1: and z' (Z # x') satisfy 
G ( 3 n ) ( ~ ' )  = @3") (~ )  is at most 2-3n, since pseudo-random generators pass the 
next bit test [y]. 

Since z* satisfies g* = 6(3")(2*), the probability that z* # x' holds is negli- 
gible (5  &). Therefore, z* = I' = X ( q , .  . . , zi-1, ~ , z i + ~ ,  . . . , z t r$ ,  that is, 

, 2, zisI , . . . , z t  , 3. 

z t , g ( ~ ,  z*) = 0 with overwhelming probability (2 1 - F ) .  1 Rtl ,..., 2,- l F , + I , . .  ., 

(q.e.d. Claim 3) 

It is clear that if there exist ( M , Y , X , B ) ,  then D ( g , q * >  = 
R,, ,..., Z i - l , E , + l  ,.._, zr,y'(z,z*) holds by combining Claim 2 and Claim 3 with 
overwhelming probability (7). Since we assume that ( M ,  Y, X ,  B) exist with non- 
negligible probability ( 6 )  and Case 2) occurs with Probability (l-J), V(g1, g*> = 
R,, ,,,,, t ,-lrzi+l Lt,q( I, z*) holds wihh non-negligible probability ( y e (  1 - S)), 
where 6 is not non-negligible. This is a contradiction of the independence of G. 
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Case oft  = 1 
Finally we will prove the case where t = 1 The proof is also by contradiction. 

Differently from the case that t > 1, in this case we assume an additional condi- 
tion that random vector r for Naor's bit commitment scheme is independently 
selected for each bit commitment. 

Assume that there exists 20 f { O , l } *  and expected polynomial time prob- 
abilistic Turing machines, M ,  K and 13, such that M(yl,zo) = y<'*>(z*, b")  
holds with non-negligible probability(€), where y1 = Y < r l > ( x l ,  b l ) ,  x* = X(;CI, 
%Yl) and b" = @ ( b l , z u , y l ) .  

We will also consider two cases with regard to  the output of M :  
Case 1) The output y* nf M ( y 1 ,  ' 0 )  is coincident with y1 or y1 @ 7 - * ,  arid 

Case 2) All other cases than Case 1). 

We can construct an expected polynomial time probabilistic algorithm A' 
which guesses b from input y (= G ( 3 n ) ( x )  @ br). The algorithm A' is as follows: 

Step 1: Determine 1 0  and calculate y* = M ( y ,  2"). 
Step 2: Determine b" by checking whether y* is coincident with y or y @ r * .  

Then determine b by using b" = B ( b ,  zo,y*). 

Similarly to Claim 1,  we can show that algorithm A' can guess b correctly 
with non-negligible probability. This is a contradiction for the difficulty of guess- 
ing a committed bit in Naor's protocol. 

For Case 21, we can construct an expected polynomial time probabilistic 
algorithm a', which, given g and g', decides whether some relation, R ( x ,  d ) ,  
holds or not using M ,  where 7? is defined with X ,  g = G(3")(x) and g' = 
G(3n)(z'). Algorithm 'D' can be constructed in a manner similar to algorithm 
V, and it can he shown similarly that D' works correctly with noti-negligible 
probability. Hence, this is a contradiction of the independence of G .  

These results can be easily extended to any multiple bit case (k > l ) ,  because 
if a multiple bit relation B holds such that b; = B ( c ~ , & , ~ ~ , ~ 2 ) ,  then the first 
elements o f t ,  5 and b2 satisfy a relation with the parameters of the remaining 
elements of b*, b l ,  &, yi and yi. Therefore, the result that there is no relation 
among single bit variables implies that there is no relation among multiple bit 
variables. 

* 

(Q.E.D. Theorem) 

5 Conclusion and Remarks 
This paper has proposed a new security concept, the secure bit rnm.mitment func- 

tion against dzvertibiliiy. We has shown that Naor's hit commitinent function 
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based on a pseuderandom generator satisfies this property under the indepen- 
dence of PSRG. Implementation of divertible ZKIP  using the seczlre b i t  commil- 
ment function against diverizbzlzty ensures invulnerability against multi-verifier 
attacks in the diuertible scenario where the non-deteciivity and the dishonest 
majority of the verifiers are satisfied. Thus,  any negative attributes of a divert- 
ible ZKIP, such as the mafia fraud attack and the multi-verifier attack, can be 
removed by using thc  secure bit commitment function against divertibility. 

Note that this conversion from a divertible ZKIP to a divertible-free-ZKIP 
by using the secure bit commitment function against divertibility is also effective 
against the meddler aiiack described in [DY] since the intermediate node uses 
the homomorphic property of challenge generating function. 

However, there are several open problems: 

(1) Security in a more general situation, e.g. where Z* = X ( ( T ~ , ~ I ) ,  . . . , ( z t ,  b t ) ) ,  
and b” = B((z1, b l ) ,  . . . , (q, b t ) ) .  

(2) The construction of PSRG which satisfies the independence of PSRG. 

(3) Clarify the condition of R which is sufficient for t,he main theorem. 
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