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Abstract. We develop general techniques that can be used to prove the
zero knowledge property of most of the known zero knowledge proto-
cols. Those techniques consist in reducing the circuit indistinguishability
of the output distributions of two probabilistic Turing machines to the
indistinguishability of the output distributions of certain subroutines.

1 Introduction

It is an important result in the theory of zero knowledge proofs that assuming the
existence of a circuit secure encryption machine every language in NP has a zero
knowledge proof. This result can be obtained by constructing a zero knowledge
proof system for the NP-complete language 3C of three colourable graphs (see
[1, 2]). In this protocol the prover and the verifier repeat a certain subprotocol a
number of times which is polynomial in the length of the input. The encryption
machine is called in a subroutine used in that subprotocol. The protocol can
therefore be written in the form

5= (MNO)™ (1)

where M N O is the subprotocol which is repeated n, times, where z is the input
and N is the subroutine which calls the encryption machine, and where M and
O are the machines that carry out the computations before and after N is used.
In order to show that S has the zero knowledge property one must show that the
communication carried out in § can be simulated by a probabilistic polynomial
time Turing machine even if the verifier is replaced by a cheating verifier. After
replacing the verifier the protocol is still of the form (1). The simulator S is
constructed by replacing N with a machine N’ which has no knowledge of a three
colouring of the input graph. By virtue of the circuit security of the encryption
machine, the output distributions of N and N’ are circuit indistinguishable.
It remains to be shown that the output distributions of S and §' are circuit
indistinguishable.

Protocols and simulators for other zero knowledge protocols are constructed
in the same way.

The goal of this paper is to unify the proofs for the zero knowledge property.
We show that replacing the subroutine N with N’ in a probabilistic Turing
machine S of the form (1) yields (under certain conditions) a machine S’ whose
output distribution is circuit indistinguishable from the output distribution of
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S if the output distribution of N is circuit indistinguishable from the output
distribution of N’. Another goal of this paper is to precisely define the notions
used in this context.

2 Probabilistic Turing Machines
Throughout this paper we use the alphabets X = {0, 1, #} and X = {0, 1}.

Definition 1. A probabilistic Turing machine is a pair Z = (M, p) where

1. M = (K, X, A,s) is a k-tape nondeterministic Turing machine (see [3],
pp. 204-211)

2. p: A — [0, 1] is a function which determines the probability of each transition
in A, i.e. for every ¢ € K and a € £* we have

dea(g.a)
where A(g,a) = AN ({q} x {a} x (K U {h}) x (ZU{L, R})*).

A probabilistic Turing machine with p(A) C {0,1.1} is called coin tossing ma-
chine.

We adopt the input and output conveutions of 3]. For z,y € £§ we denote
by IIz(z,y) the probability for Z to output y on input of z. It is easy to see
that

Z Oz(z,y)<1.

yeDs

For z € X§ we denote by Z(z) the set of all elements in X that can with pos-
itive probability occur as an output of Z on input of z, and Z(L) = {J,¢r Z(2)-
If the length of each computation of Z on input of z is bounded by ¢ € IN, we
denote the maximal length of a computation of Z on input of z by time(Z(z)).
We say that the running time of Z is bounded by a function T : IN — IN if for
all £ € X5 we have time(Z(z)) < t(|z|).

If there is a function £ : IN — IN such that, on input of strings of length v,
the machine only outputs strings of length #(u) with positive probability, then
we call Z a homogeneous probabilistic Turing machine.

If there is a polynomial f € IN[X] such that, on input of strings of length u,
the output length of the machine Z is bounded by f(u), we call Z a probabilistic
Turing machine with polynomially bounded output length.

Let Z; and Z; be probabilistic Turing machines. Then the concatenation
Z\Z2 of Z; and Z, is defined as the probabilistic Turing machine that first
operates as Z;. Whenever Z; terminates, Z, is called where the input of Z; is
the output of Z;. We also use the notation Z7 for Z1Z; -+ Z;.

