F.F.T. Hashing is not Collision-free

T. BARITAUD * . H. GILBERT * . M. GIRAULT **

- (*) CNET PAA/TSA/SRC 38-40, avenue du Général Leclerc 92131 ISSY LES MOULINEAUX (France)
- (**) SEPT PEM
 42, rue des Coutures
 BP 6243
 14066 CAEN (France)

Abstract

The FFT Hashing Function proposed by C.P. Schnorr [1] hashes messages of arbitrary length into a 128-bit hash value. In this paper, we show that this function is not collision free, and we give an example of two distinct 256-bit messages with the same hash value. Finding a collision (in fact a large family of, colliding messages) requires approximately 2²³ partial computations of the hash function, and takes a few hours on a SUN3-workstation, and less than an hour on a SPARC-workstation.

A similar result discovered independently has been announced at the Asiacrypt'91 rump session by Daemen-Bosselaers-Govaerts-Vandewalle [2].

1 The FFT Hashing Function

1.1 The Hash algorithm

Let the message be given as a bit string $m_1 m_2 ... m_t$ of t bit.

The message is first padded so that its length (in bits) becomes a multiple of 128. Let the padded message $M_1M_2 \dots M_n$ consist of n blocks M_1, \dots, M_n , each of the M_i (i=1, ...,n) being 128-bit long.

The algorithm uses a constant initial value Ho given in hexadecimal as

 $H_0 = 0123 \ 4567 \ 89ab \ cdef \ fedc \ ba98 \ 7654 \ 3210 \ in \ \{0,1\}^{128}$.

R.A. Rueppel (Ed.): Advances in Cryptology - EUROCRYPT '92, LNCS 658, pp. 35-44, 1993. © Springer-Verlag Berlin Heidelberg 1993

Let p be the prime $65537 = 2^{16} + 1$.

We will use the Fourier transform $\operatorname{FT}_8:\{0,\dots,p\text{-}1\}^8 - \cdots > \{0,\dots,p\text{-}1\}^8$

$$(a_0, ..., a_7) \longrightarrow (b_0, ..., b_7)$$

with
$$b_i = \sum_{j=0}^{7} 2^{4ij} a_j \mod p$$
, for $i = 0, ..., 7$.

Algorithm for the hash function h:

INPUT :
$$M_1 M_2 ... M_n$$
 in $\{0,1\}^{n,128}$ (a padded message)

DO:
$$H_i = g(H_{i-1}, M_i)$$
 for $i = 1, ..., n$

OUTPUT:
$$h(M) := H_n$$

Algorithm for
$$g: \mathbb{Z}_p^{16} \longrightarrow \{0,1\}^{8.16}$$

INPUT
$$(c_0, ..., c_{15})$$
 in $\{0,1\}$ 16.16

1.
$$(c_0, c_2, \dots, c_{14}) := FT_8(c_0, c_2, \dots, c_{14})$$

2. FOR
$$i = 0, ..., 15$$
 DO

$$e_i := e_i + e_{i-1}e_{i-2} + e_{c_{i-3}} + 2^1 \pmod{p}$$

(The lower indices i, i-1, i-2, i-3, e_{i-3} are taken modulo 16)

REPEAT steps 1 and 2

OUTPUT
$$c_i := c_i \mod 2^{16}$$
, for $i = 8, ..., 15$ (an element of $\{0,1\}^{8,16}$)

1.2 Notations

For a better clarity of our explanation, we will denote by c_i^0 (i=0, ...,15) the initial c_i values, and we will denote by step 3 (resp. step 4) the second pass of step 1 (resp. step2) in the algorithm for g.

When it will be necessary to avoid any kind of slip, we will denote by c_i^k (i=0, ... ,15; k=0, ... ,4) the c_i intermediate value, after step k.

In order to simplify the expressions, we are using the following notations:

- The additions (x+y), multiplications (x,y) and exponentiations (x^y) are implicitly made modulo n, except when the operands are lower indices.
 - The = symbol denotes that the right and the left terms are congruent modulo p.
- For lower indices the additions (i+j) and substractions (i-j) are implicitly made modulo 16, and the = symbol denotes that the right and the left terms are congruent modulo 16.

1.3 Preliminary remarks

The difficulty of finding collisions is related to the diffusion properties of the hashing function, i.e. the influence of a modification of an intermediate variable on the subsequent variables of the calculation.

