
1

 Available on CMS information server CMS CR 2001/009

July 31, 2001

Meta-Data Objects as the Basis for System Evolution

Florida Estrella1, Zsolt Kovacs2, Jean-Marie Le Goff2, Richard McClatchey1 and Norbert Toth1

1Centre for Complex Cooperative Systems, Univ. West of England, Frenchay, Bristol BS16 1QY UK
2CERN, Geneva, Switzerland

Abstract

One of the main factors driving object-oriented software development in the Web-age is the need for systems to
evolve as user requirements change. A crucial factor in the creation of adaptable systems dealing with changing
requirements is the suitability of the underlying technology in allowing the evolution of the system. A reflective
system utilizes an open architecture where implicit system aspects are reified to become explicit first-class (meta-
data) objects. These implicit system aspects are often fundamental structures which are inaccessible and
immutable, and their reification as meta-data objects can serve as the basis for changes and extensions to the
system, making it self-describing. To address the evolvability issue, this paper proposes a reflective architecture
based on two orthogonal abstractions - model abstraction and in-formation abstraction. In this architecture the
modeling abstractions allow for the separation of the description meta-data from the system aspects they repre-
sent so that they can be managed and versioned independently, asynchronously and explicitly. A practical
example of this philosophy, the CRISTAL project, is used to demonstrate the use of meta-data objects to handle
system evolution.

Keywords: meta-objects, system evolution, self-describing objects, databases

CMS Conference Report

2

1. Reflection
The capability of a system to reflect upon itself and be able to inspect and change its own state and behaviour is
called reflection. A reflective system utilizes an open architecture where implicit system aspects are reified to
become explicit first-class meta-objects [1]. These implicit aspects are often fundamental structures which are
inaccessible and immutable. Meta-objects are the self-representations of the system describing how its internal
elements can be accessed and manipulated. These self-representations are causally connected to the internal
structures they represent, i.e. changes to these self-representations immediately affect the underlying system.

The use of reflection in computing creates a mutable and extensible system [2]. In a mutable system, the
behaviour of existing constructs can be modified. On the other hand, an extensible system allows new features to
be added. The ability to dynamically augment, extend and re-define system specifications can result in a
considerable improvement in flexibility. This leads to dynamically modifiable systems which can adapt and cope
with evolving requirements.

A reflective open architecture likewise increases a system’s potential for reuse [3]. The customization
mechanisms inherent in this architecture permit the system to be modified and reused for different needs. Making
the components of the system self-representing or self-describing allows dynamic system re-configuration. It is
therefore essential for such a self-describing system to have the capability to store descriptions about its dynamic
structure, and make these descriptions available to the rest of the infrastructure as a consequence of how the
system is connected.

The separation of system descriptions from the system aspects they represent is essential in the specification of
evolvable OO system. To address the evolvability issue, this paper proposes a reflective architecture based on
two orthogonal abstractions - model abstraction and information abstraction. In this architecture the modeling
abstractions allow for the separation of description meta-data from the system aspects they represent so that they
can be managed and versioned independently, asynchronously and explicitly.

The Meta-Object Protocol (MOP), a concrete manifestation of the open implementation technique, opens up
language abstractions and its implementations to the programmers [1][4]. Consequently, programmers are
capable of adjusting the language semantics and implementation better to suit their needs. Such flexibility in
altering language semantics, and possibly improving performance through alternative implementation strategies,
results in considerable benefit and program clarity for programmers in being able to customize the language
semantics, and encourages programmers to participate in the language design process. MOP-based open
languages are also called reflective programming languages. In general, a reflective system is a system which
incorporates structures representing aspects of itself [5]. Such capability can only be attained if the language
provides mechanisms which explicitly represent implicit aspects of the language itself, i.e. its descriptions and
behaviour.

Figure 1: Four Layer Modeling Architecture

Some descriptions which play major roles in defining a language behaviour are class, attribute, association,
inheritance, operation invocation, instance representation and the schema. To be able to dynamically modify
these descriptions, they need to be turned into objects, thus creating class objects, attribute objects, association
objects, etc. These objects are called meta-objects, as compared to application objects which are called base
objects. Meta-objects control and manage the operations of base objects. The interface to these meta-objects is
the MOP. In other words, the MOP is a set of operations used with meta-objects to define and configure system
behaviour.