D —

n times
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3 Probabilistic Circuits

A probabilistic circuit is a deterministic circuit (see [4], pp. 73) with a partition
In = Inp Ulnp, Inp NInp = @, of the input nodes. The input nodes in Inp
(the deterministic input nodes) receive the input of the computation. The nodes
in Inp (the probabilistic input nodes) are assigned uniformly at random 0 or 1.
The number of all nodes but the input nodes of a circuit C is called size(C).

For a probabilistic circuit C' with m input nodes and n output nodes and for
y € {0,1}™, z € {0,1}" we denote by II¢(y, z) the probability for C' to output
z on input of y.

Let C be a probabilistic circuit with » output nodes and C; be a probabilistic
circuit with n input nodes. Then the composition of C; and C; is the circuit
which results by connecting the output nodes of C; with the input nodes of Cs.

Let L C X3. A family {C; }zer of probabilistic circuits is called polynomial
if size(C,) is bounded by |x|* for some k € IN.

In order to be able to prove our main theorems we need the following results.

Lemma 2. There is a constant ¢ € IN such that for all Turing-decidable lan-
guages L C {0,1}* the following holds: if L is decided by a deterministic Turing
machine M = (K, 3,6, s) in time T:IN — IN, then there is a family {Cn}nen
of deterministic circuits which decides L and satisfies

size(Cn) = (|K||Z])"T(n)logT(n) .
Proof. See [4], pp. 84-91.

Lemma 3. There are ¢,d ¢ IN such that for all homogenous polynomial coin
tossing machines M = ((K, X, é, s), p) with output length £ : IN — IN and run-
ning time bounded by T € IN[X] there is a polynomial family {Cp}aew of probd-
abilistic circuits such that {Hc|s|(:‘:’ V}eer ond {Idrp(z,)}zer are equal and
which satisfies

size(Cp) = dé(n)(|K| |X|)¢T(n)log T(n) .

Proof, Without loss of generality we assume that there is ¢ € IN[X] such that on
input of length n the machine M tosses the coin exactly ¢(n) times. Moreover,
we can construct a homogeneous polynomial time deterministic Turing machine
M = (K',2,§,s') with the following property: suppose that on input of z
the machine M carries out the sequence of coin tosses o = (ay,. .., ¢4(q))) and
outputs y, then, one input of (2, «), the machine M’ outputs y. There is a
constant r € IN (independent of M) such that |K’| < r|K|. There is an other
constant s € IN (independent of M’) such that 7'(|(z,a)]) < sT(|z|) for the
running time 7" of M".
If we define for z,y € X}

Oyi(z,y) =

1
m {O.’ € {O, l}qu’l)MI'(:r,a) = y} l

then we have ITpy = Iy
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In order to be able to apply Lemma 2 we consider the deterministic Turing
machine M}, (m € IN) which on input of (z, @) outputs the mth bit of the output
y which is defined to be 0 if m > £(|z|).

Forz e {01 1}*5 y= (yls SRR yl(lzl)) € {07 1}* we have

-UM’(xay) -

srvep | (o € 0,000 e, 0 = e V1 < i < (e}

The machine M/, works exactly as M’ and deletes at the end of its compu-
tation all but the mth bit of the output. Therefore there is a constant ¢ € IN
(independent of M) such that T, (|(z,@)|) < tT'(|(x,)|) for the running time
T!. of M],. The number of states of M/, is polynomial in the number of states
of M.

We apply Lemma 2 to M/, and thus obtain a polynomial family {C,(;m) }ner of
deterministic circuits which simulates M,. The circuit C{™ has n deterministic
and ¢(n) probabilistic input vertices.

We construct the circuit C, by connecting the Ci™, 1 < m < £(|z), in the
natural order in parallel, that means all circuits have the same deterministic and
probabilistic input.

Since Ch, is constructed from #(n) circuits whose size is polynomially bounded
in n, the size of C, itself is bounded by a polynomial in n, which means that
{Cn}nem is a polynomial family of circuits. Moreover, we have by construction
that for every £ € {0,1}"

HC|:|(I’ = Opyg(z,) .