Remark 1 (limitation on the diffusion at steps 1 and 3)

At step 1 and 3, the input values e_1, e_2, \dots, e_{15} are kept unchanged.

Remark 2 (limitation on the diffusion at steps 2 and 4)

The diffusion introduced by the $e_{i-1}e_{i-2}$ terms in the recurrence for steps 2 and 4 can sometimes be cancelled (if one of values e_{i-1} and e_{i-2} is 0). More precisely, let $(e_0^1, e_1^1, \dots, e_{15}^1)$ be the input to step 2:

Proposition 1: If for a given value i in $\{1, \dots, 14\}$ we have $e_{i-1}^2 = e_{i+1}^2 = 0$ and if $e_{13}^1 \neq i$; $e_{14}^1 \neq i$; $e_{15}^1 \neq i$; $e_{j}^2 \neq i$ for j in $\{0, \dots, 12\}$, then the impact of replacing the input value e_{i}^1 by a new value $e_{i}^1 + \Delta e_{i}^1$ such that $e_{i}^1 + \Delta e_{i}^1 \equiv e_{i}^1$, is limited to the output value e_{i}^2 (that means e_{i}^2 are not modified for $j \neq i$).

Proposition 2: If $e_{14}^1 = e_0^2 = 0$ and if $e_j^2 \neq 15$ for j in $\{1, ..., 11\}$ then the impact of replacing the input value e_{15}^1 by a new value $e_{15}^1 + \Delta e_{15}^1$ such that $e_{15}^1 + \Delta e_{15}^1 \equiv e_{15}^1$, is limited to the output value e_{15}^2 .

Similarly, let $(c_1^3, c_2^3, ..., c_{15}^3)$ be the input to step 4:

Proposition 1': If for a given value i in $\{1, ..., 14\}$ we have $e_{i-1}^4 = e_{i+1}^4 = 0$ and if $e_{13}^3 \not\equiv i$; $e_{14}^3 \not\equiv i$; $e_{15}^3 \not\equiv i$; $e_{15}^4 \not\equiv i$ for j in $\{0, ..., 12\}$, then the impact of replacing the input value e_{i}^3 by a new value $e_{i}^3 + \Delta e_{i}^3$ such that $e_{i}^3 + \Delta e_{i}^3 \equiv e_{i}^3$, is limited to the output value e_{i}^4 .

Proposition 2': If $e_{14}^3 = e_0^4 = 0$ and if $e_j^4 \not\equiv 15$ for j in $\{1, ..., 11\}$ then the impact of replacing the input value e_{15}^3 by a new value $e_{15}^3 + \Delta e_{15}^3$ such that $e_{15}^3 + \Delta e_{15}^3 \equiv e_{15}^3$ is limited to the output value e_{15}^4 .

2 Construction of two colliding messages

2.1 Construction of a partial collision

We first find two 128-bit blocks M_1 and M'_1 which hash values $H_1 = (\overline{c}, \frac{4}{8}, \dots, \overline{c}, \frac{4}{15})$ and $H'_1 = (\overline{c}, \frac{4}{8}, \dots, \overline{c}, \frac{4}{15})$ differ only by their right components $\overline{c}, \frac{4}{15}$ and $\overline{c}, \frac{4}{15}$. We will later refer to this property in saying that M_1 and M'_1 realize a partial collision.

Our technique for finding M_1 and M'_1 is the following: we search M_1 values such that $c_{14}^1 = 0$; $c_0^2 = 0$; $c_0^3 = 0$. The propositions 2 and 2' suggest that for such a message $M_1 = (c_8^0, \dots, c_{14}^0, c_{15}^0)$, M_1 and the message $M'_1 = (c_8^0, \dots, c_{14}^0, c_{15}^0) + 16$ realize a partial collision with a significant probability (approximately 1/8).

There are two main steps for finding M_1 .

$$\underline{\text{Step1}}\,: \text{Selection of e}_8^0, e_{10}^0, e_{12}^0 \text{ and } e_{14}^0$$

Arbitrary (e.g. random) values are taken for e_{12}^0 and e_{14}^0 . The values of e_8^0 and e_{10}^0 are then deduced from these values by solving the following linear system:

$$\begin{cases} e_{14}^1 = 0 & (1) \\ e_{0}^1 = -1 & (2) \end{cases}$$

Proposition 3: If $e_{13}^0 \equiv 14$ then $e_{14}^1 = 0$ and $e_0^2 = 0$ independently of the values of e_9^0 , e_{11}^0 , e_{13}^0 , e_{15}^0 .

