VLSI implementation of public-key

encryption algorithms

G.A. Orton™, MP. Roy ™, P.A. Scott™,
LE. Peppard* and SE. Tavares

* Department of Electrical Engineering
Queen's University
Kingston, Ontario, Canada K7L 3N6

*% Bell Northern Research Ltd.
P.0. Box 3511, StationC
Ottawa, Ontario, Canada K1Y 4H7

Abstract. This paper describes some recently successful results in the CMOS VL3I
implementation of public-key data encryption algorithms. Architecturat details, circuits,
and prototype test results are presented for RSA encryption and multiplication in the
finite field GF(2™). These designs emphasize high throughput and modularity. An
asynchronous modulo multiplier is described which permits a significant improvement in
RSA encryption throughput relative to previously described synchronous

implementations.

AM. Odlyzko (Ed.): Advances in Cryptology - CRYPTO *86, LNCS 263, pp. 277-301, 1987.
© Springer-Verlag Berlin Heidelberg 1987

278

1. Introduction

The RSA algorithm provides & well known, secure implementation of a public-key cryptosystem
[1,2,3]. The srithmetic operations required are exponentiation and modulo reduction involving numbers
represented by several hundreds of bits. A YLSI approach is justified but presents challenging problems in terms
of control generation and distribution circuitry, minimization of storage register size and achieving an adequate
throughput rate. Rivest has given a recent review of other attempts to design an RSA chip [4). Kochanski [5] hes
described a cescadable chip which implements 32-bit operations on each chip at a rate of Skbits/sec for 512-bit
encryption; however, it appears that considerable redesign is required to compress the implementation tooneor a
few chips. CYLINK hes recently introduced achip which can perform 512-bit encryption at 6.4kbits/sec in 2um
CMOS [6]. A faster design is currently under development at Sendia National Labaratories [7], which uses detayed
carry adders to avoid carry propegation delay. This approach is said to be capable of 25kbits/sec in 2um CMOS but
has added complexity due to the difficulty of performing comparisons, storage of two K-bit numbers for
intermediate results, where K is the number of bits in the modulus, and conversion of the result from the delayed
carry representation to binary. Also, the MSB of the modulus must be justified (the message is shifted equally) and
the ciphertext returned to LSB justification at the end of the encryption and, as well, the modula multiplication
results need to be shifted 1 1 bits.

In this paper we describe a bit-slice architecture which incorporates the RSA control functions in
the slice along with the arithmetic (modulo multiplication) functions. Registers longer then the modulus are
avoided using concurrent modulo reduction. A 32-bit prototype has been fabricated in 3um CMOS and successfully
tested. Based on test results and simulations, a throughput rate of kbits/sec should be possible for 512-bit
encryption with a 2um CMOS process.

In an effort to substentially improve the throughput rate of the bit-slice implementation, a new
bit-stice design has been developed empioying asynchronous (seif-timed) ripple adders [8]. With a small penalty
{n extra control circuitry, an increase in throughput of up to 40 times can be cbtained. A 22-bit prototype in 3um
CMOS has been successfully fabr icated and tested and a 64-hit version is currently being fabricated.

Multiplication in the finite field GF(2™) is employed in several data encryption algorithms as
well as other areas of communications [7,9]. Recent work has shown that cryptographic algorithms based on
srithmetic in GF(2™) require very lerge values of m for security [10,11]. In particular, vaiues of m in the range
of 1500 bits are recommended. However, for large m, efficient VLS| implementation of {he multiplication function
requires careful algorithm design to provide modularity end concurrency as well as simplified control
requirements. A new muitiplication algorithm will be described along with a suitable bit-slice VLS| architecture
[12]. Test results from an 8-bit prototype will be presented.

2. Moduio multiplication algorithms

The RSA encryption and decryption transformstions involve exponentiation and modulo reduction
of a text data block possibly of seversl hundred bits. The arithmetic process involved is modulo multiplication
which requires addition, subtraction and shifting.

Brickell [7] end Blakely [13] have proposed modulo multiplication algorithms in which
muitiplication is performed concurrently with module reduction. This differs from the algorithms used by Rivest

279

{14] and Simmans and Tevares [1S} where multiplication of two K-bit numbers is first performed and then the
resulting 2K-bit number is modulo reduced. The maximum word length is (K+ 1) hits using concurrent modulo
reduction. Concurrent algorithms save storege space, reduce adder carry propagation time and require fewer clock
periods. Only algorithms of this type will be considered in the remainder of this saction.

All of the concurrent algorithms which restrict number lengths to (K+1) bits perform
multiplication in one of two ways. The most familiar way of multiplying two numbers is to add shifted versions of
the multiplicand or zero depending on the value of the multiplier bits. An example of this technique is shown below
in Exampte 1(a). The second waey involves edding the multiplicand or zers to the running total end shifting the
running total, as shown in Example 1{b).

Example 1: Binary multiplication
(a) (b)
1010. 1010.
x1101. x1101
1010. 1010.
00000. 1010.
101000. 0000.
+ 1010000 + 1010
10000010. 10000010.

Most techniques of modulo reduction rely on adding some positive or negative multiple of the
modulus. With the following concurrent modulo reduction algorithms, the number being reduced is smatler in
magnitude than twice the modulus. The modulus is either edded or subtracted to reduce the absolute value of the
number below the magnitude of the modulus. Modulo reduction can also occur indirectly. An example of indirect
modulo reduction of the running total is to first add or subtract the modulus from snother number such as the
intermediate product (1P) and then add the adjusted IP to the running total. With the two methods of performing
multiplicaticn illustrated in Example 1, & variety of methods for concurrent modulo reduction can be employed all
of which must prevent overflow by finishing with a number less in magnitude than the modulus. The aigorithms
operate correctly with starting values less in magnitude than the modulus, so if overflow occurs, the magnitude
would continue to incresse in subsequent periods. The conditions for concurrent modulo reduction, without
overflow, are summarized below.