4 Indistinguishability
Let U and V be two probability distributions on £j. The series

6sU V)= U - V()

yeL]

is called the statistical difference between U and V. In general it is impossi-
- ble to determine in polynomial time that two probability distributions have a
non zero statistical difference. Therefore one uses tools like probabilistic circuits
and probabilistic algorithms (i.e. probabilistic Turing machines) to distinguish
between probability distributions.

For a probabilistic circuit with m input nodes and one output node we call

sc(U,V)=| 3 Hely )(UE) - V()
yexpy

the circuit difference between U and V with respect to C.
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Finally, for a probabilistic Turing machine Z we call the series

6z(U, V) = | > (3 1)U - V()

yeXs

the algorithmical difference between U and V with respect to Z.

Definition 4. Let L C X3, let U = {Uz}zer and V = {V; }2¢r be two families
of probability distributions on X§.

1.

2.

The families U and V are called perfectly indistinguishable (p-indistinguish-
able) if U = V. :
The families U and V are called statistically indistinguishable (s-indistin-
guishable) if for every k € IN

: k .
lim |z[*6s(U2, Va) =0 .

[EJ B

. The families U and V are called circuit indistinguishable (c-indistinguish-

able) if for every polynomial family {Cy}rer of probabilistic circuits C; and
for every k € IN we have

lim lz|*éc, (Up, Vz) =0 .

|x|—oo

. The families U and V are called algorithmically indistinguishable (a-indistin-

guishable) if for every polynomial time probabilistic Turing machine Z and
for every k € IN we have

lim |2|F6z(Ur, Va) = 0 .

|x| o0

Lemmab. Let L C 5. Let Z and Z' be homogeneous probabilistic Turing
machines. Assume that Z has polynomial output length. If {II;(z, )}zeL and
{Iz:(z, )}reL are circuit indistinguishable then for all z € L but a finite set the
elements of Z(z) and Z'(z) are of the same length.

Proof. The case |L| < oo is trivial. So assume |L| = oo. Assume that there is an
infinite subset L’ C L such that for every z € L’ the elements of Z(z) and Z'(z)
are of different length. For z € L let C, be the circuit with m, input nodes, mz
being the length of the elements in Z(z), which always outputs 1. Then we have

6(;2 (HZ((L‘, '), Hzt(l‘, )) =1

for all x € L, hence

lim_|aléc, (U, Va) 0 .

rel
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5 The Main Theorems

Let L C X3. A family {Z; = ((K;, Xr, 6z, 5z),Pz)}zer of probabilistic Turing
machines is called polynomial if there are p, ¢, r € IN[X] such that for all z € L
and y € X5 time(Z:(y)) < p(|z()q(lyl) and [Ez||Z:] < r(]z]).

Theorem 6. Let L C X3, Let {M,},c1 be a family of probabilistic Turing ma-
chines. Let N and N' be homogeneous probabilistic Turing machines, N' having
polynomial output length. We define I' = | J, ., M:(z). Let {O:}.er be a poly-
nomial family of homogenous coin tossing machines. Assume that the following
conditions hold:

1. |z| > |z| for allz € L and z € M, (z).
2. Forz € L all elements of M.(z) are of the same length.
3. {In(u,-)}uer and {In:(u, ) }uer are c-indistinguishable.

Then {Iry.nNo. (2, )}ser and {dp nio (2, )}zeL are c-indistinguishable.

Proof. For r € L we set A, = M;NO, and B, = M,N'O,. Let z € L and let
{Oz,n}nen be a polynomial family of circuits simulating the probabilistic Turing
machine O, (see Lemma 3). Let N(u) = N(u) U N'(u).

Let I € IN such that for every u € I', u| > I the elements of N(u) and N'(u)
are of the same length. According to Lemma 5 such an I exists. Let z € L,
|z| > I, the elements of A;(z) and B,(z) are of the same length, say m.. To
measure a non zero circuit difference between II4_(z.-) and Ip_(z,-) a circuit
C must have m, input nodes. Let {C;};cr be a polynomial family of circuits.
We assume that C, has exactly m, input nodes.