Proof: This is a direct consequence of the definition of the g function.

<u>Step 2</u>: Selection of $e_9^0, e_{11}^0, e_{13}^0, e_{15}^0$

The values of c_8^0 , c_{10}^0 , c_{12}^0 , c_{14}^0 are taken from Step 1 .

We fix the values of $c_{11}^0 = 0$ and $c_{15}^0 = 0$. An arbitrary (e.g random) value is taken for c_9^0 . We first calculate the c_{12}^2 and c_{14}^3 values corresponding to the chosen value of c_9^0 , c_{11}^0 and c_{15}^0 and to the temporary value $c_{13}^0 = 14$. Based on these preliminary calculations, we "correct" the temporary value $c_{13}^0 = 14$ by a quantity Δc_{13}^0 , i.e. we replace the value $c_{13}^0 = 14$ by the value $c_{13}^0 = 14 + \Delta c_{13}^0$, and we leave the other input values unchanged. We denote by Δc_j^i ($0 \le i \le 4$; $0 \le j \le 15$) the corresponding variations of the intermediate variables in the C_{14}^0 calculation. We select Δc_{13}^0 in such a way that the quantity $c_{14}^3 + \Delta c_{14}^3$ (i.e. the new value of c_{14}^3) is equal to zero with a good probability.

Proposition 4: If $e_{12}^2 \neq 0$ and $\frac{-e_{14}^3}{2^{4.7.7}e_{12}^2} \equiv 0$ and $e_j^2 \neq 13$ for $1 \le j \le 11$ then the above values of

,
$$e_{15}^{1}$$
, e_{0}^{2} and the value $\Delta e_{13}^{0} = \frac{-e_{14}^{3}}{2^{4.7.7}e_{12}^{2}}$ lead to the three relations

$$\begin{cases} c_{14}^{1} + \Delta c_{14}^{1} = 0 & \text{(a)} \\ c_{0}^{2} + \Delta c_{0}^{2} = 0 & \text{(b)} \\ c_{14}^{3} + \Delta c_{14}^{3} = 0 & \text{(c)} \end{cases}$$

<u>Proof</u>: (a) is straightforward; (b) and (c) are direct consequences of the following relations, which result from the definition of the g function:

$$\Delta c_{i-2}^2 = 0$$
 for $0 \le j \le 12$; $\Delta c_{13}^2 = \Delta c_{13}^0$; $\Delta c_{14}^2 = c_{12}^2 \cdot \Delta c_{13}^2$; $\Delta c_{14}^3 = 2^{4.7.7} \cdot \Delta c_{14}^2$

We performed a large number n_1 of trials of step 1. For each trial of step 1, we made a large number n_2 of trials of step 2. The success probability of step 2, i.e the probability that the trial of a c_9^0 value leads to a message such that (a), (b) and (c) are realized is slightly less than 1/16 (since the strongest

condition in proposition 2 is : $\frac{-c_{14}^3}{2^{4.4.7}c_{12}^2} \approx 0$). Therefore the probability that a step 2 trial leads to a message

$$M_1$$
 such that $c_{14}^1 = c_0^2 = c_{14}^3 = c_0^4 = 0$ is slightly less than $1/16 \cdot 2^{-16} = 2^{-20}$.

Moreover, the probability that such a message M_1 leads to a partial collision is basically the probability that none of the e_{i-3} mod 16 indices occurring in the calculation of e_0^2 to e_{15}^2 and e_0^4 to e_{15}^4 takes the value 15, which is close to 1/8. So, in summary, approximatively 2^{23} partial computations of the g function were necessary to obtain a suitable message $M_1 = (e_8^0, \dots, e_{14}^0, e_{15}^0)$, such that M_1 and the message $M_1 = (e_8^0, \dots, e_{14}^0, e_{15}^0)$, such that M_1 and the $M_1 = (e_8^0, \dots, e_{14}^0, e_{15}^0)$ head to partially colliding hash values $M_1 = (e_8^0, \dots, e_{15}^0)$ and $M_1 = (e_8^0, \dots, e_{15}^0)$ and $M_1 = (e_8^0, \dots, e_{15}^0)$ head to partially colliding hash values $M_1 = (e_8^0, \dots, e_{15}^0)$ and $M_1 = (e_8^0, \dots, e_{15}^0)$ head to partially colliding hash values $M_1 = (e_8^0, \dots, e_{15}^0)$ and $M_1 = (e_8^0, \dots, e_{15}^0)$ head to partially colliding hash values $M_1 = (e_8^0, \dots, e_{15}^0)$.

