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Abstract. FA-stop signaturcs (introduced in [WP89]) have the very nice 
property that the signer is secure against unlimited powerful forgers. 
However, the known fail-stap signatures require very long kcys. and they are 
quite inefficicnt, bocause messages are signed bit-wise. This paper presents a 
fail-stop signature scheme, in which signing a message block requires two 
modular multiplications and verification requires less than two modular 
exponentiations. Furthermore a construction is shown of an undeniable 
signature scheme, which is unconditionally secure for thc signer, and which 
allows the signer LO convert undeniable signnturcs into fail-stop signatures. 
This is thc first published undeniablc signature having this property. 

1. Introduction 

Digital signatures, as introduced in [DH76], allow a person who knows a secret key to 
make signaturcs that everybody can verify. These signatures are only computationally 
secure in the sense that a forger with unlimited computing power can always make false 
signatures of other persons. Hence, the security of these systems relies on the fact that a 
forger has not enough time and no efficient algorithm to cany out the computations 
needed to forge signatures. 

With fail-stop signatures (see [WP89]), unforgeability also relies on a cryptographic 
assumption, but if nevertheless a signature is forged, then the presumed signer can prove 
that the signature is a forgery: he can prove that the underlying assumption of the 
system has been broken. This proof of forgery may fail with a very small probability, 
but the ability to prove a forgery does not rely on any cryptographic assumption and is 
independent of the computing power of the forger. Hence, the polynomially bounded 
signer is protected against all powerful forgers, because after the f i s t  forgery, all other 
participants in the system and the system operator know that the signature scheme has 
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been broken, and the system will be stopped. That is why this system is called “fail- 

Fail-stop signatures are known to exist if claw-free permutation pairs exist (see for 
instance [BPW90] and [PW91]). These signatures use the idea of the one-time 
signatures of [La79]. In particular, this means that the signatures and keys are very long, 
and signing as well as verification require quite a lot of computation. Several tricks are 
therefore applied to make the signatures more efficient (see for example [PWglJ). 

s top”. 

However, these tricks are not needed in one of the applications of fail-stop 
signatures, called the 3-phase protocol, proposed in [PW91]. Here it is suggested that 
customers in an electronic payment system should use fail-stop signatures when signing 
a request to the bank (for example for the withdrawal of money). These signatures have 
the advantage over usual digital signatures that the customers need not worry about the 
bank (which in general has more computing power than the customer) being able to 
break the underlying assumptions of the signature scheme. In this 3-phase protocol for 
making such requests, the customer only has to sign one single bit with a fail-stop 
signature. Hence, this protocol is quite efficient, but it is interactive, and it relies on the 
assumption that the set of possible recipients is fixed. 

It has been very unsatisfactory that the “general”, known fail-stop signatures were 
much less efficient than digital signatures (see [PW91]). 

The main objective of this paper is to present a fail-stop signature scheme whose 
complexity is comparable with that of RSA-signatures (see [RSA78]). More 
specifically, for each message the public key is approximately 1000 bits (assuming a 
modulus of size 500 bits), the secret key is approximately 2000 bits and the signature of 
a 500-bit mcssage is 1000 bits (a longer message can be hashed to 500 bits before 
signing). The construction of a signature requires two multiplications and two additions 
modulo a prime, and the verification requires only a little more thane one 
exponentiation modulo a prime. Thus messages can be signed very efficiently, whereas 
the verification of signatures is a little slower than for RSA-signatures. 

In the next section, we give an informal description of fail-stop signatures and 
discuss the properties of such signatures. After a brief description of the notation, 
Section 4 presents the new scheme and it is proven that it satisfies the requirements of 
fail-stop signatures. The scheme presented here can only be used to sign a single 
message, but in Section 5 it is shown how to generalize this scheme to sign a constant 
number of messages. Section 6 uses the ideas of Section 4 to construct an undeniable 
signature scheme which is unconditionally secure for the signer. This scheme has the 
property that the signer can convert these undeniable signatures into fail-stop signatures. 
Finally, Section 7 discusses some applications of the presented schemes. 

