F.F.T. Hashing is not Collision-free T. BARITAUD * . H. GILBERT * . M. GIRAULT ** - (*) CNET PAA/TSA/SRC 38-40, avenue du Général Leclerc 92131 ISSY LES MOULINEAUX (France) - (**) SEPT PEM 42, rue des Coutures BP 6243 14066 CAEN (France) #### Abstract The FFT Hashing Function proposed by C.P. Schnorr [1] hashes messages of arbitrary length into a 128-bit hash value. In this paper, we show that this function is not collision free, and we give an example of two distinct 256-bit messages with the same hash value. Finding a collision (in fact a large family of, colliding messages) requires approximately 2²³ partial computations of the hash function, and takes a few hours on a SUN3-workstation, and less than an hour on a SPARC-workstation. A similar result discovered independently has been announced at the Asiacrypt'91 rump session by Daemen-Bosselaers-Govaerts-Vandewalle [2]. #### 1 The FFT Hashing Function ### 1.1 The Hash algorithm Let the message be given as a bit string $m_1 m_2 ... m_t$ of t bit. The message is first padded so that its length (in bits) becomes a multiple of 128. Let the padded message $M_1M_2 \dots M_n$ consist of n blocks M_1, \dots, M_n , each of the M_i (i=1, ...,n) being 128-bit long. The algorithm uses a constant initial value Ho given in hexadecimal as $H_0 = 0123 \ 4567 \ 89ab \ cdef \ fedc \ ba98 \ 7654 \ 3210 \ in \ \{0,1\}^{128}$. R.A. Rueppel (Ed.): Advances in Cryptology - EUROCRYPT '92, LNCS 658, pp. 35-44, 1993. © Springer-Verlag Berlin Heidelberg 1993 Let p be the prime $65537 = 2^{16} + 1$. We will use the Fourier transform $\operatorname{FT}_8:\{0,\dots,p\text{-}1\}^8 - \cdots > \{0,\dots,p\text{-}1\}^8$ $$(a_0, ..., a_7) \longrightarrow (b_0, ..., b_7)$$ with $$b_i = \sum_{j=0}^{7} 2^{4ij} a_j \mod p$$, for $i = 0, ..., 7$. Algorithm for the hash function h: INPUT : $$M_1 M_2 ... M_n$$ in $\{0,1\}^{n,128}$ (a padded message) DO: $$H_i = g(H_{i-1}, M_i)$$ for $i = 1, ..., n$ OUTPUT: $$h(M) := H_n$$ Algorithm for $$g: \mathbb{Z}_p^{16} \longrightarrow \{0,1\}^{8.16}$$ INPUT $$(c_0, ..., c_{15})$$ in $\{0,1\}$ 16.16 1. $$(c_0, c_2, \dots, c_{14}) := FT_8(c_0, c_2, \dots, c_{14})$$ 2. FOR $$i = 0, ..., 15$$ DO $$e_i := e_i + e_{i-1}e_{i-2} + e_{c_{i-3}} + 2^1 \pmod{p}$$ (The lower indices i, i-1, i-2, i-3, e_{i-3} are taken modulo 16) REPEAT steps 1 and 2 OUTPUT $$c_i := c_i \mod 2^{16}$$, for $i = 8, ..., 15$ (an element of $\{0,1\}^{8,16}$) #### 1.2 Notations For a better clarity of our explanation, we will denote by c_i^0 (i=0, ...,15) the initial c_i values, and we will denote by step 3 (resp. step 4) the second pass of step 1 (resp. step2) in the algorithm for g. When it will be necessary to avoid any kind of slip, we will denote by c_i^k (i=0, ... ,15; k=0, ... ,4) the c_i intermediate value, after step k. In order to