Is an instance of

Model Layer

Meta-Model Layer

Meta-Meta-Model Layer

Instance Layer

Is an instance of

Is an instance of

3

The promotion of implicit system descriptions to become explicit objects is called reification. The advantage of
reifying system descriptions as meta-objects is that operations can be carried on them, like composing and
editing, storing and retrieving, organizing and reading. Since these meta-objects represent system descriptions,
their manipulation can result in change in system behavior. For reifying language descriptions like class, attribute
and association, which themselves act as classes, what is needed is a mechanism for defining the class of a class.
In OO programming, the class of a class object is a meta-class. Meta-objects, therefore, are implemented as meta-
classes. The concept of meta-classes is a key design technique in improving the reusability and extensibility of
these languages. VODAK [6], Prometheus [7], ADAM [8] and OM [9] are some of the next generation database
management systems which have adopted the meta-class approach for tailoring the data model to adapt to
evolving specifications. A meta-class may, typically, define properties about object creation, encapsulation,
inheritance rules, message passing and the like.

2. Modeling Architectures
In modeling complex information systems, it has been shown that at least four modeling layers are required (see
Figure 1) [10]. Each layer provides a service to the layer above it and serves as a client to the layer below it. The
meta-meta-model layer defines the language for specifying meta-models. Typically more compact than the meta-
model it describes, a meta-meta-model defines a model at a higher level of abstraction than a meta-model.
Elements of the meta-meta-model layer are called meta-meta-objects. Examples of meta-meta-objects include
MetaClass, MetaAttribute and MetaAssociation. These meta-meta-objects are also meta-classes whose instances
are constructs corresponding to meta-model constructs.

The meta-model layer defines the language for specifying models. A meta-model is an instance of a meta-meta-
model. It is also more elaborate than the meta-meta-model that describes it. Elements of the meta-model layer are
called meta-objects, examples of which include Class, Attribute and Association. The model layer defines the
language for specifying information domains. In this case, a model is an instance of a meta-model. Elements like
Student, Teacher and Course classes are domain-specific examples of elements of the model layer. The bottom
layer contains user objects and user data. The instance layer describes a specific information domain. Domain
examples of user objects include the instances of Student, Teacher and Course classes. The Object Management
Group (OMG) [11] standards group has a similar architecture based on model abstraction, with the Meta-Object
Facility (MOF) model and the Unified Modeling Language (UML) [12] model defining the language for the
meta-meta-model and meta-model layers, respectively.

Figure 2: Meta-Level Architecture

Orthogonal to the model abstraction inherent in multi-layered meta-modeling approach is the information
abstraction which separates descriptive information from the data they are describing. These system descriptions
are called meta-data, as they are information defining other data. A reflective open architecture typifies this
abstraction. A reflective open architecture is divided into two levels - the meta-level where the descriptive
information reside and the base-level which stores the application data described by the meta-level elements. The
meta-level contains the meta-data objects (also referred to as meta-objects in this paper) which hold the meta-
data. These meta-objects manage the base-level objects. A two-layer architecture is shown in Figure 2.

The separation of meta-objects from base objects (see Figure 3) is essential in es-tablishing the difference
between what an object does (in the base-level) from how it does it (in the meta-level). A meta-level architecture
gives access to meta-objects and ensures that changes on the meta-objects lead to changes on the intended system
as-pects represented by the meta-objects, i.e. the two levels are causally connected. For example, changes on the
class Meta-object in the meta-level, via the class MOP, should result in the appropriate changes to all application
objects in the base-level.

Base-Level Meta-Level
Is described by

4

Figure 3: Separation of Meta-Objects from Base Objects

3. A Description-Driven Architecture
This paper proposes an architecture which combines the multi-layered meta-modeling approach with the meta-
level architecture [13]. The description-driven architecture is illustrated in Figure 4. The layered architecture on
the left hand side is typical of the layered systems and the multi-layered architecture specification of the OMG
discussed earlier.