For u € M,(z) all elements in N(u) have the same length £(u), £ € IN[X].
Let O;’u = O¢,¢(u)Cz be the composition of O; ) and C,. Now we have:

bc. (4, (z,-), Op, (z,-))

= Z Oe, (v, 1) (Oar,nvo. (2,y) — Oy nveo, (2-9))

yeX =
=| Y Oc.(y1) >, > Ou, (z,u)(Hy (uv) - Oy (u,v)) Do, (v,)
yexre uEMo(2) vEN(u)

=| D> Ou.(zu) Y. > Ho, (v,y) Oe, (v 1) (Tw (v,9) = D (1, v))

uEM (z) oe-ﬁ(u)yez‘;’“

=| Y. Ou.(z,u) Y o, _(v,1)(Iy (4,v) - Dy (u,v))

wEM (x) veﬁ(u)

< Z Iy, (z,u) b0, (AN (u,-), Ini(u,")) .
ueM:(x)
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Let u € X and let 2’ € L such that u € M,/(z’) then |z'| < |u|. Hence
there are only finitely many ¢’ € L with u € My/(z'). Among the finitely
many circuits Oy, ,, u € M (z'), we denote by O, the circuit which maxi-
mizes bor, (In(u,-), Oni(u, ). Then we have

66’ (HAz (zw ) IIg, ('Es )) < %a:(c )60‘ (HN(U’ )9HN’(U) )) (2)

Now we consider size(O,,):

size(O)) < max size(0y ,) = max size(Oq 1(u)Cx)
l={ <l IeiLl=]
< max (size(Oz,y(u)) + size(Cy)) .

lz1<]%]

Since {O;}zer is a polynomial family of coin tossing machines and |z| < |u|
there is (according to Lemma 3) a p € IN[X] such that for all u € My(z)
size(O.,) < p(|u]). This implies with (2) that

];iél;l lz|kécz (HA,__ (1:, ') s HB_: (2, .))

|z|—o0
S‘gg o |ul*éo, (O (u,), Xav(u,-))
=0.

O

Let L C X be alanguage and let {n;},er be a sequence in IN. That sequence
is called polynomially bounded if there is d > 0 such that for every £ € L we
have n, < |z|%.

Theorem 7. Let L C X. Let {nz}zcr be a polynomially bounded sequence in
IN. Let S and T' be homogeneous probabilistic Turing machines. Assume that the
follouwing conditions hold:

1. |y| > |z| forallz € L and y € S(z).

2. S(L) C L.

3. T is a coin tossing machine such that for ¢ € IN[X] and for alli € IN we
have time(T%(2)) < ig(|2]).

4. {Os(z,")}eer and {Ir(z,-)}zer are c-indistinguishable.

Then {Hsn.(z,")}zer and {Iyn: (2, )}seL are c-indistinguishabdle.

Proof. We have

6C= (HS"t (-"-'1 ) s e (zv )) = z ZTC‘,r (y7 1) (HS"S (J,‘, y) — Hpne (.‘L‘, y))
yeX e
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We can write

nz—1

Ogn:(z,y) — Orn: (z,y) = Z Ognoipi(z,y) — Osnemrmr7i41(Z, )
i=0

and therefore

be, (Ogne (z,-), Orae (2,-))

ne—1
= Z HCI (y, l) ( Z HSn;—xT: (.’l?, y) - Hs’n;—l—lTi-{rl (z,y)) i

yexr = =0
ne—1
= Z Z HC: (y, l) (HSn:—;T; (.’L‘, y) - .Usn,-.’—xTa-H (I, y)) \
=0 yezr=
nz—1
S Z Z HC, (y, 1) (Hsn,-‘Tl (23, y) - .Ugn,-..-1T;+1 (x,y))
3=0 yezc"ﬂr

<ng 05%—160’ (Ogne—imrg7:i (2,0), Dgaemirpy: (2,7))

i.e.for £ € L there is 0 < i, < n, — 1 with

60: (HS": (x’ ) y s (:l?, ))
< Tlxécz (Hsn,—-,—ng‘, (-'L', ')q Hgnz—iz—1TTs2 ('.L', ')) ’ (3)
Let M, = §*==i==1, N = §, N' =T and O, = T*s. We know:

1. M, being a concatenation of homogeneous Turing machines is also homo-
geneous. Since we have |y| > |z| for y € S(z), we find |y| > |=| for all
y € M(z).

