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Abstract. The problem of factoring integers in polynomial time with the 
help of an (infinitely powerful) oracle who answers arbitrary questions with 
yes or no is considered. The goal is to minimize the number of oracle ques- 
tions. Let N be a given composite n-bit integer to be factored. The trivial 
method of asking for the bits of the smallest prime factor of N requires a/2 
questions in the worst case. A non-trivial algorithm of Rivest and Shamir 
requires only n / 3  questions for the special case where N is the product of 
two n/Zbit primes. In this paper, a polynomial-time oracle factoring algo- 
rithm for general integers is presented which, for any E > 0, asks at most cn 
oracle questions for sufficiently large N .  Based on a conjecture related to 
Lenstra's conjecture on the running time of the elliptic curve factoring al- 
gorithm it is shown that the algorithm fails with probability at most N-'l2 
for all sufficiently large N .  

1. Intro'duction 

An interesting direction of research in complexity theory is to determine the 
complexity of a problem under the assumption that an oracle is available who 
answers questions about the particular instance of the problem to be solved. 
Clearly, to introduce such an oracle can make sense only if some restrictions 
are placed on the questions that may be asked; otherwise every problem could 
trivially be solved by asking the oracle for the solution. For a given problem 
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t,hat is believed to be difficult there exists a trade-off between the restriction on 
the questions and the running time of an algorithm solving the problem with 
such restricted usc of the oracle. 

A natural restriction is to allow arbitrary questions with a binary answer 
(yes/no) but t o  restrict the number of questions. Note that every question 
having a d-ary answer can easily be simulated by pog, 4 questions with binary 
answer. Clearly, in order t o  be of interest, the number of questions must be 
smaller than the size in bits of the solution. 

It is common practice in theoretical computer science to distinguish as a 
coarse classification for the feasibility of an algorithm between polynomial and 
superpolynomial running time. The goal of the research described in this pa- 
per is to find a polynomial-time algorithm for a given problem (here integcr 
factorization) asking as few questions as possible. 

One motivation for considering this problem is to determine whether or not 
the difficulty of a certain problem can be concentrated in a few difficult bits, 
leading to a new complexity-theoretic classification of problems. Another moti- 
vation is the fact that if the number of questions could be reduced to O(1ogn) 
where n is the input size, then all possible oracle answers could be checked 
in polynomial time; this would result in a polynomial-time algorithm (without 
access to the oracle) for the original problcm. 

Motivated by a paper by Rivest and Shamir [5], this paper is concerned with 
the problem of factoring integers, which is widely believed to have no polynomial- 
time algorithm for its solution. In fact, several cryptographic systems (e.g., [6]) 
rely on the difficulty of factoring. A non-trivial factor of every n-bit integer N 
can easily be determined by asking n/2 questions, namely, “What is the i-th 
bits of the smallest prime factor of N ? ” ,  for i = 1, . . . , n/2. For the special case 
of integers t ha t  are the product of two primes of roughly equal size, Rivest and 
Shamir [5] described a polynomial-time algorithm based on integer programming 
which asks at most n / 3  question. In this paper, a polynomial-time algorithm 
is presented that, for any given E > 0, asks at most En questions. The claim 
that the algorithm fails only with exponentially small probability is based on a 
plausiblc number-theoretic conjecture about the distribution of smooth numbers 
in certain intervals and is closely related to a conjecture by Lenstra that he used 
in the (heuristic) running time analysis of his elliptic curve factoring algorithm 

The major motivation of Rivest and Shamir for investigating this problem 
was that an adversary often has some side-information about the secret parame- 
ters of a cryptographic system. Our analysis corresponds to a worst-case scenario 
in which the adversary can choose precisely what side-information he would like 
to obtain. This paper demonstrates that cryptosystems whose security is based 
on the difficulty of factoring a modulus (e.g., the RSA system [S]) could be 

131. 



43 1 

broken if an adversary were allowed to obtain only t n  bits of information of 
his choice about the modulus. However, because oracles do not exist in reality, 
the results uf lhis paper have no direct implication on the security of existing 
cryptographic systems. 