The relationship between the layers is Is an instance of. The instance layer contains data which are instances of
the domain model in the model layer. Similarly, the model layer is an instance of the meta-model layer. On the
right hand side of the diagram is another instance of model abstraction. It shows the increasing abstraction of
information from meta-data to model meta-data, where the relationship between the two is Is an instance of as
well. These two architectures provide layering and hierarchy based on abstraction of data and information
models.

Figure 4: Description-Driven Architecture

The horizontal view provides an alternative abstraction where the relationship of meta-data and the data they
describe are made explicit. This view is representative of the information abstraction and the meta-level
architecture discussed earlier. The meta-level architecture is a mechanism for relating data to information
describing data, where the link between the two is Is described by. As a consequence, the dynamic creation and
specification of object types is promoted. The separation of system type descriptions from their instantiations
allows the asynchronous specification and evolution of system objects from system types, consequently,
descriptions and their instances are managed independently and explicitly. The dynamic configuration (and re-
configuration) of data and meta-data is useful for systems whose data requirements are unknown at development
time.

Meta Level
MO-Meta-Object

 MOP

Base Level
BO-Base Object

BO

BO

BO

BO

BO

BO

MO

MO
 MOP

MO

MO

controls/
m

anages

A
pplication P

rogram
m

er

Horizontal Abstraction

V
er

tic
al

 A
bs

tr
ac

tio
n

Is described by

Is described by

Is an instance of

Instance

Model

Meta-Model Layer

Is an instance-of

Is an instance of

Meta-Data

Model Meta-Data

Data

Is an instance of

Meta-Data

M
eta-Level

B
ase Level

5

4. A Practical Example
This research has been carried out at the European Centre for Nuclear Research (CERN) [14] based in Geneva,
Switzerland. CERN is a scientific research laboratory studying the fundamental laws of matter, exploring what
matter is made of, and what forces hold it together. Scientists at CERN build and operate complex accelerators
and detectors. Accelerators are huge machines to speed up particles very close to the speed of light, and then to
let them collide with other particles. Detectors, on the other hand, are large instruments to observe what happens
during these collisions.

The Compact Muon Solenoid (CMS) is a general purpose experiment that will be constructed from an order of a
million parts and will be produced and assembled in the next decade by specialized centres distributed worldwide
(see Figure 5). As such, the construction process is very data-intensive, highly distributed and ultimately requires
a computer-based system to manage the production and assembly of detector components.

Figure 5: The CMS Detector

In constructing detectors like CMS, scientists require data management systems that are able of cope with
complexity, with system evolution over time (primarily as a consequence of changing user requirements) and
with system scalability, distribution and inter-operation. No commercial products provide the workflow and
product data management capabilities required by CMS [15]. The design constraints imposed by CMS which are
not currently satisfied by any commercial offering include:
• The workflow and product-related descriptions tend to evolve rapidly over time. The software must cater for
the development of a high physics detector over an extended period of time (1999-2005) and whose design will
naturally advance as time elapses. Hence the need to support long-running and potentially nested workflow
activities, with natural consequences on transaction handling.
• The construction of CMS is one-of-a-kind. The evolution of workflows and product data must be allowed to
take place as production continues. Consequently, versions of workflow and product descriptions coexist in the
production process for the duration of the CMS construction. This is in contrast to industrial production lines
where the process is seldom one-of-a-kind.
• The CMS construction is highly distributed. Production of (versions) of CMS products will take place in
disparate areas all over the world. Each of these production centres must cater for multiple versions of evolving
workflow and product descriptions in an autonomous manner but centrally coordinated from CERN.
• The data store must be reliably secure and available for a variety of purposes. Many users require different
access to the CMS data, e.g. construction engineers interpret data using an assembly-oriented view, physicists
view the detector data in terms of a set of electronically-decoded channels and mechanical engineers view the
detector data in terms of constituent three-dimensional volumes aligned in space.