simplify the expressions, we are using the following notations: - The additions (x+y), multiplications (x,y) and exponentiations (x^y) are implicitly made modulo n, except when the operands are lower indices. - The = symbol denotes that the right and the left terms are congruent modulo p. - For lower indices the additions (i+j) and substractions (i-j) are implicitly made modulo 16, and the = symbol denotes that the right and the left terms are congruent modulo 16. ## 1.3 Preliminary remarks The difficulty of finding collisions is related to the diffusion properties of the hashing function, i.e. the influence of a modification of an intermediate variable on the subsequent variables of the calculation. Remark 1 (limitation on the diffusion at steps 1 and 3) At step 1 and 3, the input values e_1, e_2, \dots, e_{15} are kept unchanged. Remark 2 (limitation on the diffusion at steps 2 and 4) The diffusion introduced by the $e_{i-1}e_{i-2}$ terms in the recurrence for steps 2 and 4 can sometimes be cancelled (if one of values e_{i-1} and e_{i-2} is 0). More precisely, let $(e_0^1, e_1^1, \dots, e_{15}^1)$ be the input to step 2: Proposition 1: If for a given value i in $\{1, \dots, 14\}$ we have $e_{i-1}^2 = e_{i+1}^2 = 0$ and if $e_{13}^1 \neq i$; $e_{14}^1 \neq i$; $e_{15}^1 \neq i$; $e_{j}^2 \neq i$ for j in $\{0, \dots, 12\}$, then the impact of replacing the input value e_{i}^1 by a new value $e_{i}^1 + \Delta e_{i}^1$ such that $e_{i}^1 + \Delta e_{i}^1 \equiv e_{i}^1$, is limited to the output value e_{i}^2 (that means e_{i}^2 are not modified for $j \neq i$). Proposition 2: If $e_{14}^1 = e_0^2 = 0$ and if $e_j^2 \neq 15$ for j in $\{1, ..., 11\}$ then the impact of replacing the input value e_{15}^1 by a new value $e_{15}^1 + \Delta e_{15}^1$ such that $e_{15}^1 + \Delta e_{15}^1 \equiv e_{15}^1$, is limited to the output value e_{15}^2 . Similarly, let $(c_1^3, c_2^3, ..., c_{15}^3)$ be the input to step 4: Proposition 1': If for a given value i in $\{1, ..., 14\}$ we have $e_{i-1}^4 = e_{i+1}^4 = 0$ and if $e_{13}^3 \not\equiv i$; $e_{14}^3 \not\equiv i$; $e_{15}^3 \not\equiv i$; $e_{15}^4 \not\equiv i$ for j in $\{0, ..., 12\}$, then the impact of replacing the input value e_{i}^3 by a new value $e_{i}^3 + \Delta e_{i}^3$ such that $e_{i}^3 + \Delta e_{i}^3 \equiv e_{i}^3$, is limited to the output value e_{i}^4 . Proposition 2': If $e_{14}^3 = e_0^4 = 0$ and if $e_j^4 \not\equiv 15$ for j in $\{1, ..., 11\}$ then the impact of replacing the input value e_{15}^3 by a new value $e_{15}^3 + \Delta e_{15}^3$ such that $e_{15}^3 + \Delta e_{15}^3 \equiv e_{15}^3$ is limited to the output value e_{15}^4 . # 2 Construction of two colliding messages ### 2.1 Construction of a partial collision We first find two 128-bit blocks M_1 and M'_1 which hash values $H_1 = (\overline{c}, \frac{4}{8}, \dots, \overline{c}, \frac{4}{15})$ and $H'_1 = (\overline{c}, \frac{4}{8}, \dots, \overline{c}, \frac{4}{15})$ differ only by their right components $\overline{c}, \frac{4}{15}$ and $\overline{c}, \frac{4}{15}$. We will later refer to this property in saying that M_1 and M'_1 realize a partial collision. Our technique for finding M_1 and M'_1 is the following: we search M_1 values such that $c_{14}^1 = 0$; $c_0^2 = 0$; $c_0^3 = 0$. The propositions 2 and 2' suggest that for such a message $M_1 = (c_8^0, \dots, c_{14}^0, c_{15}^0)$, M_1 and the message $M'_1 = (c_8^0, \dots, c_{14}^0, c_{15}^0) + 16$ realize a partial collision with a significant probability (approximately 1/8). There are two main steps for finding M_1 . $$\underline{\text{Step1}}\,: \text{Selection of e}_8^0, e_{10}^0, e_{12}^0 \text{ and } e_{14}^0$$ Arbitrary (e.g. random) values are taken for e_{12}^0 and e_{14}^0 . The values of e_8^0 and e_{10}^0 are then deduced from these values by solving the following linear system: $$\begin{cases} e_{14}^1 = 0 & (1) \\ e_{0}^1 = -1 & (2) \end{cases}$$ Proposition 3: If $e_{13}^0 \equiv 14$ then $e_{14}^1 = 0$ and $e_0^2 = 0$ independently of the values of e_9^0 , e_{11}^0 , e_{13}^0 , e_{15}^0 . **Proof**: This is a direct consequence of the definition of the g function. <u>Step 2</u>: Selection of $e_9^0, e_{11}^0, e_{13}^0, e_{15}^0$ The values of c_8^0 , c_{10}^0 , c_{12}^0 , c_{14}^0 are taken from Step 1 . We fix the values of $c_{11}^0 = 0$ and $c_{15}^0 = 0$. An arbitrary (e.g random) value is taken for c_9^0 . We first calculate the c_{12}^2 and c_{14}^3 values corresponding to the chosen value of c_9^0 , c_{11}^0 and c_{15}^0 and to the temporary value $c_{13}^0 = 14$. Based on these preliminary calculations, we "correct" the temporary value $c_{13}^0 = 14$ by a quantity Δc_{13}^0 , i.e. we replace the value $c_{13}^0 = 14$ by the value $c_{13}^0 = 14 + \Delta c_{13}^0$, and we leave the other input values unchanged. We denote by Δc_j^i ($0 \le i \le 4$; $0 \le j \le 15$) the corresponding variations of the intermediate variables in the C_{14}^0 calculation. We select Δc_{13}^0 in such a way that the quantity $c_{14}^3 + \Delta c_{14}^3$ (i.e. the new value of c_{14}^3) is equal to zero with a good probability. Proposition 4: If $e_{12}^2 \neq 0$ and $\frac{-e_{14}^3}{2^{4.7.7}e_{12}^2} \equiv 0$ and $e_j^2 \neq 13$ for $1 \le j \le 11$ then the above values of , $$e_{15}^{1}$$, e_{0}^{2} and the value $\Delta e_{13}^{0} = \frac{-e_{14}^{3}}{2^{4.7.7}e_{12}^{2}}$ lead to the three relations $$\begin{cases} c_{14}^{1} + \Delta c_{14}^{1} = 0 & \text{(a)} \\ c_{0}^{2} + \Delta c_{0}^{2} = 0 & \text{(b)} \\ c_{14}^{3} + \Delta c_{14}^{3} = 0 & \text{(c)} \end{cases}$$ <u>Proof</u>: (a) is straightforward; (b) and (c) are direct consequences of the following relations, which result from the definition of the g function: $$\Delta c_{i-2}^2 = 0$$ for $0 \le j \le 12$; $\Delta c_{13}^2 = \Delta c_{13}^0$; $\Delta c_{14}^2 = c_{12}^2 \cdot \Delta c_{13}^2$; $\Delta c_{14}^3 = 2^{4.7.7} \cdot \Delta c_{14}^2$ We performed a large number n_1 of trials of step 1. For each trial of step 1, we made a large number n_2 of trials of step 2. The success probability of step 2, i.e the probability that the trial of a c_9^0 value leads to a message such that (a), (b) and (c) are realized is slightly less than 1/16 (since the strongest condition in proposition 2 is : $\frac{-c_{14}^3}{2^{4.4.7}c_{12}^2} \approx 0$). Therefore the probability that a step 2 trial leads to a message $$M_1$$ such that $c_{14}^1 = c_0^2 = c_{14}^3 = c_0^4 = 0$ is slightly less than $1/16 \cdot 2^{-16} = 2^{-20}$. Moreover, the probability that such a message M_1 leads to a partial collision is basically the probability that none of the e_{i-3} mod 16 indices occurring in the calculation of e_0^2 to e_{15}^2 and e_0^4 to e_{15}^4 takes the value 15, which is close to 1/8. So, in summary, approximatively 2^{23} partial computations of the g function were necessary to obtain a suitable message $M_1 = (e_8^0, \dots, e_{14}^0, e_{15}^0)$, such that M_1 and the message $M_1 = (e_8^0, \dots, e_{14}^0, e_{15}^0)$, such that M_1 and the $M_1 = (e_8^0, \dots, e_{14}^0, e_{15}^0)$ head to partially colliding hash values $M_1 = (e_8^0, \dots, e_{15}^0)$ and $M_1 = (e_8^0, \dots, e_{15}^0)$ and $M_1 = (e_8^0, \dots, e_{15}^0)$ head to partially colliding hash values $M_1 = (e_8^0, \dots, e_{15}^0)$ and $M_1 = (e_8^0, \dots, e_{15}^0)$ head to partially colliding hash values $M_1 = (e_8^0, \dots, e_{15}^0)$ and $M_1 = (e_8^0, \dots, e_{15}^0)$ head to partially colliding hash values $M_1 = (e_8^0, \dots, e_{15}^0)$. # 2.2 Construction of a full collision using a partial collision We now show how to find a 128-bit message $M_2 = (c_8^0, ..., c_{15}^0)$ such that the previously obtained hash values H_1 and H_1^* (denoted in this section by $(c_0^0, ..., c_7^0)$ and $(c_1^0, ..., c_6^0, c_7^0) = (c_1^0, ..., c_6^0, c_7^0 + 16)$) respectively lead to the same hash value H_2 (when combined with M_2): $g(H_1, M_2) = g(H_1, M_2)$. Our technique for finding M_2 is quite similar to the one used for finding M_1 and M'_1 . Let us denote by e_j^i (resp e'_j^i) ($0 \le i \le 4$, $0 \le j \le 15$) the intermediate variables of the calculations of $g(H_1, M_2)$ (resp $g(H'_1, M_2)$). We search M_2 values such that $c_6^2 = c_8^2 = c_6^4 = c_8^4 = 0$. The propositions 1 and 1' suggest that the probability that the 16-uples (c_0^4, \dots, c_{15}^4) and (c_0^4, \dots, c_{15}^4) differ only by their components c_7^4 and c_7^4 which implies that the probability to have $g(H_1, M_2) = g(H_1, M_2)$ is quite substantial, approximatively 1/8. There are two main steps for the search of M_2 : $\underline{\text{Step 1}}: \text{Selection of } \ e_8^0, e_{10}^0, e_{12}^0, e_{14}^0, e_9^0.