2. Fail-stop Signatures 

This section gives a brief and rather informal description of the properties of fail-stop 
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signatures, which are required for the scheme in Section 4 (for a formal definition see 
[PW90]). 

In a fail-stop signature scheme, (exponentially in a security parameter) many secret 
keys correspond to a given public key, and different secret keys will (with very high 
probability) give different signatures on the same message. However, the signer knows 
only one of these secret keys and can therefore construct only one of these signatures on 
a message. A signature is called valid if it passes the public test function. 

Furthermore, given the public key and signatures on some messages, a forger must 
not be able to guess which signature the signer is able to construct on a new message, so 
that even if the forger (by using his unlirnitcd power) succeeds in making a valid 
signature, this signature will with very high probability be different from the signer’s 
signature. Given such a forged signature the signer must then be able to prove that it is 
different from his own signature, thereby proving that it  is a forgery. After having 
discovered such a forgery and proved it, the signer should stop using the scheme. 

More specifically, if SK is the secret key of the signer, and PK the public key, the 
signature S on a message, m, is denoted by S=sign(SK, m). The recipient of such a 
signature can verify its correctness using the polynomial time computable predicate 
rest(PK, m, S) (here polynomial time means polynomial in a security parameter k). 
For fail-stop signatures this predicate must satisfy that for every secret key S K *  
corresponding to PK 

tcst(PK, m, sign(SK*, m)) is true. 
A scheme is a fail-stop signature scheme if it satisfies the following three 

(i) Let P K  and the signatures = sign(SK, m) on rn be given. Then there are 
exponentially many (in k )  possible secret keys SK* corresponding to P K  such 
that S=sign(SK*, m). Furthermore, if such a secret key SK* is chosen at 
random, then the probability that sign(SK,  m*)  = sign(SK*, m*) is negligible, 
for every message m*# m. 
(Informally: it is not possible to compute the signer’s signature on a new message, 
even with unlimited computing power,) 

(ii) There is a polynomial-time computable function pruuf, which on input SK, PK, a 
message m, and a valid, forged signature S’#sign(SK, m) on m, outputs a 
proof that S’ is a forgery. 
(Informally: the presumed signer is able to supply a proof of the forgery.) 

(iii) No signer with polynomial-time computing power is able to construct a valid 
signature S on a given message m and also construct a proof that S is a forgery. 
(Informally: the signer cannot make signatures which he can later prove to be 
forgeries.) 

requirements: 

These rwuirements are for one-time keys. It is not hard to generalize this definition 
of fail-stop signatures to comprise schemes in which more than one message can be 
signed. 

The first two requirements imply that fail-stop signatures are unconditionally secure 
for the signer, whereas the third requirement says that the scheme is secure for the 
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recipients of the signatures. Unlike the security for the signer, the security for the 
recipient depends on a complexity theoretic assumption. The reader is referred to 
[PW90] for a thorough discussion of the properties of fail-stop signatures. (To avoid 
confusion, note that [PW90] considers different security parameters for the security of 
the signer and for the security of the recipient, while in our scheme these are equal.) 

3. Notation 

Throughout this paperp and q denote large primes such that q divides p-I, and G, 
is the unique subgroup of 72; of order q. As any element 6+1 of G, generates the 

group, the discrete logarithm of QE G, with respect to the base b is defined, and it  is 
denoted by log&). 

4. Signature Scheme 

In this section an efficient fail-stop signature based on the discrete logarithm assumption 
is described. Let g and h be elements of G, such that no participant knows logg(h). 
These elements can either be chosen by a trusted authority, when the system is 
initialized, or by some of the participants using a coin-flipping protocol. 

Although (p, 4, g, h) is part of the public key, it will not be mentioned in the 
following. To give a better idea of the scheme, we will in this section assume that a 
person issues only one signature. Let the secret key of person A be 

4 SK= ( x l J 2 , Y l , Y 2 ) E ~ q .  

and Apublislies the corresponding public key 

XI x2 YlhY2). P K = @ l , P 2 ) =  (s h 9 6  

To sign a message me a,, A computes the following numbers: 

S = sign(SK, m) = ( q ( S K ,  m), q ( S K ,  m)), where 
q(SK, m) 5 xl+myl (mod q), 

02(SK, m) = x2+my2 (mod 4).  