2. Preliminaries 

The following lemma shows that in a sequence of t pairwise independent 
events, each having probability p of occurring, the probability that none of these 
events occurs is at most (1 - p ) / ( t p ) .  The events are pairwise independent if for 
any two events A and B ,  P [ A  n B] = P [ A ] .  P[B] .  

Lemma. Let XI, . . . , xk be pairwise independent binary random variables where 
P [ X i  = 11 = p f o r  1 5 i 5 h.  Then 

Proof. Note that the expected value and the variance of Xi are given by E [ X i ]  = 
p and Var[x,] = p(1 - p ) ,  respectively. Let s be the integer sum of X I ,  . . . , xk, 
i.e., S = XI + . . . + xk. Hence S = 0 if and only if XI = . . . - - X k  = 0, 
and E [ q  = k p .  I t  is not difficult to prove (cf. [2]) that the  variance of the 
sum of several pairwise independent random variables is equal to the sum of the 
individual variances. Thus Var[q = kp(1 - p ) .  For every real-valued random 
variable Y we have 

Var[Y] 3 P[Y = 01 . E [ Y ] ~  

since the right-hand side is only one of several pmitive terms summing to the 
variance. We conclude that P[S = 01 5 Var[SI/E[q’ = (1 - p ) / ( k p ) .  0 

It is well-known that the expected value of the sum of several 
random variables is equal t o  the sum of their e?rpected values, and that  the 
variance of the sum is equal to the sum of the variances if the random variables 
are statistically independent. I t  is less well-known that a sufficient condition for 
the r th  moment of the sum to  be equal to the sum of the r th  moments is that  
the random variables be only r-wise statistically independent. For fixed p and 
k. -+ 00 the proved bound on the probability that XI = . . . = Xb = 0 is O(l/k), 
which is optimal. 

It is well-known that a polynomial of degree at most d over a field can be 
interpolated from any set of d +  1 distinct arguments and their corresponding 
polynomial values. For the case of a finitc field GF(q)  with q elements (where 
q is a prime power) this observation leads to a construction of a sequence of Q 
( d  + 1)-wise independent random variables: When the d + 1 coefficients of the 
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polynomial are selected randomly and independently from GF(q)  with uniform 
distribution, then the polynomial's values for any set of d+ 1 arguments are also 
statistically independent and uniformly distributed. We will make use only of 
the special case d = 1 (pairwise independence). 

For a prime p > 3 the elliptic curve over GF@) with parameters a and b 
satisfying 4a3 + 27b2 # 0 is defined as the set of points (z, y) with x, y E GF(p)  
satisfying the congruence equation 

y" E x 3 + a z + b  (modp), (1) 

together with a special element denoted 0 and called the point at infinity. This 
curve is denoted as Ea,b (P) .  It is well-known that a group operation] which is 
called addition, can be defined on the set of points of the elliptic curve E,&). 
Let P and Q be two points on Ea,b(p). The point P + Q is defined according to 
the following rules. P + 0 = 0 + P = P for all P on E (i.e.] 0 is the identity 
element of E,,a(p)). Let P = ( X I ,  y1) and Q = (22, B). If 21 = 2 2  and y1 = -y2, 

then P + Q = 0 (i.e., the negative of the point (2, y) is the point (x, -y)). In 
all other cases the coordinates of P + Q = (z3, y3) are computed a s  follows. Let 
X be defined by 

A =  

Y2 - Yl 
2 2  - X l  

32: + a  

2Yl 
where all operations are to be computed modulo p. (When P + Q # 0 then the 
denominator is not zero and thus the quotient is defined.) The resulting point 
P + Q = (23, y3) is defined by 

23 = X 2  -21 - 22 
Y3 = X(x1- 23) - Y l .  