If a number, A, which is less in megnitude then the modulus, n, is multiplied by 2
or added o another number, B, which is also less in magnitude then the modulus,
the intermediate result can be modulo reduced in the time for one addition. In the
case of a positive intermediate result the modulus is subtracted and in the case of a
negative intermediate result the modulus is added.

ie. ifOSACn ifOcA¢<nand 0<B<n
then ZA-n <n then A+B-n<n
and 2(-A)+n > (-n) and (-A)+(-B)+n > (-n)

A number of useful modulo muitiplication algorithms will now be discuased.

280

Algorithm A

A flow graph of the algorithm is shown in Fig. 1 which is a modification of Blakely's algorithm
[13]. Multiplication is done by shifting the intermediate product (1P} and modulo reducing if the IP is greater than
the modulus { 16). Then, if the multiplier bit isa 1, the IP is added to the running total. After this, the running
fotal is modulo reduced if necessary. Both the IP and the running total are slways positive. A disedvantage of this
algorithm is that the running total may require two consecutive additions per multiplier bit.

Aemultiplier Peintersediate product
B=aultiplicand S=running total
repodutus i=0, P<03=B, §{0X>=0

K=msultiplier (ength

Py

No A Yes
- 9P]
n?
PCi+1=2PC1) PCI+13=2PCi n

Mo Av:
1304
W
SC+1=8Ci) S+ 13=8Ci PG
4 .
o /\ ves
SG+1
m?
SCi+1)=8Ci+10n
.
<
? <

Resui t=8(k)>

Fig. 1. Modulo multiplication elgorithm A. Three adders are used with an averege
of 1.5 addition phases per multiplier hit.

Algarithm 8

A concurrent modulo multiplication algorithm wes suggested by Simmons and Tavares [15] which
uses multiplication with the running total multiptied by two each period as shown in Fig. 2. A normal cycle starts
with the running total being multiplied by 2, followed by adding the IP. Then the running totel is modulo reduced
using en add/subtract scheme. However, overflow occurs because the combination of multiplication by 2 followed
by addition of the multiplicand cannot always be modulo reduced with one addition or subtraction. A necessary
modification is to add a negative 1P if the running total is positive. This negative IP is generated during the 1st
period by adding the positive multiplicend to the running total and then subtrecting the medulus to produce e
negative result. The negative IP is then stored in a separate register for future use. With this method the final
result must be adjusted positive by adding the modulus if necessary. A maximum of one period is required for this

281

step. Algarithm B requires only 2 adders but, as with algorithm A, two consecutive additions may be required per
multiplier bit.

Rewuitiplier S=rurning total
EB=ay| tipl lcand K=muitiplier length
raodulus =X, Stk)>=0

SCH=1=SCi 8
SCi=12=8Ci=1>n

Adjust result S(0) +e)

SCi=1328i-1)40

SCi-1
W
[sci=1omsci- |>+(3—n> su-t)-s(:-t»e]

Mo Av«
$Ci=1)
T
$Ci=1=5CI-1>n SCi=18¢I=10n
Py]

Y
g

Fig. 2. Algorithm B for modulo multiplication. Two adders are used with en average
of 1.5 addition phases per multiplier bit.

Algorithm C

It wes thought desirable to consider & modulo multiplication algorithm which would perform all
additions during one addition phese per multiplier bit and with a reduced number of edders. An algorithm which
uses only 2 adders, which operate concurrently, is algorithm C shown in Fig 3. In this aigorithm, the running
total is multiplied by 2 each period. Then if the multiplier least significant bit (MLTisb) is 0, the running total is
modulo reduced. If the MLT1sb is 1, two additions are performed and one of the results is selected as the new modulo
reduced running total. This algorithm reguires more area because four intermediate products, P, P+n, P-n, and

P-2n, need to be first generated then stored. Due to the incresse in eres required for algorithm C, it was not
considered further.

282

A=multiplier S=rurning total
B=wultiplicond K=suitiplier length
remodu [us 1=K, SCk>=0

» %

(Adjust result S0) +a)

Fig. 3. Algorithm C for moduto multiplication. Two adders are used with one
clock phase per multiplier bit.

Algorithm D

Algorithm D performs three additions in a single phese per multiplier bit as shown in Fig. 4.
Asymmetrical clock phases are generated with a shortened phese used to set up the adder inputs. As with sigorithm
A, the previous 1P s multiplied by 2 each period. Aigorithm D differs in running total generation. If the running
total is positive, a negative IP is added to the running total. On the other hend, if the running total is negetive, a
positive IP is added. This keeps the running total from overflowing and allows it to be generated in one step. The
positive IP is generated exactly the same as the IP in algorithm A. At the same time ss the positive IP is modulo
reduced, twice the modulus is subtracted from twice the previous positive IP. This results in en IP between 0 and
-2n. After K periods, where K is the number of bits in the modulus, the multiplication is finished but the running
totsl mey need to be adjusted positive by adding the modulus. This takes & maximum of two periods. Algorithm D

uses three adders with 1 concurrent eddition per multiplier bit and provides a useful compromise between speed
and ares.

283

A=sultiplier P=intersediate product
B=aul tiplicand S=running total
n=modu | us i=0, PC0>=B, $<0)=0

Py

s

K=euitiplier length
o Yes ’
2PC1 >
>n?
PCi+1)=2PCi) PCi+12=2P (i

No Yes
Aci> Y
S¢i+1)=5¢i)
4 Yes

SCit1)=8(i
20Ci-1>2n

Resul t=S(K+2)

Fig. 4. Modulo multiplication algorithm D. Three adders are used
with one phase per multiplier bit

Algorithm E

An efficient concurrent modulo multiplication algorithm may be devised using the modified Booth's
Algorithm (MBA), where the multiplier is shifted two bits at a time. Two consecutive additions per clock period
would be required, but the number of clock periods would be reduced by half. This algorithm will be faster if fhe
constant circuit delays in a period are larger than the average addition time which would be the case with a fast
adder. In the case of the adder to be described later, approximately a10% to 15% incresse in ares would result
glong with 50% improvement in speed compared to algorithm D.