$ An arbitrary (e.g random) value is taken for c_{14}^0 . The values of c_8^0 , c_{10}^0 , c_{12}^0 are deduced from c_{14}^0 by solving the following linear system: $$\begin{cases} c_{14}^{1} = 0 & (3) \\ c_{0}^{1} = -1 & (4) \\ c_{8}^{1} = -2^{8} & (5) \end{cases}$$ A preliminary calculation, where c_9^0 , c_{11}^0 and c_{15}^0 are set to the temporary value 0 and c_{13}^0 is set to the temporary value 14, is made. The obtained value of c_6^2 , denoted by δ , is kept. Proposition 5: If c_8^0 , c_{10}^0 , c_{12}^0 , c_{14}^0 are solutions of (3), (4), (5) and if in addition the values $c_9^0 = p-\delta$, $c_{11}^0 = 0$, $c_{13}^0 = 14$, $c_{15}^0 = 0$ lead to intermediate values such that : $c_1^2 \mod 16$ is not in $\{9,11,13,15\}$; $c_2^2 \mod 16$ is not in $\{9,11,13,15\}$; $c_3^2 \equiv 9 \mod 16$; $c_4^2 \mod 16$ is not in $\{9,11,13,15\}$; $c_5^2 \mod 16$ is in $\{0,6,14\}$, then if we fix the value $c_9^0 = p-\delta$, for any value of $c_{13}^0 \equiv 14$ and for any value of $c_{15}^0 \equiv 0$ we have: $$e_{14}^1 = 0$$; $e_0^2 = 0$; $e_6^2 = 0$; $e_8^2 = 0$. <u>Proof</u>: The proof of this proposition is easy. Finding the c_8^0 , c_{10}^0 , c_{12}^0 , c_{14}^0 and c_9^0 values satisfying the conditions of the above proposition is quite easy, and requires the trial of a few hundreds c_{14}^0 values. Step 2: Selection of e_{11}^0 , e_{13}^0 , e_{15}^0 The values of c_{8}^{0} , c_{10}^{0} , c_{12}^{0} , e_{14}^{0} , c_{9}^{0} are taken from Step 1; these values are assumed to realize the conditions of the above proposition. An arbitrary (e.g random) value is taken for e_{11}^0 . A preliminary calculation is made, using the selected e_{11}^0 value and the temporary values $e_{13}^0 = 14$; $e_{15}^0 = 0$. The corresponding values of e_{12}^2 and e_8^3 are kept. Based on these preliminary calculations, we "correct" the temporary value of e_{13}^0 by a quantity Δe_{13}^0 and we also consider new values $e_{15}^0 + \Delta e_{15}^0$ for e_{15}^0 . The variation Δe_{13}^0 is selected in such a way that for any Δe_{15}^0 value satisfying $\Delta e_{15}^0 \equiv 0$, the new value $e_8^3 + \Delta e_8^3$ of e_8^3 is equal to -2^8 with a substantial probability. Proposition 6: If $$e_{12}^2 \neq 0$$ and $\frac{-2^8 - e_8^3}{2^{4.4.7} e_{12}^2} \equiv 0$ and e_j^2 mod 16 is not in (13.15) for 1≤j≤11 then for any variation $\Delta c_{15}^0 \equiv 0$ on c_{15}^0 such that $c_{15}^2 + \Delta c_{15}^0 < p$ and $c_{15}^4 + \Delta c_{15}^0 < p$, the variation $\Delta c_{13}^0 = \frac{-2^8 - c_8^3}{2^{4.4.7} c_{12}^2}$ on the c_{13}^0 value leads to the following new values: $$\mathbf{e}_{14}^{1} + \Delta \mathbf{e}_{14}^{1} = 0 \ ; \quad \mathbf{e}_{0}^{2} + \Delta \mathbf{e}_{0}^{2} = 0 \ ; \quad \mathbf{e}_{6}^{2} + \Delta \mathbf{e}_{6}^{2} = 0 \ ; \quad \mathbf{e}_{8}^{2} + \Delta \mathbf{e}_{8}^{2} = 0 \ ; \quad \mathbf{e}_{8}^{3} + \Delta \mathbf{e}_{8}^{3} = -2^{8} \ .