The prime p can be replaced by a composite N in the above definition and 
equations. However, E,,b(N) defined in this manner is not a group, but it can 
be extended to form a group by adjoining a small fraction of additional elements. 
(In the case where N = PI-. ' p ,  is the product of distinct primes > 3, Ea,b(N) is 
the direct product of the corresponding elliptic curves over GF(p l ) ,  . . . , GF(p,).)  
Nevertheless, the addition operation, which is in this case called pseudo-addition, 
can be performed as long as it is defined, i.e., when the denominator is relatively 
prime to N ,  and it corresponds in fact to the addition operation on the extended 
curve. We refer to [3] for further information on elliptic curves. Note that in [3] 
points (z,y) are represented in projective coordinates as triples (z : y : l), and 
0 is represented as (0 : 1 : 0). 

Unless stated otherwise, logarithms in this paper are to the natural base e .  
The cardinality of a set S is denoted by #S. 
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3. The Oracle Factoring Algorithm 

Let N be a given composite n-bit integer and let c < 0.5 be an arbitrary 
given positive constant. If N is not known to be composite, a simple proba- 
bilistic compositeness test such as the Miller-Rabin test [4] can be used to prove 
the compositeness of N .  In the sequel a polynomial-time (in n) algorithm is 
described for finding a non-trivial divisor d of N (1 < d < N )  which, for all 
sufficiently large N ,  succeeds with probability at  least 1 - N-'12 and asks at 
most En oracle questions. 

The algorithm consists of four steps. 

(i) (Special cases-) If 2 or 3 divides N or if N is a prime power N = q', output 
2, 3 or q ,  respectively, and stop. 

(ii) (Setup.) Choose b with 0 < 6 < E as an arbitrary positive constant and let 

and 
w = (log N ) C .  

Let further 

r s w ,  r prime 

where e ( r )  is the largest integer m with T~ 5 N 1 1 2  + 2N1I4 + 1. Choose s 
and t randomly from GF(23"). Fix a natural enumeration of the elements 
of GFp3"):  o ~ , c Y ~ ,  . . .,a2"... For a given natural representation of the 
elements of GF(z3") as triples of n-bit integers, let (ak, zt, yk) E 2 2 %  X 

22. .  x 2 2 -  be the triple corresponding to + t where Crk is the k-th 
element of GF(23"), and let b k  E ZN be defined by 

2 3  
bh 3 yk - zk - akxk (mod fv). 

Remarks. N112 + 2N1f4 + 1 is an upper bound on the order of an elliptic 
curve over GF@) ,  where p is the smallest prime factor of N .  As mentioned 
in Section 2 the above construction guarantees that the triples ( a k ,  ZL, yc) 
are pairwise statistically independent. Tnstead of the field GF(23") any 
other finite field with cardinality greater than N3 could be used to create 
an appropriate list of pairwise independent triples ( a ~ ,  zk, yt). Only triples 
for which all three components are smaller than N will actually be of 
possible use. 
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(iii) (Oracle questions.) Now ask the oracle the following question. If there 
exists a positive integer k < 21fnl such that 

(1) for the smallest prime factor p of N ,  

4 4  + 27bi $ 0  (mod p ) ,  

and each prime factor r dividing #Eak,bk(p)  satisfies T 5 w ,  

(2) and for some prime factor q # p of N ,  

4a: + 27b: f 0 (mod q )  

and # E u k , b k ( q )  is not divisible by the largest prime number dividing 
the order of the point (xk : y~ : 1) on the elliptic curve E a k , b k ( p ) ,  

where a k , x k , Y k  and b k  are defined in step (ii), then output (the binary 
representation of) the smallest such k, else output 0. 
Remark. Of course, this question can easily be transformed into Len] 
questions with a yes/no answer. 

(iv) (Factorization.) If the oracle’s answer is 0,  stop. In this case, the algorithm 
fails. If the oracle’s answer is some k > 0, proceed as follows. Compute 
(ak,xk,yk) and bk as described in step (ii). Let P = (xk : yk : 1) be a 
point on Euk,bx(N)  (which is not a group). Try to compute h . P using 
the pseud-addition method described in (2.4) of [3], pretending that N is 
prime. At some point during this computation the addition of two points 
(z’ : y’ : 1) and (2” : y” : 1) will fail because gcd(z’ - z”, N )  > 1. Output 
this divisor of N .  