A research project, entitled CRISTAL (Cooperating Repositories and an Information System for Tracking
Assembly Lifecycles) [16][17] has therefore been initiated, using OO computing technologies where possible, to
facilitate the management of the engineering data collected at each stage of production of CMS. CRISTAL
captures all the physical characteristics of detector components, which are, later, required by the physicists for
activities such as detector construction, calibration and maintenance. CRISTAL is a distributed product data and
workflow management system which makes use of an OO database for its repository, a multi-layered architecture
for its component abstraction and dynamic object modeling for the design of the objects and components of the
system. CRISTAL is based on a DDS using meta-objects. These techniques are critical to handle the complexity
of such a data-intensive system and to provide the flexibility to adapt to the changing production scenarios typical
of any research production system.

6

The design of the CRISTAL prototype was dictated by the requirements for adaptability over extended
timescales, for system evolution, for inter-operability, for complexity handling and for reusability. In adopting a
description-driven design approach to address these requirements, the separation of object instances from object
descriptions instances was needed. This abstraction resulted in the delivery of a three layer description-driven
architecture. The model abstraction (of instance layer, model layer, meta-model layer) has been adopted from the
OMG specification, and the need to provide descriptive information, i.e. meta-data, has been identified to address
the issues of adaptability, complexity handling and evolvability.

Figure 6: The CRISTAL Architecture

Figure 6 illustrates CRISTAL architecture. The CRISTAL model layer is comprised of class specifications for
CRISTAL type descriptions (e.g. PartDescription) and class specifications for CRISTAL classes (e.g. Part). The
instance layer is comprised of object instances of these classes (e.g. PartType#1 for PartDescription and
Part#1212 for Part). The model and instance layer abstraction is based on model abstraction and Is an instance of
relationship. The abstraction based on meta-data abstraction and Is described by relationship leads to two levels -
the meta-level and the base-level. The meta-level is comprised of meta-objects and the meta-level model which
defines them (e.g. PartDescription is the meta-level model of PartType#1 meta-object). The base-level is
comprised of base objects and the base-level model which defines them (e.g. Part is the base-level model of the
Part#1212 object).

In the CMS experiment, production models change over time. Detector parts of different model versions must be
handled over time and coexist with other parts of different model versions. Separating details of model types
from the details of single parts allows the model type versions to be specified and managed independently,
asynchronously and explicity from single parts. Moreover, in capturing descriptions separate from their
instantiations, system evolution can be catered for while production is underway and therefore provide continuity
in the production process and for design changes to be reflected quickly into production. As the CMS
construction is one-of-a-kind, the evolution of descriptions must be catered for.

Figure 7: Evolving CMS Descriptions

ClassPartDescription

PartType#1

Is described by

Is described by

Is an instance of

PartObject#1212

ClassPart

UML Meta-Model

Is an instance of

Is an instance of

M
eta-Level

B
ase- Level

Base-Level
Model Of

Objects/
Data

Meta-Level
Model Of

Meta-Objects/
Meta-Data

Is an instance of

Meta-level

Submodule

Version 1

Base-Level

Submodule #1

Submodule #2

Submodule #3

Meta-level

Submodule

Version 1

Version 2

Base-Level

Submodule #1

Submodule #2

Submodule #3

Submodule #4

Submodule #5

7

The evolving CMS descriptions is illustrated in Figure 7. Submodule Version 1 is a type object describing
physical detector parts Submodule#1, Submodule#2 and Submodule#3. Submodule Version 2 (another type object)
is a new version of the same type specification, and coexists with Submodule Version 1 and its instances. In this
example, Submodule Version 1 and Submodule Version 2 are instances of ClassPartDescription (in the meta-
level). As new instances can be dynamically added into the system, consequently new versions and new type
objects are handled transparently and automatically. In the base-level, Submodule#1 is an instance of ClassPart.
The Is described by relationship between the meta-level and the base-level elements allows for instantiations of
physical parts to be described by versions of type objects in the meta-level. Hence, the separation of type
descriptions in the meta-level from the data objects they describe caters for evolving system specifications.