$$ giving a full collision. We performed a number n_1 of trials of step 1. For each successful trial of step 1, we made a large number n_2 of trials of c_{11}^0 values at step 2. For those c_{11}^0 values satisfying the conditions of the above proposition, we made a large number n_3 of trials of new c_{15}^0 values such that $\Delta c_{15}^0 \equiv 0$. The probability that the trial of a new Δc_{15}^0 value leads to intermediate variables satisfying the four equations $c_6^2 = 0$; $c_8^2 = 0$; $c_6^4 = 0$; $c_8^4 = 0$ is basically the probability that randomly tried c_6^4 and c_5^4 values satisfy $c_6^4 = 0$ and $c_5^4 \equiv 6$; the order of magnitude of this probability is therefore $c_6^2 = 0$. Moreover, the probability that a message $c_6^2 = 0$ satisfying the four equations $c_6^2 = 0$; $c_8^4 = 0$; $c_8^4 = 0$ leads to a full collision $c_6^4 = 0$ satisfying the probability that none of the $c_{1-3}^4 = 0$ leads to a full collision $c_6^4 = 0$ satisfying the probability that none of the $c_{1-3}^4 = 0$ leads occurring in the calculation of $c_0^2 = 0$ to $c_{15}^4 = 0$ to $c_{15}^4 = 0$ takes the value 15, which is close to 1/8. So in summary approximatively $c_6^2 = 0$ partial computations of the g function are necessary to obtain a message $c_{15}^4 = 0$ summary approximatively $c_{15}^2 = 0$ partial computations of the g function are necessary to obtain a message $c_{15}^4 = 0$ ## 2.3 Implementation details The above attack method was implemented using a non-optimized Pascal program. The search for a collision took a few hours on a SUN3 workstation and less than an hour on a SPARC workstation. We provide in annex the detail of the intermediate calculations for two colliding messages M_1M_2 and M_1M_2 , of two 128-bit blocks each. Note that for many other values M''_1 of the form $(e_0^0, \dots, e_{15}^0 + k.16)$ (k : an integer) of the first 128-bit block, the message M''_1M_2 leads to the same hash value as M_1M_2 : the observed phenomenon is in fact a #### 3 Conclusions multiple collision. The attack described in this paper takes advantage of the two following weaknesses of the FFT-Hashing algorithm: - the influence of the term e_{i-3} in the recurrence $e_i := e_i + e_{i-1}e_{i-2} + e_{e_{i-3}} + 2^i \pmod{p}$ on the security of the algorithm is rather negative (see for example the method to obtain $c_6^2 = 0$ (or $c_8^2 = 0$) at step 1 of Section 2.2). - as mentioned in Section 1.3, the