4. Analysis of the Algorithm 
We need to prove first that the algorithm works and runs in polynomial time 

and second that the failure probability is upper bounded by N - € I 2 .  

Theorem 1. If the  oracle’s answer is k > 0 $hen the algorithm runs in polyno- 
mial time and  always finds a nun-trivial divisor of N .  

Proof. That the algorithm runs in polynomial time follows from the facts that 
the pseudo-addition can be performed in time O(n2)  and that the number of 
pseud-additions required for computing h . P is at most 2[log, hl - 1 which is 
polynomial in n since according to (2)’ 

logz h = e(r)  log2 r 5 w 10g2w 
r < w ,  r prime 
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and w = O(nC) .  N is guaranteed to have a prime factor smaller than f i  and 
hence Proposition (2.6) in [3] for Y = f i  implies that the algorithm always 
succeeds. 0 

It follows from the Corollary to  Theorem 3.1 of Canfield, Erdos and Pomer- 
ance [l] that the probability that a random positive integer s 5 z has all its 

z - m. In the analysis of the elliptic curve factoring algorithm [3], Lenstra 
stated the conjecture that the same result is valid if s is a random integer in 
the interval (z + 1 - &,z + 1 + fi). We will need a similar conjecture with 
a smaller smoothness bound. One can prove that the mentioned result of Can- 
field et al. implies that  the probability that a random positive integer s < z 
has all its prime factors 5 (logz)c for c > 1 is greater than x - l l C - p  for all 
,Ll > 0 and for all sufficiently large z. The conjecture we will need is that  the 
same result is valid if 1/c + ,Ll < 1/2 and s is a random integer in the interval 
(z + 1 - &, z + 1 + @. We believe that our conjecture appears to be equally 
plausible as Lenstra's conjecture. Note that c > 2 in our algorithm but that  
for c < 2 the conjecture cannot be true since the errpected number of smooth 
integers in the given interval is less than 1. 

prime factors 5 L ( Z ) ~ ,  where L ( z )  = ed'OgzlOglOgr ,  is ~(z)-'/(2")+0(1), for 

Theorem 2 .  If the descr ibed  conjecture i s  true,  then the oracle ou tpu t s  0 (and 
hence the oracle factoring algorithm fails) with probability a t  most N-'12.  

Proof. Let p be the smallest prime divisor of ilr, and let U be the number of 
integers in the interval ( p  + 1 - f i ,  p + 1 + ,,@) for which no prime factor is 
greater than w = (log N ) " .  According to our conjecture with p = 5/2, U is lower 
boiinded by 

u > (2Lfij + 1)p-I'C-6'2, 

for all sufficiently large p .  Note that - l / c  - 5/2 = --E + 6/2. It follows from 
proposition (2.7) of [3] that  the number T of triples (a,z,y) E 2.w x ZN X ZN 
that  are successful in step (iii) of our algorithm is, for sufficiently large p ,  lower 
bounded by 

cz - r + 6 / 2 ,  > N 3 -  ' P  
1% P 

where Ci and Cz are positive constants. Hence the probability that a triple 
selected randomly from ZZ= x 22.. x Z p  is successful is equal to T / P ' .  Because 
the triples ( a t ,  zt, yk), 1 5 k 5 23n, are pairwise independent, it follows from the 
lemma in Section 2 that  the probability Q that none of the triples ( U L  , ZL, yk), 
for 1 5 k < 2Lrnl - 1, is successful (and therefore the oracle answers 0) is upper 
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bounded by 

1 
IC, . p - ~ + . 6 / 2  . (.LNc - 1) ' 
8 b 3 P  

< 

where we have made use of N3/23n > 1/8 and 2LCn1 > 2'"-l > i N ' .  Since 
p 5 N'12 the last expression is smaller than N - ' f 2  for all sufficiently large N .  
0 
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