The modified Booth's Algorithm (MBA) is frequently used to improve the speed of multiptiers
{17]. Through encoding of the multiplier bits, the number of intermediate products to be added is reduced by half.
Booth's Algorithm works by skipping over any contiguous string of &i} 1's or all O's. A string of il O's does not
require any IP's to be edded, but a string of 1's requires an addition and a subtrection. For example, if the
multiptier is 11100, (100000 X multiplicand) is added and { 10 X muitipticand) is subtracted. The MBA looks st

284

the three least or most significant multiplier bits at a time depending on the direction that the multiplier is being
shifted and shifts the multiplier by 2 bits each clock period. The intermediate products are multiplied by 0, £1,
and 2 before accumulation as shown in Table 1.

Table 1. Encoding of multiplier for the modified Booth's Algorithm. The centre bit of the
three bits being encoded is referred to as the iy bit.

Multiplier bits Factor of IP Operation

i+1 i i-1 accumulated

0 0 0 0 no string

0 0 1 +1 end of string

0 1 0 +1 astring

0 1 1 +2 end of string

1 0 0 -2 beginning of string
! 0 1 -1 -2+1=-1

1] 0 -1 centre of string

1 1 i 0 middle of a string

Algorithm E is diagrammed in Fig. 5 and uses & total of four adders with two adders operating in
each phase of a two phese clock. The intermediate products are generated as in algorithm A, but multiplied by O,
+1, or +2 before accumulation. Two pesitive IP's are generated each period consecutively, corresponding to 2 and
4 times the previous IP. Each IP is calculated by shifting the previous IP by 1 bit and subtracting the modulus if
necessary. Each period, the appropriste IP is selected, inverted if a negative [P is required and added to the running
total. The running total is then modulo reduced by either adding or subtracting the modulus. Two additions are
performed each period to generate the IP's and two additions are used to generate the running totei. An algorithm
which uses fewer additions couid be devised at the expense of more memory.

: . ¢ modulo multiplication aloorit

The algorithms presented in this section employ concurrency of multiplication and modulo
reduction to improve the bit throughput rate. A comparison of six modulo multiplication algorithms is given in
Table 2. The selection of the “best” algorithm depends on System persmeters such s the delay required for
additions relative to constant circuit delays, the availability of non-symmetric clock phases, asynchronsus timing
and memory. Algorithm D was chosen for implementation because it is aimost as fast as sigorithm C and occupiw
about the same area ss algorithm A. Algorithm E hes only been considered recently. Algorithms A and B are closely
matched in speed and area. Long addition times relative to constant delays result in algorithms D and E operating at
the same speed, while short addition times make algorithm E twice as fast. With the pulse-timed adder to be
described in section 4, the constent circuit delays are at least twice as large as the average addition time, which
would maeke algorithm E st leest S0® fester than algorithm D.

285

Fpultiplier P=inlersediate product
B=aultiplicand S=rurning totai
n=modu us =0, PC0)>=B, S(0>=0

Kmayltiplier length

Result=Stk)

Fig. 5. Modulo multiplication algorithm E. Four adders are used with an average of 1.75
clock phases and the modified Booth's Algorithm.

3. RSA implementation
Architecturs! aspects
Modulo multiplier architecture, A hit slice architecture for algorithm D is shown in Fig. 6. With a fast adder,
communication delays become more significant. Signal flow within the bit slice is less time consuming than the
propagation of signals, such as clock signals, MLTIsb, START, ADDER 1 carryout, and BEGIN which must be sent to
all slices. A completion signal generator subsystem (CSG) is added if pulse-timed adders are used (described in
section 4).

A sum term generator controller (STGC) is required to select the input to the running total adder.
This subsystem is 8 4 to 1 multiplexer, which selects from Cn, Gnd, IP, and (2IP(i-1)-2n) es shown in Fig. 6.
The STGC is controlled by logic outside the bit slice which has inputs: MLTIsb, SSRsign, stert, phi2, end K or K+1.
The signals K ar K+ 1 are from the shift register counter which flags the multiplier to adjust the result positive.

286

"swyjiuob|o (L) uo13pai|di}|ne o|npow jo uosiunduo] ‘7 8|qp)

"0 wyytuoB o unyy uebun) gg| §/9109.. 0 P 4 b 3
‘fipdup 901 |6~11q apisino
padinbad 2160| joujuo3 awog ALLS 0 &4 ! ¢ a
Rt BV ¢ _ z 3
abouois puixa yiim abup - £+
‘eolis-11q ‘| abpusn Jo
up wo|} |oubje sajduis s/PASE. | b+ Gl H Z | g
‘0160| joujuoo ysa|du|g 8/9i5¢. 0 A g*| abouany £ !
. SLRE
'xa|dwod puo ‘abup| ‘moig s/Mi02. 0 A b (8Ua X2) ' suoww|g
§1uauuo) ajpJd 11q suaisibau Wi Jad 11q vayjdyy|ne/ sJeppp 31q | 8Y1luobiy
®ne | xoy DJ}X3 $po|Jad sasoyd uoryippp | A J0 Jequny
JUIRE: Y j10 "oy J0 Jaguny

287

HODULUSin ¢ 0o 0 Slice 2 Siice 1
—> HSGC -
n
ing %+
IPSR F"{ >——~|) L——~
I
v Y
PTGC ty —
AODER! In Sout .
in
in
ADDER2 -
in n Sout | | (21P(i-1)
* 3 { -2n)
] -4
5T6C 33 stoect
Ip e ® Gnd >4
—d
Inputs
LTlsb
£s6 Y SSRsign
K or K+1
A00ER T START
T]
in_ Sout phi2
SSR in D out

to ASA 4
Controller ¢

Fig. 6. A bit-slice erchitecture for elgorithm D.

RSA architecture. Three slices of a new bit-slice RSA architecture which includes the implementation of modulo
multiplication algorithm D described above is shown in block disgram form in Fig. 7. Modulo exponentiation is
performed 8s a series of modulo multiplications. The messege is repeatedly squared and modulo reduced and 8
running-product moduls multiplication is performed if the corresponding exponent bit is a one. Modulc
multiplications are carried out by the subsystems in the upper half of the bit slice while the RSA control functions
are implemented in the lower half. The same architecture can be used with other modulo muitipticetion algorithms.
input and output of data is synchronous and concurrent.

