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Abslract 
In this paper. we look at the development of a high sp& elliptic Curve cryptosystein b a d  on a 

40 Mhz. Motorola M68030 processor and a high speed optimal normal basis coprocessor for the 
ground field GF(2'"). The advantage of this system is the relatively small block size required 
for high security applications sucli as key management and digital signatures. In addition, the 
design is very conipict and efficieiit and can be easily fit onto a standard Sinart Card wafer (the 

coprocessor core requires less than 1 .sq.mil. or < 48 of the area available on a Smart Card). 

introduction 
Since their introduction by Diffie and Hellman in 1976 [l], researchers have been seaxhing for 
praclical implenlentations of public key cryptographic systems. The two most popular systems 
are based 011 the complexity of factoring the product of two large primes (RSA) or the difficulty 
of taking logarithms over a large field. To attain acceptable levels of security. both Of t hae  SYS- 

tems niust use very large block sizes {the current trend is to use blocks of over bits for long 
terin security). The complexity of performing calculations over these large block sizes generally 
makes the performance of software implementations unacceptable. Thus, hardware implementa- 
tion in VLSI have been fabricated. At present, both public key systems have been realized with 
coininercially available VLSI devices [Z], [3], [4]. 

Even with the availability of high speed implementations of these systems, two issues still 
remain. The requirements that large block sizes be used leads to large storage require met^^ 
especially in such applications as financial transactions where digital signatures may be Used for 
long term verification. hi addition, the high levels of complexity of such devices makes transfer 
to such applications 3s smart cards difficult. 

In 1985, Koblitz [S J and independently Miller [GI, proposed the use of elliptic curves as the bash 
of d public key cryptographic system. It was believed at that time that no subexponential dg0- 
ri thm existed for solving the elliptic logarithm problem (the only known attack was Shank's 
Giant-Step-Bdby-Step). More recently, Menezes, Vanstone and Okarnoto [7], have discovered i 
new niethd of computing logarithins on the small, very special class of super-singular curves. 
Use of non-super &igular curves does not have any such drawbacks. 

'For a more complete treatnlent of this topic the reader is refered to reference Ill]. 

R.A. Rueppel (Ed.): Advances in Cryptology - EUROCRYPT '92, LNCS 658, pp. 482-487, 1993. 
Q Springer-Verlag Berlin Heidelberg 1993 
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Nun-Super Singular Curves Using Amne Co-ordinates 
The use of elliptic curves in public key cryptographic systems is analogous to the use of discrete 
exponentiatioii substituting addition of points on the curve for multiplication in the field. The 
elliptic logarithm problem can thus be expressed as: 

given a known starting point on the curve P = ( x l , y , )  and a second point 

Q = k P  

find the integer k. 
This is thought to be a hard problem even for relatively small cunes. 
To implement a system in hardware, we will only consider curves of characteristic 2. The ~ I J ~ V ~ S  

we are interested in ;Ire of the form: 

y2+xy = x 3 + u X f b  

-P = (XI,Yl +XI) 

Opcratiotis on the curve are defiiied in the following way. For pointsf' = ( X ~ , Y ~ )  a d  Q =(&Y& 

and, for Q # -p 

As mentioned above, using the elliptic curve as a cryptosystem involves choosing a Secret in to  

ger k and forming Q =A. P.  Jn practice, this process would be done by using h e  binary expan- 
sion of k and forming the successive "squares" of the known point P, that is, 

& = L o t  k,2' + k,2'+. . . + k, - ,2"-' 

or 

Q = ( . . .( ( ( P b)  + 2P k, 1 + 4P k,) . . . -t 2"-*f k, ) 
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Using the affinc method. we compuie the x and y co-ordinates at each step in the computation. 
This requires the calculation of an inverse at each step in the squaring prmss; this will be the 
most tiinc consuming part of the computation as each inverse generation requires several multi- 
plications in the undcrlying field. 

Computations Using Projective Co-urdinates 
Another mettmd of computing points on the curve involves projective coordinates. The projw- 
tive eyuation for thc non-supcr singular elliptic c w e  is written as: 

z y 2 + z x y = x ’ + z x 2 o + b z ’  

We set Q = (x, , y , ,  zl), P = ( x 2 ,  yz ,  1 )and define P +Q =(x,’ ’ ,y3”,  q”). 

For the case f f Q (addition operation), let 

1,’ = 2: ( zl (6 +y: +.i;(y, +x,”) + x i 0  ) 

+ ( 4 Y l  +XI ( Y 2 + 4 ) )  I + z ,  (45,) - 
Then 

XJ” = (x, + x2 2 ,  )x,’ 

Y,” = (4 + x , z , )  [ ( Y ,  +Y2Z, ) + Y l ( X ,  + % Z I  11 

z,” = z, (XI +X,Z,)’ 

+ l ( Y I + Y z ~ I ) + ( ~ , + ~ 2 ~ 1 ) 1  

For the c a ~ e  P = Q (doubling operation), let 

x3’ =x:+ zf 6 

Then 
n,“ = (1, ZI )I3’ 

Y3” = (x: +- y ,  ZI 1.r; + (x :  +I,’ )I, z, 

2,” = (XI z1 j3 

The advantage of using this method is that only one inverse operation is  required at the end of 
the calculation to divide out the z coordinate. 

A llardware Irepleiiienlation 
In our prcvious investigations, it was found that a very fast and efficient multiplier architecture 
could be developed for fields of characteristic two which had optimal normal basis representa- 
tions [ t l ] ,  [9J. This led to the development of a single chip public key processor ([S]) which per- 
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OPERATION SIZE 

Mu1 tiplication I55 bit blocks 

Calculation of Inverse 24 multiplications 

VO 5 - 32 bit transfers per 
read/write to registers @ 2 
clock cycles per transfer 

155 bit parallel operation Addition (XOR) 
and elerncntary 
register operation 

fOrlned coinputations in the field G~(2593). We used this device in conjunction with a Motorola 
M56000 DSP to iinplement an elliptic curve cryptosystem. As reported in [lo], this SyWm 

achieved a throughput of about 5 Kbps.. 
Our cxpcrience with this system showed that the bottleneck in computation was the 
of the VLSl device. Thus, any processor designed specifically for an elliptic curve system would 
have to have a very fast I/O structure. 
With the experience gained we set out to ConStrUct a simple, fast arithmetic processor which can 
be  US^ 10 perfom clliptic curve computations in conjunction with a control processor. 
objective was to build a device which could be filbricdted in a custom gate m y  and yet be quite 
secure. Our choice was to implement an optiinal normal basis multiplier for cF(2'5')- The gate 

array device uses three registers to implement the muitiplicr structure and interconnection, a con- 

uoller to implemeiit the elementary operations (such as shifts. XOR's. multiplies, elc.) as well as 
incorporating il very fast 32 bit wide UO structure. device was fabricated using a 1.5 micron 
HCMOS gate array with a dwk spced of 40 M H r  and required less than 12,000 gates. 
primary operations, the speed can be calculaled as: 

section 

the 

CLOCK CYCLES 

156 

approx. 3800 

10 

2 

"0 realizc the elliptic curve system, a module was constructed with a 40 Mhz. Molorola M68030 
as the control processor. The main reasons for this choice was the 32 bit internal bus structure 
and the availability of fast I/O between the 68030 and the CF(2'") coprocessor. 

Throughput Calculations 
If we consider point multipli&on by an integer with Hamming weight 30, ulis will rquke 

about 154 point doublinps and 2Y point multiplications. Using projective coordinates for a non- 
super singular cuive, doubling requires 6 multiplies and point addition q u i r e s  13 multiplies. At 

the end of the computation. a single inverse operation followed by 2 multiplies must bc 
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perforined to return to affine coordinates. Allowing for J/O overhead in the doubling and multi- 
plication routines, the device will bc able to perforin at least 145 
integer multiplications per second. For use in an encryption system, each of X and Y coordinates 
can be used SO 310 bits can be sent per point calculation for a throughput of approxiinately 50 
Kbps.. 
In the above calculations, we note that a significant portion of the time is spent in doing the point 
doublings2. In elliptic curve system, the same base point p can be used repeatedly. If this is the 
case, then all of the squares can be precomputed which will increase the throughput by a factor 
of 4 to approximately 2W Kbps.. The storage requirements for the point squarings is less than 6 
Kbytes, il relatively sanall aniount. 

W e  have also investigated the area required to implement the eiliptic curve coprocessor in a 
Sinart Card wafer. Using new techniques, our estintates show that the registers necessary to 

implement the elliptic curve system will require less than 1 sq.mi1. (or < 4% of the area available 
on the Smart Card). Design and construction of a Elliptic Curve Smart Card is currently under- 
wey and we believe that this will be the first full implemen~ion of a fast, efficient and compact 
public key system on il a rd .  

Sunimary 
In this paper, we have described the deign and implementation of a fast processor for prforming 
non-super singular elliptic curves over a base field of GF(2’”). This device is capable of reah- 
ing encryption speeds of up to 50 Kbps when clocked at 40 MHz. In addition to its high Speed, it 
is exceptionally simple in implementation requiring less than 12,000 gates to fabricate. This 
device will have future applications in such areas as smart cards where compactness, high speed 
and high levels of security are desirable. 
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