2.2 Construction of a full collision using a partial collision

We now show how to find a 128-bit message $M_2 = (c_8^0, ..., c_{15}^0)$ such that the previously obtained hash values H_1 and H_1^* (denoted in this section by $(c_0^0, ..., c_7^0)$ and $(c_1^0, ..., c_6^0, c_7^0) = (c_1^0, ..., c_6^0, c_7^0 + 16)$) respectively lead to the same hash value H_2 (when combined with M_2): $g(H_1, M_2) = g(H_1, M_2)$.

Our technique for finding M_2 is quite similar to the one used for finding M_1 and M'_1 . Let us denote by e_j^i (resp e'_j^i) ($0 \le i \le 4$, $0 \le j \le 15$) the intermediate variables of the calculations of $g(H_1, M_2)$ (resp $g(H'_1, M_2)$).

We search M_2 values such that $c_6^2 = c_8^2 = c_6^4 = c_8^4 = 0$. The propositions 1 and 1' suggest that the probability that the 16-uples (c_0^4, \dots, c_{15}^4) and (c_0^4, \dots, c_{15}^4) differ only by their components c_7^4 and c_7^4 which implies that the probability to have $g(H_1, M_2) = g(H_1, M_2)$ is quite substantial, approximatively 1/8.

There are two main steps for the search of M_2 :

 $\underline{\text{Step 1}}: \text{Selection of } \ e_8^0, e_{10}^0, e_{12}^0, e_{14}^0, e_9^0.$

An arbitrary (e.g random) value is taken for c_{14}^0 . The values of c_8^0 , c_{10}^0 , c_{12}^0 are deduced from c_{14}^0 by solving the following linear system:

$$\begin{cases} c_{14}^{1} = 0 & (3) \\ c_{0}^{1} = -1 & (4) \\ c_{8}^{1} = -2^{8} & (5) \end{cases}$$

A preliminary calculation, where c_9^0 , c_{11}^0 and c_{15}^0 are set to the temporary value 0 and c_{13}^0 is set to the temporary value 14, is made. The obtained value of c_6^2 , denoted by δ , is kept.

Proposition 5: If c_8^0 , c_{10}^0 , c_{12}^0 , c_{14}^0 are solutions of (3), (4), (5) and if in addition the values $c_9^0 = p-\delta$, $c_{11}^0 = 0$, $c_{13}^0 = 14$, $c_{15}^0 = 0$ lead to intermediate values such that : $c_1^2 \mod 16$ is not in $\{9,11,13,15\}$; $c_2^2 \mod 16$ is not in $\{9,11,13,15\}$; $c_3^2 \equiv 9 \mod 16$; $c_4^2 \mod 16$ is not in $\{9,11,13,15\}$; $c_5^2 \mod 16$ is in $\{0,6,14\}$, then if we fix the value $c_9^0 = p-\delta$, for any value of $c_{13}^0 \equiv 14$ and for any value of $c_{15}^0 \equiv 0$ we have:

$$e_{14}^1 = 0$$
; $e_0^2 = 0$; $e_6^2 = 0$; $e_8^2 = 0$.

<u>Proof</u>: The proof of this proposition is easy. Finding the c_8^0 , c_{10}^0 , c_{12}^0 , c_{14}^0 and c_9^0 values satisfying the conditions of the above proposition is quite easy, and requires the trial of a few hundreds c_{14}^0 values.

Step 2: Selection of e_{11}^0 , e_{13}^0 , e_{15}^0

The values of c_{8}^{0} , c_{10}^{0} , c_{12}^{0} , e_{14}^{0} , c_{9}^{0} are taken from Step 1; these values are assumed to realize the conditions of the above proposition.

An arbitrary (e.g random) value is taken for e_{11}^0 . A preliminary calculation is made, using the selected e_{11}^0 value and the temporary values $e_{13}^0 = 14$; $e_{15}^0 = 0$. The corresponding values of e_{12}^2 and e_8^3 are kept.