A general purpose register (STRSR) ects &s & shifting or storage register with its function
determined by control logic outside the bit slice as shown in Fig. 8. The use of this dus] purpase subsystem
considerably reduces the number of custom subsystems required. The circuitry is compact because contral logic
for the getes is outside the bit slice. This saves area because one set of cantrol Togic 1s used for !l slices. Control
logic deley is not & factor since the storage operations ars not speed limiting. Standerd cslls would be suitabls for
the control logic cutside the bit slice. For RSA aperation, the message is shifted into both the square term storage

288

I f + 1 v ? MODinct - PHILRE/WE
NODULUSin Inet LD zestic inct LD2 etatic inct LD2 xtatic MODstatic = c(RE/W1 « K}
In STRSR o ia STRSR ot ia STASA et
God Cout outct Gad Cout outct God Cout ouict
—+—4 —4 MODwutet - lcPHIZRE/WR)
phil God phil God bl God
in STRSR oot in STRSR et 1a STRSR o
STAXT
1 —

CAREYiom T T
s wum

¢ »——l B RDDERI A]:—4 b—J 8 RODER1 A o

Ttow Clof Leo . Clal -

- ry=-
AoeR2 ADDER2 § FE{—ww
Cout aum Clo Yoo
Pl TPet - MLTlabecKk SShmabecSTART

{4 4] i 44 + START-MLTUb .
MODx2¢et » MLTIabecK «SSRmatrecSTARTSPHI.
—— (MO MOOx2 1 OM0D _ MODx2 (> 1] x2
L %t o $9% et L—H %5l
(eMOD)et =
+ e c{ZEROct) - e{KecSSRamab + cMLTiatecK)

Z éDDmOI

1
Coutt Cour2 Cout z
l CSGR -I conT €S6L _l €S6A I

Fenr * 11| "o * 1| o 7 |
ADDERT ADDERT RODERT an
phil God phil Gmd poii God
in STRSR emt is STRSR wmt nSTRSR om
START
SSkriga
r ’ ¥ SqToeatic - c(RE/WR + MMUL)
4+ - = RE/WRPHI{ + eMORULSPHIL cDTNAMIC
MATIPLICAND In l fnct LD2 static lnet LDT tatic
L‘D. STASA ew is STRSSIl -~
s Ict LDt sotel LDlct LD] ewtet
]I -]_' - oaL SQTloadct » STOPCIMMUL2E/WVR
1 Py qToutet « ¢((RE/WR « cMMUL)ecPHIZ)
4 WULswtct- cf(RE/WE « MMULI~PHIZ)
I T + + ¢+ MULSamict - STOPHMUL~RE/WE
NULTIPLIERS LDict DI swect LD et LDt outet LDic1 LDI emtct
Hhin in STASA _wwt 1n STRSR wwt o STASR st by CIPHERTEXT
MULSTR ivet LD2 stmtie inet LD2 wiatle loct LDT statle MLTise
J t —t— —T MULisct + RE/WIPPHIT + MMULSPHI 1 =cDYNAMIC
- = .1_ MULstatic « ¢(RE/WR » MMUL~cEND)
o B] (] |l
T 3 3 « e(BREGINCED)
END-SIGNAL in God LD] emtet God LD1 eutet God LDt ostct i
in STASR om in STRSR owt in STRSR wwt
oS toct LD static loct LDZ wiatlc inct LD2 wearlg | start
Pe T 3 3
¢ 3 EXPiacte cRE/WRSSHIFT » RE/WR-PHI1
TR RS EXPtatic « c{cRE/WRSDTNAMIC « RE/WR)
in STASA Cowt
1 ewst God LD swtct
T P EXPusict « c{chE/WRSOFY + RE/WihePHI2)
1 o Y 4 - il
Iy b 1 b4 oL - BiD
loct LDZ watic imct LD2 sistic l ioct LD stk
in STRSR omt i STASR owt ia STRSR ot
LDlct God eseet LDlct God ouict LDIet Yds st SHIFT
3 T 3 T 1 1 COUNTIondct - BEGIN
- —3- 4 o -PHIz
»onL

™8
couts
cour? _DO—_D;; 1)
M2 pralt start

phil

oFF L Hu il

- pHI2 IR,
BEGIN -~ bagin _.'

K =Reckol MODMULT

Fig. 7. Bit-siice architecture biock diagram {3 slices).

289

register (SQTSTR) and the multiplication running total storage register (MULSTR). A single modulo multiplication
can be performed by loading the muitiplicand into SQTSTR and the multiplier into MULSTR.

STATIC

LORD2
et

ouT

bl
Y

LORDIct LOADI

Fig. 8. A multiple function data register (STRSR).

Module multiplications are timed with a shift register counter in the bottom row of Fig. 7. The
completion of an RSA encryption transformation is set by the END-SIGNAL which allows for exponents of different
lengths. The end and exponent registers (ENDSCR and EXPSCR} shift after 1 or 2 modulo multiplications,
depending on the exponent bit. Several external control signals are needed: BEGIN starts the encryption; MODMULT
sets the chip for & single modulo multiplication; EXT sets the chip to external synchronous timing for data 1/0 or
synchronous testing. The total number of pins required is about 12 depending on the ectual application.

Asynchronous operation of the adders can be eccommodated using @ completion signal generator
subsystem (CSB). Fig. 7 shows a pair of CSG subsystems, CSGleft and CSGright which detect all three carry outputs
every second slice. For synchronous operation, the CSG subsystems are not required.

Asynchronous asgects

A self-timed adder. Several synchronous adders were considered such es carry lookehesd, carry select, and the
binary lookahead carry adder [18]. These adders had disadvantages such es high area, irregular layout, slower
speed, or the difficulty of providing non-symmetric synchronous clock phases. Past approaches to seif-timed
adders have been speed independent or Muller circuits which use double rail logic. The disedvantages of this method
are slower carry propegation and several times greater implementation erea. Pulses have been used successfully

to time esynchronous operations, such as asynchronous access of stored state registers [19]. When access is

290

requested, an edge detector / pulse generator circuit forms a pulse to time the operation.