The recipient of this signature verifies that 

PIP? = galhua. (3) 
The proof of forgery is log@). 

The following three lemmas show that this signature scheme is a fail-stop signature 
scheme. First note that for every secret key, SK*, corresponding to PK, the predicate 
tcsr(PK, m, sign(SK*, m)) is true for all messages, m, i.e., for every tuple [ x l ,  x2 ,  
yl, y2)  E Z: that satisfies 
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Lemma 1. The public key PK, together wirh a signature sign(SK, m )  on rn, contain 
no information about which of q possible secret keys are wed for SK.  

Proof. This lcnima is a special case of Thm 4.4 of [Ped91]. Another way to prove it is 
the following. Define h = ga ,p l  = gel ,p2  = ge2. This representation is possible because 
g is a generator of G,. Then we can write Equations (1) and (2) as: 

el 5 x1 + ax2 (mod q), 
ez = y1 + ay2 (modq), 
a1 = XI + my1 (modq), 1 o2 = x2 +my2 (rnodd. 

The fact that equation (3) holds, follows immediately from equations (I) and (2) as 
noted above. The forger has to find a solution (XI, x2, y1, y2) to the Equations 

It is easy to see that this mamx has rank 3 (the rank is defined because q is prime), 
P hence, since there is one solution, there are exactly q solutions to this equation. 

Lemma 2. Let PK,  the signature S = sign(SK. m) o n  m and a valid signature 
s'= (71, 22) on m'fm (so p,pF' 5 gT1hT2) ,  be given. Then there exists a unique 
secret key, SK*, corresponding to P K  such that S = sign(SK*, m) and S '= 
sign(SK*, m3 

Proof As in the proof of Lemma 1, a solution (xl, x2, y l ,  y2) to the matrix equation 

has to be found. It is easy to see that this matrix has rank 4 (because m'#rn), so there is 
exactly one solution. 0 

Lemma 1 says that there are q possible secret keys corresponding to a given public 
key and one signature. By Lemma 2, each of these will yield a different signature on a 
message m%m. This shows that the first requirement for the security of the signer is 
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satisfied. 

Lemma 3. I f  rhe presumed signer receives a valid, forged signature S' = (z,, 22) on 
rn (so p l p r  = gT1 hT2),  but S'# sign(SK, m), then he can compute log,(h). 

Proof By writing S= sign(SK, rn)=(ol, is2), we have that pl$ e gT1hS = gu1ha2 

and thus that gull-'* =hT2-a2 (modp). If 02=%, then we also have that o1=q and 
thus S=S'. This is a contradiction, and therefore the presumed signer can compute 

0 log,(h) as (0, - q)(q - q)-' modq. 

Hence, under the assumption that the signer cannot compute log,@), he  is not able 
to construct a valid signature and also a proof that it is a forgery. Thus we can define 

proof(SK, S') := (a, - zl)(zz - aZ)-' modq. 

On the other hand the signer cannot compute a proof of forgery without being given 
a forged signature unless he is able to compute discrete logarithms. This shows that thc 

scheme is computationally secure for the recipients if it is infeasible to compute 
h@). 

Note that this sccil;t key is a one-time key: if two different messages are signed 
using the same secret key, then it is easy to compute the secret key from these 
signatures. 

Remark. In the above scheme. the public key consists of two numbers modulo q. It is 
possible to reduce the size of this public key as follows. Let H be a collision-free hash 
function that maps the elements of G, into numbers of a smaller size. Then the public 
key will be 

PK*=r(H(P,), P2). 

wherepl andpz are defined as before. A signature (01, a,) on the message m is 
consmcted as before, and it is verified as 

H(g'' h "2p~"> = H (pl ) . 