5. Conclusions
The ubiquity of change in current information systems have contributed to the renewed interest in improving
underlying system design and architecture. Reflection, meta-architectures and layered systems are the main
concepts this paper has explored in providing a description-driven architecture which can cope with the growing
needs of many computing environments. The description-driven architecture has two orthogonal abstractions
combining multi-layered meta-modeling with open architectural approach allowing for the separation of
description meta-data from the system aspects they represent. The description-driven philosophy facilitated the
design and implementation of the CRISTAL project which required mechanisms for handling and managing
evolving system requirements. In conclusion, it is interesting to note that the OMG has recently announced the
so-called Model Driven Architecture as the basis of future systems integration [18]. Such a philosophy is directly
equivalent to that expounded in this and earlier papers on the CRISTAL description-driven architecture.

Acknowledgments

The authors take this opportunity to acknowledge the support of their home institutes. The support of P. Lecoq, J-
L. Faure and M. Pimia is greatly appreciated. N. Baker, A. Bazan, T. Le Flour, S. Lieunard, L. Varga, G.
Organtini and G. Chevenier are thanked for their assistance in developing the CRISTAL prototype.

References

1. G. Kiczales, “Metaobject Protocols: Why We Want Them and What Else Can They Do?”, Chapter in Object-Oriented
Programming: The CLOS Perspective, pp 101-118, MIT Press, 1993.

2. B. Foote, “Objects, Reflection and Open Languages”, Workshop on Object-Oriented Reflectionn and Meta-Level
Architectures, European Conference for Object-Oriented Programming (ECOOP), Uthrect, Netherlands, 1992.

3. B. Foote and J. Yoder, “Metadata and Active Object Models”, Fifth Conference on Pattern Languages of Programs
(PLOP 98), Illinois, USA, August 1998.

4. G. Kiczales, J. des Rivieres and D. Bobrow, “The Art of Metaobject Protocol”, MIT Press, 1991.
5. D. Riehle and K. Matzel, “Using Reflection to Support System Evolution”, Proceedings of the Annual Conference on

Object-Oriented Programming Languages, Systems and Applications (OOPSLA), 1998.
6. W. Klas, et. al., “Database Integration using the Open Object-Oriented Database System VODAK”, In O. Bukhres and

A. Elmagarmid (Eds.), Object Oriented Multidatabase Systems: A Solution for Advanced Applications, Chapter14,
Prentice Hall, 1995.

7. C. Raguenaud, J. Kennedy and P. Barclay, “The Prometheus Database Model”, Prometheus technical report 2, Napier
University, School of Computing, 1999.

8. N. Paton, “ADAM: An Object-Oriented Database System Implemented in Prolog”, In M.H.Williams (Ed.), Proceedings
of the 7th British National Conference On Databases (BNCOD), Cambridge University Press, 1989.

9. The Object Model (OM) and the Object Model System (OMS), URL http:// www.globis.ethz.ch/research/oms/.
10. M. Staudt, A. Vaduva and T. Vetterli, “Metadata Management and Data Warehousing”, Technical Report 21, Swiss Life,

Information Systems Research, July 1999.
11. The Object Management Group (OMG), URL http://www.omg.org.
12. The Unified Modeling Language (UML) Specification, URL http://www.omg.org/technology/uml/.
13. F. Estrella, "Objects, Patterns and Descriptions in Data Management", PhD Thesis, University of the West of England,

Bristol, England, December 2000.
14. The European Centre for Nuclear Research (CERN), URL http://cern.web.cern.ch/CERN.
15. Z. Kovacs, “The Integration of Product Data with Workflow Management Systems”, PhD Thesis, University of West of

England, Bristol, England, April 1999.
16. R. McClatchey, et. al., “The Integration of Product Data and Workflow Management Systems in a Large Scale

Engineering Database Application”, Proceedings of the 2nd IEEE International Database Engineering and Applications
Symposium, Cardiff, United Kingdom, July 1998.

8

17. F. Estrella, et. al., “Using a Meta-Model as the Basis for Enterprise-Wide Data Navigation”, Proceedings of the Third
IEEE Metadata Conference, Maryland, USA, April 1999.

18. OMG Publications., “Model Driven Architectures - The Architecture of Choice for a Changing World”. See
http://www.omg.org/mda/index.htm