2. N’ has polynomial output length.

3. The families {IIx(z,-)}zer and {On+(z,-)}zer are c-indistinguishable. The
set I' = |J,cp Mc(z) is a subset of L and therefore {ONn(z,)}zer and
{Ini(z,*)}zer are c-indistinguishable, too.

4. O, has the same alphabet as T. The set of states of O is at most n,-times the
size of the set of states of T'. Being a concatenation of homogeneous Turing
machines, O, itself is a homogeneous Turing machine. Therefore {Oz}zerL is
a polynomial family of homogeneous coin tossing machines.

Therefore we can apply Theorem 6. Using (3) we have for every k € IN

Jim_|a*bc, (Hsn (2,), O (2,))
xEL

< !}Enm nelz|*éc, (Om.no, (2,°), Dm.N0, (2,+))

€L

({rz}<eL is polynomially bounded. Therefore there is d € IN with s < |z|#)
< lim |z|™**éc, (Om.No. (2,°), Dm. N0, (2,°))

— |z|—oo

zEL

=0.
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Thus {Hgn:(z,")}cer and {IIr»: (2, )}zer are c-indistinguishable. o

Theorem 8. Let L C 55, Let {n;}sc1 be a sequence in IN. Let S and T be coin
tossing machines. Assume that S(L) C L. If {Is(z,")}zer and {Ir(z, )}zeL
are p-indistinguishable, then also {Hgn.(z,-)}cer and {Irn:(z,")}zeL.

Proof.

Hsn,(a:,y) - HT»;(Z',!/)
nr—1

= Z Hsnx—,fp‘(:r,y) - Hgnx—‘—lT--H (z,y)
i=0
N1

Z Z Z HS"I-‘"(Iiu)(HS(va):HT(uy'U))JHT"(Usy)

i=0 ueXgvel]

Il

=0
=0,

a

Theorem 9. Let L C X3, Let {n,},er be a polynomially bounded sequence in

IN. Let S and T be coin tossing machines. Assume that the following conditions
hold:

1. |yl > |z| for allz € L and all y € 5(z).
2. S(L) C L.
3. {lls(z,)}zer and {Ir(z, )}zeL are s-indistinguishable.

Then {Isn.(z,)}zer and {Hpn:(2,-)}zeL ore s-indistinguishable.
Proof. As in the proof of Theorem 7 we obtain
6s(Msne(z, ), Oy, ) < ngés(Mpr.vo. (2,+), Iy N0, (2,°)) »
where M, = §":~%:-1 N = § N'=7T and O, = T%s. According to the condi-
tions the families {IIn(z, )}zer and {In(z,-)}zeL are s-indistinguishable.
s (Im.No. (2,+), Au.nio, (2, +)
= Y |Im.vo.(2,9) — Ou.nvo, (2, 9)]

yexg

<SS ST Iy (e w) (Hn(u, v) — Hno(u, ) o, (v, )]
yeLyuelyveny
< 30 T (z,u) Y [(Tn(u,v) = Ono(u, o)) S Ho,(v,9)
ue L veX] yex;
<1
< > Om(zu) sup Y [y(uv) = Tno(u,v)]
ueZy vEMa(7) y ey

<1
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Then we have for all £k € IN

lim [2[*85 (s (2,), Trne(z, )

[z [—oo

< lim nelel* sup Ss(n(u,-), One(u,"))

|et—oa uEMI(I)
< lim nlxlk+d sup 6S(HN(ua')vHN'(uv'))
|:|S.Lao u 61‘4: (I)

({nz}zer is polynomially bounded. Therefore there is d € IN with =z < lz|%)
< li.rnsLup lul*+48s (TN (u,-), On+(u,-))
®€

{#|-—=o0

=0.
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