By using this public key, the Lemmas 1, 2 and 3 have to be modified. For instance, 
Lemma 3 has to be modified as follows: 

Lemma 3.a. /f the presumed signer receives a valid, forged signature s' = (q, zz) 
on m ( s o  H(gT1hT2pTm)= H ( p l ) ) ) ,  but S'#sign(SK, m), then he can compute 
log,(h) or he has found a collision for H. 

Long messages can fnst be hashed into smaller messages before signing. In this case 
a proof of forgery is either log,@) or a collision of the hash function H .  Hence, 
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Lemma 3 has to be modified in a similar way as was done in Lemma 3.a. Even if no 
hash functions are used in the public key, it is more efficient to verify the signature by 
computing 

g uL hazp;", 

and comparing it with p l .  This requires less than 2141 multiplications (where 141 is the 
number of bits of q), if the products gh, gp2, hp2 and ghpz are precomputed. 

5. More than one Signature per Public Key 

As noted in the previous subsection, a person can use his public key (and secret key) 
only once. We now present three different ways to overcome this problem: the public 
key can be used to sign k messages, and the signer still has unconditional security. In 
the first two methods, the secret key consists of 2k numbers, while each signature 
consists of 2 numbers. These two schemes differ in the computations needed. In the 
third method, the secret key consists of at most k elements. while each signature 
consists ofrlog k l +  3 numbers. 

Method 1. Person A chooses as a secret key 

= (XI7 Y 1 9  x2.7 Y2.7. . . I  -$+I, Yk+l ) ,  

and he publishes the corresponding public key 

1. PK = (PI,  ..., p'k+1) = (gX'hY' )...) g x t + l  p + 1  

To sign a message r n ~  B,, A computes the following numbers: 

sign(SK,m) = (q, oz), where 
01 =xl +mz+...+m xk+l (modq), 
a2 E y1 + rny2-t.. . .+M Yk+1 (modq). 

k 
k 

The recipient of this digital signature verifies that 

p lp~ . , . p$ l  =galhaz (modp). 

After issuing signatures on k different messages, the signer still has unconditional 
security. (This follows from Theorem 4.4 of [Ped91].) Given k signatures, there are Q 
possible secret keys, and k+l  signatures determine the secret key uniquely. As before 
logg(h) constitutes a proof of forgery, and it follows from similar arguments that the 
two last requirements to fail-stop signatures are satisfied. 

Method 2. ([Pf91]) Person Achooses the same secret key and public key as in Method 
1. In Method 2, the signature on the message depends on the number of messages that A 
has signed previously. If A has signed i-1 messages (lGSk), the signature on a 
message, m, will be 

sign[SK, m, i )  = ( i .  o,, D&, where 
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0, =x i+mj+1 ,  
0 2  = yi + tnyi+1. 

The recipient of this signature verifies that 

m - ~ I ~ ~ Z *  

Hence, at the cost of including a counter in the signatures, the computations of the 
signer as well as the recipient are easier here than in Method 1. 

Again, the security of the recipient follows from the fact that log&) is a proof of 
forgery. In order to prove that the signer has unconditional security we first note that 
any k+l signatures determine the secret key. Hence it is sufficient to show that after 
issuing k different signatures there arc many ( 4 )  possible secret keys. This will be 
done by showing that the rank of the following (3k+I)x(2k+2) matrix, Ah is 2k+ 1 

PiPi+l - g 

(remember that a = log&)): 

Ak = 

1 0 ml 
1 0 ml 

1 0 m2 
1 0 rrQ, 

1 0 rnk 
1 0 mk 

l a  
a .  

l a  

This will be done by proving that mamx & can be obtained from Ak by elementary 
row operations, where 

The matrix ;ik clearly has rank 2k i -1 .  We changeAk to & by using Lemma 1 for 
i=l,.. .,k-1 as follows. Consider the following four rows of the matrix Ak. 

0 ... 0 1 0 mi 0 0 ... 0 
0 ... 0 0 1 0 nrj 0 ... 0 
0 ... 0 1 a 0 0 0 ... 0 
0 ... 0 0 0 1 a 0 ... 0 

By Lemma 1, this sub-mauix has rank 3 and the third row can be removed. By using 
this method for kl,. . .,k-1, we delete all rows (0 . . . 0 1 u 0 . . . 0), except the last one. 
The resulting matrix is &. 
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Hence, P K  and k signatures sign(SK, ml ,  I ) ,  ..., sign(SK, mk. k )  contain no 
information about which of q possible secret keys are used for SK, and each of these 
possible secret keys will yield a different signature on a new message m*. 