Based on these preliminary calculations, we "correct" the temporary value of e_{13}^0 by a quantity Δe_{13}^0 and we also consider new values $e_{15}^0 + \Delta e_{15}^0$ for e_{15}^0 . The variation Δe_{13}^0 is selected in such a way that for any Δe_{15}^0 value satisfying $\Delta e_{15}^0 \equiv 0$, the new value $e_8^3 + \Delta e_8^3$ of e_8^3 is equal to -2^8 with a substantial probability.

Proposition 6: If
$$e_{12}^2 \neq 0$$
 and $\frac{-2^8 - e_8^3}{2^{4.4.7} e_{12}^2} \equiv 0$ and e_j^2 mod 16 is not in (13.15) for 1≤j≤11 then for

any variation $\Delta c_{15}^0 \equiv 0$ on c_{15}^0 such that $c_{15}^2 + \Delta c_{15}^0 < p$ and $c_{15}^4 + \Delta c_{15}^0 < p$, the variation $\Delta c_{13}^0 = \frac{-2^8 - c_8^3}{2^{4.4.7} c_{12}^2}$ on the c_{13}^0 value leads to the following new values:

$$\mathbf{e}_{14}^{1} + \Delta \mathbf{e}_{14}^{1} = 0 \ ; \quad \mathbf{e}_{0}^{2} + \Delta \mathbf{e}_{0}^{2} = 0 \ ; \quad \mathbf{e}_{6}^{2} + \Delta \mathbf{e}_{6}^{2} = 0 \ ; \quad \mathbf{e}_{8}^{2} + \Delta \mathbf{e}_{8}^{2} = 0 \ ; \quad \mathbf{e}_{8}^{3} + \Delta \mathbf{e}_{8}^{3} = -2^{8} \ .$$

giving a full collision.

We performed a number n_1 of trials of step 1. For each successful trial of step 1, we made a large number n_2 of trials of c_{11}^0 values at step 2. For those c_{11}^0 values satisfying the conditions of the above proposition, we made a large number n_3 of trials of new c_{15}^0 values such that $\Delta c_{15}^0 \equiv 0$. The probability that the trial of a new Δc_{15}^0 value leads to intermediate variables satisfying the four equations $c_6^2 = 0$; $c_8^2 = 0$; $c_6^4 = 0$; $c_8^4 = 0$ is basically the probability that randomly tried c_6^4 and c_5^4 values satisfy $c_6^4 = 0$ and $c_5^4 \equiv 6$; the order of magnitude of this probability is therefore $c_6^2 = 0$.

Moreover, the probability that a message $c_6^2 = 0$ satisfying the four equations $c_6^2 = 0$; $c_8^4 = 0$; $c_8^4 = 0$ leads to a full collision $c_6^4 = 0$ satisfying the probability that none of the $c_{1-3}^4 = 0$ leads to a full collision $c_6^4 = 0$ satisfying the probability that none of the $c_{1-3}^4 = 0$ leads occurring in the calculation of $c_0^2 = 0$ to $c_{15}^4 = 0$ to $c_{15}^4 = 0$ takes the value 15, which is close to 1/8. So in summary approximatively $c_6^2 = 0$ partial computations of the g function are necessary to obtain a message $c_{15}^4 = 0$ summary approximatively $c_{15}^2 = 0$ partial computations of the g function are necessary to obtain a message $c_{15}^4 = 0$

2.3 Implementation details

The above attack method was implemented using a non-optimized Pascal program. The search for a collision took a few hours on a SUN3 workstation and less than an hour on a SPARC workstation. We provide in annex the detail of the intermediate calculations for two colliding messages M_1M_2 and M_1M_2 , of two 128-bit blocks each.

Note that for many other values M''_1 of the form $(e_0^0, \dots, e_{15}^0 + k.16)$ (k : an integer) of the first 128-bit block, the message M''_1M_2 leads to the same hash value as M_1M_2 : the observed phenomenon is in fact a

3 Conclusions

multiple collision.

The attack described in this paper takes advantage of the two following weaknesses of the FFT-Hashing algorithm:

- the influence of the term e_{i-3} in the recurrence $e_i := e_i + e_{i-1}e_{i-2} + e_{e_{i-3}} + 2^i \pmod{p}$ on the

security of the algorithm is rather negative (see for example the method to obtain $c_6^2 = 0$ (or $c_8^2 = 0$) at step 1 of Section 2.2).