diffusion introduced by the four steps of the algorithm is quite limited. In particular, the FT_8 Fourier transform acts only on half of the intermediate values (e_0 , ..., e_{15}), namely the 8 values e_0 , e_2 , ..., e_{14} . This suggests that quite simple modifications might result in a substantial improvement of the security of the FFT-Hashing algorithm. # 4 Acknowledgements The autors are greateful to Jacques BURGER (SEPT PEM, 42 rue des Coutures, BP 6243, 14066 CAEN, France) for the Sparc implementation as well as useful discussions. ### 5 References - [1] : C.P. SCHNORR; FFT-Hashing : An Efficient Cryptographic Hash Function; July 15, 1991 (This paper was presented at the rump session of the CRYPTO'91 Conference, Santa Barbara, August, 11-15, 1991) - [2] : DAEMEN BOSSELAERS GOVAERTS VANDEWALLE : Announcement made at the rump session of the ASIACRYPT '91 Conference, Fujiyoshida, Japan, November 11-14, 1991) | SSAGE H - M1 M2 with | MI - F95A 807A 26A 0 440 365E 0 10 | H2 - 1537 5202 3284 358 5D1C 959£ 6D6B 75E0 | on of H1 : | HO - 123 (567 89AB CDEF FEDC BA90 7654 3210 | M1 - F95A 807A 26A 0 440 365E 0 10 | 1: 10000 4567 4F72 CDEF 884C BA98 D98A 3210
FB30 807A F62E 0 3677 365E 0 10 | 2: 0 4569 4F76 1DD1 6CEA F49C 1DB9 7D13
ADDC 156 5AFE CD52 A692 158A 4626 B81B | 1: CFA9 4569 2466 1DD1 2F1A F49C F3D7 7D13
B305 156 3057 CD52 5A7 158A 0 B81B | 2: 0 456B F18C 91E1 64F8 F602 F899 A787
7DCA CDE2 4508 3BE5 8F64 E23C 988A 5BF6 | H1 - 7DCA CDE2 4508 38E5 8F64 E23C 988A 58F6 | on of H2 : | H: - 7DCA CDE2 4508 3BE5 8F64 E23C 9B8A 5BF6 | 2 - 1537 5202 3284 358 5DIC 959E 6D6B 75E0 | 1: 10000 CDE2 C5BE 3BE5 3E13 E23C 418A 5BF6
FF01 5202 9B04 358 EF0 959E 0 75E0 | 2: 0 CDE4 C5C2 17A9 65D1 6370 0 2A59
0 5402 F306 99A5 8BB5 9A6E 3REF 73A9 | 1: E268 CDE4 8B79 17A9 E6CC 6370 E7C2 2A59
FF01 5402 CD5 99A5 37CB 9A6E 7FF2 73A9 | 2: 5551 E84C 4E20 EA99 C82F 9B86 0 9E82
0 AB53 5EF5 27D8 9554 995 983F 89CF | H2 - 0 AB53 SEFS 27D8 9554 995 983F 89CF | SSAGE : 0 AB53 SEF\$ 27D8 9554 995 983F 89GF | |----------------------|------------------------------------|---|--------------------|---|------------------------------------|--|---|--|--|--|-------------|--|--|---|--|--|--|--|--| | SECOND MESSAGE | | | calculation of | - | £ | u
Gen | step | arep | step | н | calculation | x | E E | step 1: | step | step | stap 2: | | HASHED MESSAGE | | | • | 75E0 | | 1210 | • | 1210 | D13 | D13 | 787 | BE 6 | | BE6 | SE0 | BE 6
SEO | 349 | 349 | E72
9CF | ğÇ. | 30E | | | • | 6068 | | 7654 3210 | 0 | D98A 3210
0 0 | 1089 7013
4626 8808 | F3D7 7D13
0 B80B | F899 A787
988A 5806 | 988A 58E6 | | 988A 58E6 | 6D6B 75E0 | 418A 5BE6
0 75E0 | 0 2A49
38EF 73A9 | E7C2 2A49
7FF2 73A9 | 0 9E72
983F 89CF | 983F 89CF | 983F 89CF | | | 365E 0 | 8909 3656 | | BA98 7654 | 365E 0 | BA98 D98A
365E D | F49C 1DB9
158A 4626 | F49C F3D7 | F602 F899
E23C 988A | £23C 988A | | £23C 988A | 959E 6D6a | E23C 418A
959E 0 | 6370 0
9A6E 38EF | 6370 E7C2
9AGE 7FE2 | 9886 0
995 983F | 995 983F | 995 983F | | | • | \$D1C 959E 6D68 | | FEDC 8A98 7654 | 440 365E 0 | B84C BA98 D98A
3677 365E 0 | 6CEA F49C 1DB9
A692 158A 4626 | 2FIA F49C F3D7
5A7 158A 0 | 64F8 F6D2 FB99
8F64 E23C 9B8A | 8F64 E23C 9BBA | | 8F64 E23C 988A | SD1C 959E 6D6B | 3E13 E23C 418A
EFO 959E 0 | 6501 6370 0
8BB\$ 9A6E 38EF | E6CC 6370 E7C2
37CB 9A6E 7FF2 | C82F 9B86 0
9554 995 983F | 9554 995 983F | 9554 995 983F | | ith | 0 440 365E 0 | 358 SDIC 959E 6D68 | | CDEF FEDC BA98 7654 | 0 440 365E 0 | CDEF B84C BA98 D98A
0 3677 365E 0 | 1DD1 6CEA F49C 1DB9
CD52 A692 158A 4626 | 1DD1 2F1A F49C F3D7 CD52 5A7 158A 0 | 91E1 64F8 F6D2 FB99
3BE5 8F64 E23C 9B8A | 3BE5 8F64 E23C 9B8A | | 38E5 8F64 E23C 988A | 358 SDIC 959E 6D68 | 3BES 3E13 E23C 418A
358 EFO 959E 0 | 17A9 6501 6370 0
99A5 8BB5 9A6E 38EF | 17A9 E6CC 6370 E7C2
99AS 37CB 9A6E 7FF2 | EA99 C82F 9B86 0
2708 9554 995 983F | 27D8 9554 995 983F | 27D8 9554 995 983F | | with | 26A 0 440 365E 0 | 3284 358 SDIC 959E 6D68 | | 89AB CDE? FEDC BA98 7654 | 26A 0 440 365E 0 | 4F72 CDEF B84C BA98 D98A
F62E 0 3677 365E D | 4F76 1DD1 6CEA F49C 1DB9
5AFE CD52 A692 158A 4626 | 2466 1DD1 2F1A F49C F3D7
3057 CD52 5A7 158A 0 | FIBC 91E1 64F8 F6D2 FB99
4508 38E5 8F64 E23C 9BBA | 8F64 E23C 9BBA | | 4508 38ES 8F64 E23C 988A | SD1C 959E 6D6B | 3E13 E23C 418A
EFO 959E 0 | 6501 6370 0
8BB\$ 9A6E 38EF | E6CC 6370 E7C2
37CB 9A6E 7FF2 | C82F 9B86 0
9554 995 983F | 9554 995 983F | SEFS 2708 9554 995 983F | | ¥2 | 807A 26A 0 440 365E 0 | 5202 3294 358 SD1C 959E 6D68 | | 4567 89AB CDEF FEDC BA98 7654 | 807A 26A 0 440 365E 0 | CDEF B84C BA98 D98A
0 3677 365E 0 | 1DD1 6CEA F49C 1DB9
CD52 A692 158A 4626 | 4569 2466 1DD1 2F1A F49C F3D7
156 3057 CD52 5A7 158A 0 | 91E1 64F8 F6D2 FB99
3BE5 8F64 E23C 9B8A | 3BE5 8F64 E23C 9B8A | | 38E5 8F64 E23C 988A | 358 SDIC 959E 6D68 | 3BES 3E13 E23C 418A
358 EFO 959E 0 | 17A9 6501 6370 0
99A5 8BB5 9A6E 38EF | 17A9 E6CC 6370 E7C2
99AS 37CB 9A6E 7FF2 | EA99 C82F 9B86 0
2708 9554 995 983F | 27D8 9554 995 983F | 27D8 9554 995 983F | | | 26A 0 440 365E 0 | 3284 358 SDIC 959E 6D68 | calculation of H1: | 89AB CDE? FEDC BA98 7654 | 26A 0 440 365E 0 | 4F72 CDEF B84C BA98 D98A
F62E 0 3677 365E D | 4F76 1DD1 6CEA F49C 1DB9
5AFE CD52 A692 158A 4626 | 2466 1DD1 2F1A F49C F3D7
3057 CD52 5A7 158A 0 | FIBC 91E1 64F8 F6D2 FB99
4508 38E5 8F64 E23C 9BBA | 4508 3BE5 8F64 E23C 9B8A | of H2 : | 4508 38ES 8F64 E23C 988A | 3284 358 SDIC 959E 6D6B | C58E 38E5 3E13 E23C 418A
9804 358 EF0 959E 0 | C5C2 17A9 6501 6370 0
F306 99A5 8BB5 9A6E 38EF | 8879 17A9 E6CC 6370 E7C2
CDS 99AS 37CB 9A6E 7FE2 | 4E20 EA99 C82F 9B86 0
5EF5 27D8 9554 995 983F | SEF5 27D8 9554 995 983F | SEFS 2708 9554 995 983F | ANNEX