Method 3. Use tree-authentication, which is described in [MerkW] and [PW91], for 
example. 

6. Convertible Undeniable Signatures Unconditionally Secure for the Signer 

Convertible undeniable signatures were introduced in [BCDP90]. Briefly, these 
signatures allow the signer of undeniable signatures to change his sirgnatures to ordinary 
digital signatures. In [CHp91] an undeniable signature scheme was presented in which 
the signer is unconditionally secure. This section combines the ideas of [BCDP901, 
[CHP91] and Section 4 by constructing an undeniable signature scheme which is 
unconditionally secure for the signer and has the property that the signer can convert the 
undeniable signatures to fail-stop signatures. 

Let p ,  q, g and h be as in  Section 2. The secret key of a person A is 

SK = (xi. ~ 2 ,  Y I ,  ~ 2 )  E z:t 
and the corresponding public key is 

~ K = ( P I , P z ) = ( E  XI h x2 ,g Y1hY2). 

The undeniable signature of A on the message me Z, is 

q ( S K ,  m) = X , + ~ Y I  (mod 41, 

This signature is undeniable, because given PK, the signature is just a random number 
in Z,. The signature scheme is unconditionally secure for the signer, because given 
01, it is impossible for a forger with unlimited computing power to construct 0; = 
si,qn(SK, m3 for a new message m' f m. This follows from the same arguments as in 
Lemma 1 and 2. We mention that A can convert this signature to a fail-stop signature by 
publishing 

= x 2 + m y 2  (mod 4). 

which changes the undeniable signature into the fail-stop signature of Section 4. 

Verification 
To verify the signature 0, on a message m, A and the recipient compute 

u 5 plpz g (modp),  and A convinces the recipient with a zero-knowledge protocol 
that he knows a number a2 such that u = hu2 (modp). Perfect zero-knowledge 
protocols for this problem are well known (e.g. [CEvdG87]), hence 

rn -a1 
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Theorem 4. There is  a perfect zero-knowledge protocol for convincing someone of 
having o2 satisfying u = hu2 (modp). 

Disavowal of these signatures is slightly more complicated. A given number 
E Z, is not A's signature on m if 

where 02 I xz+rnyz (mod 4). Z can therefore convince someone that d is not his 
signature by convincing him that he knows numbers s and t such that 

p , p p  = g S h f  (modp),  and c r t s .  

(because if d was his signature this would mean that A knew log,(h)). A perfect 
zero-knowledge proof for this was presented in [ C W  I]. 

7. Applications 

As mentioncd in the introduction, fail-stop signatures have been suggested to be used in 
electronic payment systems, such that the customer does not need to rely on the 
assumption that the bank does not have sufficient computing power to forge his 
signatures. IJsing the previously known schemes, this application required a 3-phase 
protocol between the bank and the customer in which also usual digital signatures are 
used (see [PW91]). If the signature scheme presented here is used, this protocol can be 
avoided and the customer just needs to send a single message to the bank in order to 
sign the request. 

8. Conclusion 

This paper has described a fail-stop signature scheme which is very efficient from a 
computational point of view, and in which signatures are only twice as long as the 
messages (Iong messages cari Ti-st be hashed into smaller messages before signing). 
This scheme makes it possible to avoid the 3-phase protocol of [PW91] when applied to 
payment systems. 

Furthermore, it has been shown how to construct convertible, undeniable signatures, 
which are unconditionally secure for the signer. 

The main disadvantage of the presented schemes is that they can only be used to 
construct a fixed number of signatures. This property cannot be avoided, because in a 
forthcoming paper (with Birgit Pfitzmann) it is shown that a signature scheme which is 
unconditionally secure for the signer, requires secret keys whose lengths are linear in 
the number of messages to be signed. 
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