- as mentioned in Section 1.3, the diffusion introduced by the four steps of the algorithm is quite limited. In particular, the FT_8 Fourier transform acts only on half of the intermediate values (e_0 , ..., e_{15}),

namely the 8 values e_0 , e_2 , ..., e_{14} .

This suggests that quite simple modifications might result in a substantial improvement of the security of the FFT-Hashing algorithm.

4 Acknowledgements

The autors are greateful to Jacques BURGER (SEPT PEM, 42 rue des Coutures, BP 6243, 14066 CAEN, France) for the Sparc implementation as well as useful discussions.

5 References

- [1] : C.P. SCHNORR; FFT-Hashing : An Efficient Cryptographic Hash Function; July 15, 1991 (This paper was presented at the rump session of the CRYPTO'91 Conference, Santa Barbara, August, 11-15, 1991)
- [2] : DAEMEN BOSSELAERS GOVAERTS VANDEWALLE : Announcement made at the rump session of the ASIACRYPT '91 Conference, Fujiyoshida, Japan, November 11-14, 1991)

SSAGE H - M1 M2 with	MI - F95A 807A 26A 0 440 365E 0 10	H2 - 1537 5202 3284 358 5D1C 959£ 6D6B 75E0	on of H1 :	HO - 123 (567 89AB CDEF FEDC BA90 7654 3210	M1 - F95A 807A 26A 0 440 365E 0 10	1: 10000 4567 4F72 CDEF 884C BA98 D98A 3210 FB30 807A F62E 0 3677 365E 0 10	2: 0 4569 4F76 1DD1 6CEA F49C 1DB9 7D13 ADDC 156 5AFE CD52 A692 158A 4626 B81B	1: CFA9 4569 2466 1DD1 2F1A F49C F3D7 7D13 B305 156 3057 CD52 5A7 158A 0 B81B	2: 0 456B F18C 91E1 64F8 F602 F899 A787 7DCA CDE2 4508 3BE5 8F64 E23C 988A 5BF6	H1 - 7DCA CDE2 4508 38E5 8F64 E23C 988A 58F6	on of H2 :	H: - 7DCA CDE2 4508 3BE5 8F64 E23C 9B8A 5BF6	2 - 1537 5202 3284 358 5DIC 959E 6D6B 75E0	1: 10000 CDE2 C5BE 3BE5 3E13 E23C 418A 5BF6 FF01 5202 9B04 358 EF0 959E 0 75E0	2: 0 CDE4 C5C2 17A9 65D1 6370 0 2A59 0 5402 F306 99A5 8BB5 9A6E 3REF 73A9	1: E268 CDE4 8B79 17A9 E6CC 6370 E7C2 2A59 FF01 5402 CD5 99A5 37CB 9A6E 7FF2 73A9	2: 5551 E84C 4E20 EA99 C82F 9B86 0 9E82 0 AB53 5EF5 27D8 9554 995 983F 89CF	H2 - 0 AB53 SEFS 27D8 9554 995 983F 89CF	SSAGE : 0 AB53 SEF\$ 27D8 9554 995 983F 89GF
SECOND MESSAGE			calculation of	-	£	u Gen	step	arep	step	н	calculation	x	E E	step 1:	step	step	stap 2:		HASHED MESSAGE
	•	75E0		1210	•	1210	D13	D13	787	BE 6		BE6	SE0	BE 6 SEO	349	349	E72 9CF	ğÇ.	30E
	•	6068		7654 3210	0	D98A 3210 0 0	1089 7013 4626 8808	F3D7 7D13 0 B80B	F899 A787 988A 5806	988A 58E6		988A 58E6	6D6B 75E0	418A 5BE6 0 75E0	0 2A49 38EF 73A9	E7C2 2A49 7FF2 73A9	0 9E72 983F 89CF	983F 89CF	983F 89CF
	365E 0	8909 3656		BA98 7654	365E 0	BA98 D98A 365E D	F49C 1DB9 158A 4626	F49C F3D7	F602 F899 E23C 988A	£23C 988A		£23C 988A	959E 6D6a	E23C 418A 959E 0	6370 0 9A6E 38EF	6370 E7C2 9AGE 7FE2	9886 0 995 983F	995 983F	995 983F