A new pulse-timed adder which borrows ideas from Hayes [19], is shown in Fig 9 in which carry
propagations are detected in a precharged ripple adder. Carry outputs are reset to O during the precharge phase, so
only propagations of | have to be detected. An edge detector / pulse generator circuit provides enough delay for the
carry signal to propagate to the next pulse subsystem. A pulse subsystem is only half s large o5 a low area
precharge adder slice. Pulses are combined to creste the completion signal with a single active lcad putlup NOR
gate.

Pulse self-tiwed modification for precharge-carry adders

ST

(post aeddition
delay)

soe Pulse = Pulse =
starting
Carry 2 Carry 1 deloy

Edge
detector Stage 2 Stage !
/ pulse PRE
generator /

Full adder

Udd
I\ PULSEout

F{} T+ -

i ut N ouT
\ Uariable delay
N b
CARRYout subaystes = gnd
Edge detector / pulse generator Uariable delay subsystes

Fig. 9. Self-timed sdder circuit details.

Several festures of the adders make this scheme fessible. Overlap of the pulses prevents
premature generation of the completion signal. The pulses are made several times wider then necessary since the
resulting delay at the end of the additions is absorbed by subsequent RSA operations. The mean of the maximum
number of consecutive carries in 8 512 stage adder isonly 8.2 with a variance of 3.3 (almost 60 times faster then

291

a ripple adder alone, on average!). The probability of less than S carries is negligible so a starting delay equivalent
to 4 carries can be provided to averlap the first puises. A pulse subsystem is not required every slice and all three
adders calculating during the seme phase can signal with the same NOR gate pulldown.

Optimization of the adder speed must be balanced against area considerations. A pulse subsystem
every slice is the fastest on average. However tooc many pulldowns slow down the large NOR gate. The number of
pulldowns can be reduced by grouping pulses with smaller NOR and NAND gates first. These variables were adjusted
ta achieve low eres and a reguler layout.

Clocking. n combining the modulo multiplication algorithm of Fig. 4 with the self-timed adder of Fig. 9 in the
bit-slice architecture of Fig. 7, several control and timing considerations must be addressed.

The clock has to be capable of switching between asynchronous end synchronous timing to allow
synchronous /0 and testing. Also, when the RSA encryption is finished, the clock should stop with the ciphertext
safely in a storage register. These functions are implemented with random logic as shown in Fig. 10. A Muller C
element is used to prevent the PHI2 clock signal from going low until the PHI 1 clock phase has risen to prevent &
race condition. This allows the PHI2 falltime to be set to the minimum value and only the risetime of the variable
delay elements have to be adjustable.

Driver delays form a significant part of the clock period. Delays for generating some control
signals cannot be avaided but the delay of the clack drivers can be largely prevented from adding to the clock period.
Most of the falltime of clock phases does not contribute to the clock period because the clock phase widths can be
externally adjusted. Alss the non-averlap time can be externally minimized s shown in Fig. 10. In the 8 and 24
stice implementations, the inverted driver outputs, cPHi | and cPHI2, were fed back to the clock controller rather
than delayed versions of cPHI sig and cPHI2sig. This guarantees that there is sufficient non-gveriap time but it is
not adjustabie and results in an approximately 30% larger clock period.

For some perts of the circuit, considerable area would be required to generate completion signals
logically. Delay elements were used instead with active load resistors to time these circuits. Active lcads can
provide sufficient delay in & small area and can be controlled by an external DC voltage (RTct in Fig. 9). The new
data rate control scheme employs a single pin to control all delay elements. An intermediate DC voltage is first
selected, say, 2.5 Volts. Then the gate aspect ratio of esch active load is chosen to provide the expected circuit delay.
During testing, the DC voltage is reduced to find the maximum operating rate (similar to finding the maximum
clock rate of 8 synchronous chip). The accurecy and stability of the active loads can be improved by incressing the
gate length and width while keeping the gate aspect ratio constant. This asynchronous timing method hes the
advantages of rate controllability, low area, elimination of giobal clock distribution, snd allows different processes
to be timed at their own rate. Lastly, it uses only 1 pin. Correct chip timing is ensured since the delay of each
variable delay element can be increased arbitrarily.

Synchronization failure can occur when gating an asynchrongus signal to 8 synchronous system.
Only latching the END signal is prone to this type of failure. In an encryption environment, a host processar would
periodically ssmple the END signal and there is 8 small probebility that a metastable state would be detected.
Increasing the settling time repidly decreases the failure rate to an accepteble level [20]. The required settling

time is negligible compared to the encryption time.

292

21 D(cPHI1sig)
cPHI1si _
3 >—> PRIT
PHI
: 4 P
EXT PHi1sig .
Control
PHIN) togle
ext PHIZsig PHI2
——— i
PHI2ext \
cPHI2sig
D(cPHI23ig)
END
Control fogic

PHI1sig= D(cPHI2sig)ec21ecEXT
+ EXTePHllext

PHI2sig> D(cPHI1sig)ecZ2ecEXT
+ EXToPHI2ext
® cEXTeEND

cPHIsig B(cPHIsig)
Al dynamic inverting ///’v

Huller C element

Fig. 10. Clock controller for the RSA chip with algorithm D and esynchronous adders.
The non-aver lap time is adjustable.

Implementation

Output speed 1imits, Output driver current will often limit a synchronous clock rate while an asynchronous clock
is not 1/0 limited since there is ng 1/0 during the RSA transformatian. The estimated average asynchronous clock
rate in 2um CMOS is as high as 30Mhz. This advantage of asynchronous timing will become more pronounced es
processes scale down further. Circuit speed scales down as A< [21], where A is the scaling ratio, if the power
supply voltage is held constant. However, the driver speed scales down as A/in(A) [22]. Asynchronous techniques
could also be applied to any synchronous algorithm to allow the RSA encryption to proceed faster than the 1/0 speed.

Ihe data rate of algorithm D. Algorithm D requires one clock phase for addition plus a shorter phase to set up the
edder inputs. The throughput rate is effected by the on-chip communication delays which are hard to estimate
accurately since they depend on the particular manufacturing process. Estimstes based on SPICE simulations of
signal propegation deleys cen be made. A calculation of the bit rate for slgorithm D with the pulse—timed adder
yields a rate of 40kbits/sec. Details of this calculation are provided in Appendix A. This corresponds to an average

asynohronous olock rate of 30Mhz. A clower synchronous olock rate would be used for /0, but @ negligible number

293

of clock periods ara required for /0. At the expected clock rates, small variations in the circuit speed have a large
effect on the throughput rate, but a conservative estimate of 30kbits/sec appears reasonable.

& synchronous bit-slice implementation. Fig. 11 is & photomicrograph of a 32-bit prototype chip executed in 3um
CMOS. Algorithm A has been used for modulo multiplication. A different architecture then that shawn in Fig. 7 is
employed in the synchronous implementation, which simplifies the control logic external to the slice at the
expense of more custom registers. The bit slices run horizontally and are comprised of 14 subsystems which
implement modulo multiplication, exponentiation and storage functions. Input and output data figw is serial which
minimizes the total pin count. This chip has been tested and shown to correctly perform RSA encryption (or
decryption) at a synchranous clock speed of 200kHz, which corresponds to & rate of 4kbits/sec. The synchronous,
pre-charged adder delay per bit has been measured to be 8 ns in Sum CMOS from which a throughput rate of
1kbits/sec for 512-bit encryption is predicted for a 2 micron CMOS process. For 3um CMOS and 32-bit
encryption, a rate of SMHz and 100kbits/sec encryption is predicted. The low measured speed is difficult to
explain since a 7-bit prototype in Sum CMOS was found to operate at 2MHz. More samples are being bonded for
testing which may indicate if process parameter variations are involved.

Fig. 11. Photomicrograph of synchronous 32-bit RSA prototype implemented in 3um CMOS.

Asynchranous implementation. Fig. 12 is a photomicrograph of a 24 slice impiementation of an asynchronous RSA
design based on algorithm D, the architecture described in Fig. 7 and the pulse-timed sdder. The data analyser
display for a 22 bit encryption is shown in Fig. 12, Input and output of data are averlapped, so both input and the

previous cutput can be seen at the same time. Both inputs and outputs start least significant bit first.

204

Fig. 12. Photomicrograph of asynchronous 22-bit RSA prototype implemented in 3um CMOS.

atus 19
$tored Words 1024
TINING DIAGRANS
Re/Wr urs Address 0043 Delta 0043 or 21,% .
Bagin
End
Ciphertext

Wy >

G
4

©
=4
N

-

Fig. 13. Data analyzer display for a 22-bit computation: 584,932283,948m0d(1,283 476) = 19,876. Due to
the slow sampling rate PHi2ext appears to stey at O sometimes. A single input set was cycled, so this ciphertext
corresponds to this input set.

The average asynchronous clock rates of these designs pravide a good indication of the accuracy of
the speed extrapolations made in Appendix A. In 2um CMOS for S12-bit encryption, the estimated optimized
throughput was 40kbits/sec with an average clock rate of 30MHz. In Sum CMOS for an 8 slice prototype, the
averege clock rate was found to be 3Mhz and the encryption rate was 300kbits/sec, while in Sum CMOS for 24
slices the average clock rate was found to be SMHz and the encryption rate 150kbits/sec. The estimated optimized
average clock frequencies for these processes were 6MHz for Sum CMOS (8 siices) and 13MHz for 3um CMOS (24
slices). Additional sampies are being bonded to determine if the slower than predicted clock rate is related to
process veriations. In any case, there are some further steps which can be taken to increase speed, including use of

doubis metalization, so that it seams possible that the predicted parformance can be attained.

285

Work in progress. Expansion of the asynchronous design to perform transforms involving many hundred bits is
necessary to verify the speed advanteges of the architecture and algorithms described here. The 64-bit chip
presently being fabricated in 3um CMOS will help to verify the extrapolations which were made to predict the
speed of 8 512 bit design in 2um CMOS. A 128-bit version has also been designed and will be fabriceted in the near
future. '

Significant further improvements in the throughput rate of RSA encryption are not likely to come
from faster adders. With the asynchroncus pulse adder, constant circuit delays teke about twice as long as the three
concurrent additions. The constant delays which result from signal propagation delays (excluding additions) are
difficult to reduce in this style of architecture. Thus, a faster adder could only achieve about 8 30% speed
improvement at the most. Future improvements may be possible with new architectures.

Higher bit rates can be echieved by interconnecting chips in several petterns. One suggested
architecture is a systolic arrangement of modulo multipliers [23]. This design cascedes st lesst K modulo
multipliers with a systolic dats flow, where K is the number of bits. New systolic arrangements of asynchronous
encryption units are faster and can be built with any number of encryption units. Binary tree input distribution,
with token ring chip selection is the most efficient and schieves the same performance as a single encryption chip.

4. A multiplier for the finite field 6F(2M)

Arithmetic operstions in the finite field GF{2™) are quite different from ordinary integer
grithmetic operations. Addition does not involve carries and is thus easier to perform then integer addition, but
multiplication is still a fairly complex and difficult task. Most circuits proposed [9,24)] are not suited for use in
YLS! systems. They require excessive silicon area, complicated controt schemes, complex wire routing, have
nonmodular structures, or lack concurrency [12].

The systolic multiplier developed by Yeh, Reed end Truong [25] is suitable for VYLSI
implementation although it is only moderately compect and hes a latency of 2m time units which may be
undesirably long for some applications. The implementation of the Massey-Omura multiplier [26] is simpler than
the systolic version and operates with a smaller Tatency, but is less moduler and hes a circuit structure and
operating speed which is dependent on the size of the field.

The architecture to be described here uses an approach similer to the one outlined by Laws and
Rushforth [27]. It is modular and therefore easily expanded, compact, and requires few control signals. The
multiplication time and latency are m time units.

Ihealgorithm
It is assumed that the reader has a basic knowledge of finite fields. if A(x) = 8m- ,xm'] +.+ X
+ 8 and B{x) = b, e . byx + b are two elements of GF(2™), then their product, A(x)B(x)modf(x),

is P(x) = py_ XM~ +. 4 pyx + pg, where F(x) = f_;x™ 1 +_+ fyx + 1 isan irreducible polynomial.

296

The multiplication, A(x)B{x)modF(x), can be expanded by multiplying each term of B{x} by
Alx):

P(x) = A(x)B{x)modF(x)
= {A(X)by 1xM~ TmodF(x) + .. + A(X)byx modF(x)

+ ALObgmodF(x)} modF(x)

The first term A(x)bp, - xm- TmodF(x) is computed, followed by each successive term which is
added to it and the sum reduced modF(x) until all the terms have been used.

If A = [8p.1....81.8g] is the vector of coefficients of A(x) and similarly for B(x), P(x) and
F(x), then this algorithm can be represented by the flowchart in Fig. 14. Element A is added to the intermediate
product, P, whenever the current bit of B, by, isa 1. F is added whenever the most significant bit (MSB)of P is 1,

which indicates that modulo reduction is necessary. These two decisions are carried out simultanegusly. If the field
is of degree m, then m steps are needed to complete a multiplication.

|

[2
I-1

YES

PRQDUCT = P

END

Fig. 14. Flowchart of GF(2M) multiplication algarithm.

Architecture
The multipiier architecture is shown in Fig. 1S for the field 6F(2?). Registers aj, fj end p; hold

A, F and the intermediate product P, respectively. The MSB of F, which is always 1, is actually not used in the

297

calculation. The state of b, latched with a flip-flop, and the MSB of P constitute the two primary control signals.

The left shift is performed by loading the output of stage L; into the product register p;, y of the next stage Ly, 1.
The final product is transferred to the output shift register {OSR) and shifted out serially once the multiplication
is complete. Note that the worst case delay path from the f; register to the OSR is independent of the multiplier

size. The number of L; and register stages is equal to the degree of the field, in this case four.

w9
~nY
-u
oY

FF: FLIP FLOP
OSR: QUTPUT SHIFT REGISTER

Fig. 15. The multiplier for 6F(2%)

Each stage L; contains one 3-input moduls, two transmission gates and two NMOS trensistors, as

detailed in Fig. 16. The transmission getes and transistors are configured to perform the AND functibn {MSB(P)
AND f;, and b; AND ai). For exampie, if b; =1 then a; is passed to the adder; otnerwise that adder input line is
grounded (set to 0).

| tati .

A multiplier for GF(2%) was 1mplemented using a combination of static and dynamic logic and
fabricated in S micron CMOS. It was found to be fully functional, capable of operating at speeds up ta 7 Mbits/sec
[28]. As SPICE simulations predicted, the date rate wes limited by the speed of the output pad drivers, not the
worst case delay path on the chip. Optimization of the pad drivers should improve the speed by about 30-40%.

Each of the eight slices occupied an ares of 185 microns by 1459 microns, of which 10% was
allocated to test structures. Subsequent chips have been modified to incorporate a more structured design for
testability approach, the Scan Path technigue [29]. In addition, the pad drivers and adders were replaced with

faster versions. The new stice occupies 23® less area.

298

This enhanced 8-bit version was submitted for fabrication in 3 micron CMOS in September 1986,
along with & 128-bit multiplier. A S12-bit chip, with & total area {multiplier and 1/0 pads) of 6912 microns by
6980 microns, will be submitted st the end of 1986. From these two larger designs it is hoped that more
information about the performance of the algorithm will be obtained.

MSBP) - »WSBIP)
MSB(P)+ »MSB (P)
bi>——1 b

d

b ——— —*bi
| |

q fi

XOR: Exclusive - OR
MSB: Most Significant Bit

Fig. 16. Thecircuit for each block Li shown in Fig. 15.

5. Conclusion

BSA acchitecture, A 22-bit, 3um CMOS prototype of an esynchronous RSA chip has been fabricated and found to
function correctly with a throughput rate of 150kbits/sec. A conservative estimate far the 512 bit encryption
rate in 2um CMOS is 30kbits/sec with optimization of the present design and 40kbits/sec with algorithm E. The
gsynchronous clock rate during encryption is not 170 limited nor is it limited by the clock rate in other
components.

Concurrent modulo multiplication algorithms provide the most efficient implementations known
for RSA encryption. Multi-edder algorithms such es algorithms D and E are efficiently implemented with the
asynchronous pulse-timed adder. Minimization of constant circuit deiays is important since they several times
larger than the addition time in a clock period.

gF(2M) muttiplier. To evaluate the performance of the finite field multiplication algorithm, an 8-bit prototype
Nes been fabricated 1n Sum CMOS and tested. It was found to operate correctly for data rates up to 7Mbits/sec. A
new 8-bit version with faster sdders and pad drivers, and a more structured approach to testing is currently being
fabricated in Sum CMOS along with a 128-bit multiplier. A 512-bit chip will be implemented at the end of 1986

299

and should provide some useful information about large YLSt multipliers.

6. Appendix A: Calculation of the RSA throughput rate with algorithm D

Constant on-chip communication delays in Sum CMOS:

Non-overlap time = 2x10ns (if adjustable)

Signal flow after ecdition: drive carryout line plus signal flow within bit slice = 30ns

Clock transition time = 2x 10ns (crossing threshold only)

phi2: control generation { 1Sns) plus driving of control lines plus e signal flow within bit slice = 50ns

where

and

where

Total = 120ns
1 clock period in a Sum process = TDS = (N¢ +L)Tp + 120ns = 201.2ns
NC = average number of carries for an averege of 2.5 adders of SO0 bits each = 9.6
L = No. of slices separating pulse subsystems of adders = 2
Tp = carry propagation speed in a Sum process = 7ns/slice
1 clock period in a 2um process = TD2 = TDSe(2/5)2 = 32.2ns
RSA transform execution time = Texe = {the number of modula multiplications){ the number of periods
per multiplication)(the length of a period)
Texe = { 1.50K)a(K+2)eTD2 = .0127 sec

K = number of bits in exponent and modulus = 512

Bit rate = K/Texe = 40 kbits/sec

7. Acknowledgements

The research reporied here was supported in part by strategic grants 60893, 60894 and 61364

and Operating Grants from the Naturai Sciences and Engineering Research Council of Canada. VLS design and testing
equipment was provided under the loan program of the Canadian Microelectronics Corp. (CMC). Chip fabrication
was carried out by Northern Telecom Electronics Ltd. under the fabrication program of the CMC.

8. References

[

2]

{3]

[s]

{6

{7

W. Diffie and M. Hellman, “New Directions in Cryptography”, |EEE Trans. Info. Theory, Yol. 1T-22 (6),
pp. 644-659, Nov. 1976,

R.L. Rivest, A. Shamir and L. Adleman, "A Method for Obtaining Digital Signatures and Public Key
Cryptosystems”, Comm. of the ACM, Yol. 21, No. 2, pp 120-126, Feb. 1978,

D. Denning, "Cryptography and Data Security”, Reading, Mass.: Addison-Wesley Publ. Co., 1982.

R.L. Rivest, "RSA Chips (Past/Present/Future)”, Advances in Cryptology, Proc. of EUROCRYPT 84, pp.
159-165, Springer-Yerlag, Berlin, 1985

M. Kochanski, "Developing an RSA Chip”, Proc. of CRYPTO 85, Santa Barbara, CA., Aug. 1985.

CYLINK, "Advance Data Sheet: CY 1024 Key Management Processor”, CYLINK , 920 West Fremont Ave.,
Sunnyvale, California 94087, 1986.

E.F. Brickell, "A Fast Modular Multiplication Algorithm with Application to Two Key Cryptography™,
Proceedings of CRYPTO 82, Santa Berbara, California, pp. 51-60, August 1982.

(el

(9l
{10]

(111

[12]

{13}

[14]

[15]

(16]

i1

[18]

(19]

f20)

f21]

[22]

{23]

(24]
[25]

[26]

300

G.A.Orton, L.E. Peppard, and S.E. Tavares, "A Fast Asynchronous RSA Chip”, 1EEE Custom Integrated
Circuits Conference, Rochester, N.Y_, pp. 439-443, May 12-15, 1986.

W.W. Peterson and E.J. Weldon, “Error-Correcting Codes™, Cambridge, MA: MIT Press, 1972.

A.M. Odlyzke, "Discrete Logarithms in Finite Fields and Their Cryptographic Significance”™, Advances in
Cryptelogy, Proc. of EUROCRYPT 84, pp. 225-314, Springer-Va‘lég, Berlin, 1988S.

|.F. Blake, R. Fuji~Hara, R. Mullin and S. Yanstone, "Computing Logarithms in Finite-Fields of
Characteristic Two", SIAM JJ. Alg. Discr. Methods, Vol. 5, pp. 276-285, 1984.

P.A. Scott, S.E. Tavares and L.E. Peppard, “A Fast YLSI Multiplier for GF(2™)", IEEE Journa! on Selected
Areas in Comm., Vol. SAC~-4, pp. 62-66, January 1986,

G.R. Blakely, "A Computer Algorithm for Calculating the Product AB Modulo M”, IEEE Trans. Computers,
Yol. C~32, pp. 497-500, May 1983.

R.L. Rivest, "A Description of a Single-Chip implementation of the RSA Cipher", Lambds { Fourth Quarter
1980) pp. 14-18.

D. Simmons and S.E. Tavares, “"An NMOS Implementatian of a Large Number Multiplier for Data
Encryption Systems™, Proc. 1983 Custom Integrated Circuits Conf., Rochester, N.Y., pp. 262-266, May
1983.

M.P. Roy, L.E. Peppard and S.E. Tavares, "A CM0S Bit-Slice Implementation of the RSA Public~Key
Encryption Algarithm™, 1985 Canadian Conference on Yery Large Scale Integration, Toronto, Caneda, pp.
52-56, November 1985.

S. Waser and A. Peterson, "Real-time Processing Gains Ground with Fast Digital Multiplier”,
Electronics, pp. 93-99, September 29,1977.

N. Weste end K. Eshraghian, “The Principles of CMOS YLSI Design: A Systems Perspective”,
Addison~-Wesley, 1985.

A.B. Hayes, “Seif-Timed iC Design with PPL's”, Third Caitech Conference on YLSI, Computer Science
Press, Inc., Rockvitle, Maryland, 1983, pp. 257-274.

T.J. Chaney and F.U. Rosesenberger, “Cheracterization and Scaling Of MOS Fiip Fiop Performance in
Synchronizer Applications™, Proceedings of the First Caltech Conference on YLSI, 1979.

C.L. Seitz, "Self-Timed YLSI Systems", Proceedings of the First Caltech Conference on YLSI, pp.
345-354, January 1979.

D.R. Brown, “Optimization of On~Chip Input/Output Interfacing Circuitry for YLSI Systems™, M.3¢.
Thesis, Department of Electrical Engineering, Queen’s University, July 1985,

K. Culik 11, JUrgensen, K. Mak, “Systolic Tree Architecture for some Standard Functions”, Report 140,
Dep. of Computer Science, University of Western Ontario.

T.C. Bartee and D.I. Schneider, "Computation with Finite Fields”, inform. and Controi 6, pp.79-98, 1963.
C.S. Yeh, 1.S. Reed, and T.K. Truong, “Systolic Multipliers for Finite Fields 6F(2™)", IEEE Trans. Comput.,
val. C-33, pp. 357-360, April 1984

C.C. Wang, T.K. Truong, H.M. Shag, L.J. Deutsch, J.K. Omura, and 1.5. Reed, "YLSI Architectures for

Computing Muitiptications end Inverses in GF(2™M)", IEEE Trans. Comput., vol. C-34, pp. 709-717, Aug.
1985.

301

{27] BA Laws,Jr.and C.K. