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1. Introduction

Highly nonlinear permutations play an important role in the design of crypto-
graphic transformations such as block ciphers, hash functions and stream ciphers.
The substitution boxes of DES are relatively small in dimension and they can be
generated by testing randomly chosen functions for required design criteria. Secu-
rity may be increased by the use of substitution transformations of higher dimen-
sions. But when the dimensions grow larger, analytic construction methods become
necessary.

In this paper a general methodology is developed to construct permutations of a
vector space over a finite field such that the nonlincarity of both the permutation
itself and its inverse can be kept in control. The nonlinearity measure used is based
on the Hamming distance from the set of affine functions. For quadratic functions
there is a close relationship with this nonlincarity measure and the number of the
so called lLincar structures of the function. This approach leads to a necessary and
sufficient condition under which a transformation of Fy (nodd, ¢ = 24, d odd),
with quadratic coordinate functions, is a highly nonlinear permutation with equally
highly nonlinear inverse.

Finally, we shall apply our general methodology to give a general construction of
which the cubing permutation is a special case.

It was observed by Pieprzyk (6] that the coordinate functions of the cubing per-
mutation in GF(2"), n odd, are of high nonlinearity, when considered with respect
to a self-dual normal basis in GF(2") over GF(2). His measure of nonlinearity is
weaker than the one given in the present work, since it only takes into account
the coordinate functions of the permutation. Qur nonlineanity measure involves
all nontrivial lincar combinations of the coordinate functions of the permutation
and allows a rigorous proof of the fact that the inverse permutation is of the same
nonlinearity.

The permutations of GF(2") constructed in §4 have the property that their co-
ordinate functions as well as the coordinate functions of their inverses are all of the
same large distance from the sct of affine functions independently of the choices
for the bases in the input and and output spaces. This degree of nonlinearity only
depends ou over which subfield GF(2") is considered as a linear space.
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2. The nenlinearity measure
Let F = F, be a finite field with ¢ clements and consider a function f: F* — F.

DEFINITION 1. The nonnegative integer
— : n t
N(f)= min  #{x€F"| f(x) # u'x +v}

is the Hamming distance of f from affine functions.

It is easily seen that N(f) is independent of the choice of the basis in the linear
space F" over F.

LEMMA 1. Forallu€F", u#0
N < (g-1D¢" T =#{xeF" | u'x #£0}.
By the help of this lemma the third equality in the following definition can be

established.

DEFINITION 2. The nonlinearity of a vector function f : F® — F™ is

N({E)= min  N(w'f)

weF™ w#0

mi Fn tf i
uEF“.wEF'}‘r,lvEF,w#O#{x € ‘ v (X) # wx+ v}

= min F* | wi(x) # u'x +v
uGF"‘.wEF"‘,vEIé,u;éO or w#0 #{X € l w ( ) # }

PROPOSITION 1. The nonlinearity N{f) of f : F* — F™ is invariant under linear
permutations of the input space F"™ and also under linear permutations of the output
space F™.

This measure of nonlinearity has the following property of symmetry.
THEOREM 1. Let f: F* — F" be a permutation. Then N{f~1) = N(f).

PROOF:

N = #0#{y€F"IW‘f"(Y)#U‘J'+v}

#{x e F* | w'x # u*f(x) + v}

min
u,weF™ vEF u#0 or w

min
u,weF" vEF, u#0 or w0

= N(f).

The following result will be used later.
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PRoPOSITION 2. Let f : F* — F have nonlinearity N{f). Then the function
g:F*tl o F
(Z1,%2y++ , Tny Tng1) = f(T1, 22,000, n) + Tatt
has nonlinearity qN( f).
Pnroor:
N(g)

i x € F"l | g(x) £ ulx+ v
ueFr'{ggveF#{ | g(x) # }

q—1

i Fr, =i | f(X)+i # u'X + iung; + v}
e g SR P =313 b

q—1
> : n ¢t .
2 ) oin X EFT | f(x)# u'xt i)

=

q—1
=D N(fy=aN(f),

and this lower bound is obtained by the choice g = 1.

The linear behaviour of a function can also be measured by the number of its
linear structures.

DEFINITION 3. A vectorw € F? is called a linear structure of a functionf : F* — F
if f(x+w) — f(x) is constant (= f(w)— f(0)) as x € F™ varies.

It was shown in {2] that if F is a prime field, then the linear structures form a
linear subspace on which the restriction of the function is linear. This does not hold
in general for arbitrary finite fields. In the next section it shown however that the
linear structures of a quadratic function of finitely many variables over any field
form a linear space whose dimension determines the Hamming distance from linear
functions given in Definition 1,

3. Quadratic functions
Let

flzy,z,...,20) = Za;;z;xi
¥

be a quadratic form of n indeterminates over a finite field F with ¢ elements. Then
after fixing a basis in F" we can consider f as a function, a quadratic polynomial,
from F" to F of the form

f(x) = f(z1,z2,...,2,) = X"AX,
where A = (a,;). Two quadratic forms f(x) = x!Ax and g(x) = x'Bx are called
equivalent if they represent the same quadratic form, i.e., there is a linear per-
mutation (a change of basis) C, such that A = C!BC, or what is the same,

9(Cx) = f(x).
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PROPOSITION 3. Let f(x) = x'Ax be a quadratic form of n indeterminates over

F. Then the linear structures of f form a linear subspace of dimension X(f) =
n — rank(A + A').

PRrOOF: We have

fx+w)—f(x)=(x+w)A(x+w—x"Ax
=x'Aw + wiAx + wiAw
=x'(A + AYw + f(w).

Hence w is a linear structure of f if and only if (A + A*)w = 0.

The following result is a consequence of Theorem 6.30 in [4] and the preceeding
proposition.

PROPOSITION 4. Let n be odd and ¢ = 2% and f(x) = x*Ax be a quadratic form
in F™ with rank(A -+ A') = r. Then r is even and f is equivalent to

T 23 + 2384 + -+ Tro12 + L(21, 22,00, Tn)

where L is a linear form of n indeterminates.

The quadratic form f(z1,22,...,2n) = 2122 + £3T4 + - + Tn—1Zx (for an even
n) is a perfect nonlinear function from F™ to F, that is, for every fixed w € F™ the
difference f(x + w) — f(x) obtains each value in F equally many times. Hence it is
also a bent function, if F is a prime field with ¢ elements, and the distance of f to
the set of affine functions is the maximum

(1) N(fH)=(g=1)g" " —¢57")

(see [5], Theorem 3.3). It is straightforward to check that if f is considered over
F = GF(2%) then the formula (1) also holds with ¢ = 29.

Let us remark that the quadratic functions of n variables over GF(2) belong to
the class of partially bent functions ([1], [7]). By definition due to C. Carlet a
Boolean function is partially bent if the product of the numbers of the nonzeros of
the autocorrelation function and the nonzeros of the Walsh transform obtain the
absolute lower bound 2". So partially bent functions are optimal in this sense. But
since linear functions are contained in the class of partially bent functions, also
high linearity has to be required of functions to be used in cryptography. For a
quadratic function f this means that X(f) should be as small as possible. For n
odd the minimum of X(f)is 1.

Summarizing the results of Propositions 2, 3 and 4 we obtain the following



96

THEOREM 2. Let F = GF(2Y) and q = 2. Then every quadratic form in F™,
f(x) =x"Ax
with rank(A + A') = r has the distance

N(f)=a""(g=1)g" ' —q771)

from the set of affine functions.

Observe that for n odd a nondcgenerate quadratic form over GF(2¢) is balanced
(obtains each value in F equally many times). Conversely, if x'Ax is balanced and
rank(A + A') = n — 1, then it is nondegenerate.

The special quadratic form that we shall make use of in our construction is

t
LTy + TaT3 + 3Ty + o T2 T, = X RX,
where R : F® — F” is the lincar permutation
R : (11152)"'axrl) = (‘r2?$3!~-’311uxl)1

i.e., the cyclic shift of the coordinates. By using the general substitution algo-
rithm of Lemma 6.29 of [4] it is easy to verify that x*Rx in an odd number n of
indeterminates over G f(24) is equivalent to £z, + 2324 + - - 4 Tn-2Tn-1 + Zn-

The main result of [6], which has had a strong impact on the present work, is the
observation that

Tr(x*) = x'Rx, x € GF(2"),

with respect to a self-dual normal basis in GF(2"), for n odd. Indeed, our con-
struction contains the cubing permutation as a special case. By replacing R by
R', 1 =1,2,..,n - 1, in the construction in §4, we obtain classes of equally highly
nonlinear permutations where the permutations x — x* !, i = 1,2,...,n — 1, are
as special cases. Let us recall that these are exactly the permutations on which the
public key cryptosystem C* proposed in [4] is based.

4. The construction

We combine Theorems 1 and 2 to obtain the following method for constructing
permutations with desired distance from linear functions.

THEOREM 3. Let F = GF(2%) aud ¢ = 2%. Then the function £ = (f1, fzy---» fn):
F" — F™ with quadratic coordinate functions fi, k = 1,...,n, is a permutation of
F* with

NE) =N(ET) 2 " (g = 1)(¢" —¢F7")
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if and only if every nontrivial linear combination of the coordinate functions
fi, fay---» fn is a balanced quadratic form x*Cx with rank(C*+ C) > r.

The condition of the theorem on the coordinate functions can be tested for in low
dimensions. In what follows we shall give an analytic construction, which is feasible
also in large dimensions.

Let n and d be odd positive integers and n > 3. Then GF(2"4) is an n-dimensional
linear space over F = GF(2¢). Let ¢),¢4,...,¢n be a basis in F* = GF(2™) over
F. Then the matrix

(31 €2 Lo- En

2 2 2
e et ... e
4 4 4
E(el,eg,...,en)——- € €2 - €a
~2n-—1 'Zn—l -2n—l
L1 €3 PN €n
is a nonsingular matrix over F (sec Corollary 2.38 [4]). Choose aj,az,..., %, €

GF(2™) such that their cubes a?,a, ..., a3 are linearly independent over GF(2%).
This is possible since cubing is a permutation in GF(2") if nd is odd.
Set
E; = E(aiei,arer,. .., aren) and Bx = E{REq,

k=1,2,...,n. Then the ij*" entry of By equals
Tr;:(aie;e}) € GF(2%).

Let ¢, € GF(2%), k = 1,2,...,n not all equal to 0. Then the ij** entry of
Yk ckBy is equal to

T"F(Z c;..a‘z.e,ef) =Trg (736,e§)
k

for some v € GF(2™), v # 0. Hence

2) ) By = C'RC,
&
where C = E(vey,vez,...,7eq).

Now rank(R +R!) is equal to the odd number of the indeterminates minus 1 over
any field over which the nondegencrate quadratic form x'Rx is considered. Since
B, = E{RE, where E; is a nonsingular matrix, it then follows that rank(BL{+B) =
n —1 and the quadratic form fi(x) = x'Byx is nondegenerate and hence balanced,
k =1,2,...,n. Due to the identity (2) the same holds for every linear combination
(over GF(2%)) of fi, fa,..., fua. Hence it follows from Theorem 3 that the function
f={(f1,f2,-.-, fa) is a permutation in GF(2"“) = GF(24)" with nonlinearity

1

N(E) = M) = N(fi) = ala - g™ = 57,

where q = 2¢.
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