	•	\$D1C 959E 6D68		FEDC 8A98 7654	440 365E 0	B84C BA98 D98A 3677 365E 0	6CEA F49C 1DB9 A692 158A 4626	2FIA F49C F3D7 5A7 158A 0	64F8 F6D2 FB99 8F64 E23C 9B8A	8F64 E23C 9BBA		8F64 E23C 988A	SD1C 959E 6D6B	3E13 E23C 418A EFO 959E 0	6501 6370 0 8BB\$ 9A6E 38EF	E6CC 6370 E7C2 37CB 9A6E 7FF2	C82F 9B86 0 9554 995 983F	9554 995 983F	9554 995 983F
ith	0 440 365E 0	358 SDIC 959E 6D68		CDEF FEDC BA98 7654	0 440 365E 0	CDEF B84C BA98 D98A 0 3677 365E 0	1DD1 6CEA F49C 1DB9 CD52 A692 158A 4626	1DD1 2F1A F49C F3D7 CD52 5A7 158A 0	91E1 64F8 F6D2 FB99 3BE5 8F64 E23C 9B8A	3BE5 8F64 E23C 9B8A		38E5 8F64 E23C 988A	358 SDIC 959E 6D68	3BES 3E13 E23C 418A 358 EFO 959E 0	17A9 6501 6370 0 99A5 8BB5 9A6E 38EF	17A9 E6CC 6370 E7C2 99AS 37CB 9A6E 7FF2	EA99 C82F 9B86 0 2708 9554 995 983F	27D8 9554 995 983F	27D8 9554 995 983F
with	26A 0 440 365E 0	3284 358 SDIC 959E 6D68		89AB CDE? FEDC BA98 7654	26A 0 440 365E 0	4F72 CDEF B84C BA98 D98A F62E 0 3677 365E D	4F76 1DD1 6CEA F49C 1DB9 5AFE CD52 A692 158A 4626	2466 1DD1 2F1A F49C F3D7 3057 CD52 5A7 158A 0	FIBC 91E1 64F8 F6D2 FB99 4508 38E5 8F64 E23C 9BBA	8F64 E23C 9BBA		4508 38ES 8F64 E23C 988A	SD1C 959E 6D6B	3E13 E23C 418A EFO 959E 0	6501 6370 0 8BB\$ 9A6E 38EF	E6CC 6370 E7C2 37CB 9A6E 7FF2	C82F 9B86 0 9554 995 983F	9554 995 983F	SEFS 2708 9554 995 983F
¥2	807A 26A 0 440 365E 0	5202 3294 358 SD1C 959E 6D68		4567 89AB CDEF FEDC BA98 7654	807A 26A 0 440 365E 0	CDEF B84C BA98 D98A 0 3677 365E 0	1DD1 6CEA F49C 1DB9 CD52 A692 158A 4626	4569 2466 1DD1 2F1A F49C F3D7 156 3057 CD52 5A7 158A 0	91E1 64F8 F6D2 FB99 3BE5 8F64 E23C 9B8A	3BE5 8F64 E23C 9B8A		38E5 8F64 E23C 988A	358 SDIC 959E 6D68	3BES 3E13 E23C 418A 358 EFO 959E 0	17A9 6501 6370 0 99A5 8BB5 9A6E 38EF	17A9 E6CC 6370 E7C2 99AS 37CB 9A6E 7FF2	EA99 C82F 9B86 0 2708 9554 995 983F	27D8 9554 995 983F	27D8 9554 995 983F
	26A 0 440 365E 0	3284 358 SDIC 959E 6D68	calculation of H1:	89AB CDE? FEDC BA98 7654	26A 0 440 365E 0	4F72 CDEF B84C BA98 D98A F62E 0 3677 365E D	4F76 1DD1 6CEA F49C 1DB9 5AFE CD52 A692 158A 4626	2466 1DD1 2F1A F49C F3D7 3057 CD52 5A7 158A 0	FIBC 91E1 64F8 F6D2 FB99 4508 38E5 8F64 E23C 9BBA	4508 3BE5 8F64 E23C 9B8A	of H2 :	4508 38ES 8F64 E23C 988A	3284 358 SDIC 959E 6D6B	C58E 38E5 3E13 E23C 418A 9804 358 EF0 959E 0	C5C2 17A9 6501 6370 0 F306 99A5 8BB5 9A6E 38EF	8879 17A9 E6CC 6370 E7C2 CDS 99AS 37CB 9A6E 7FE2	4E20 EA99 C82F 9B86 0 5EF5 27D8 9554 995 983F	SEF5 27D8 9554 995 983F	SEFS 2708 9554 995 983F

ANNEX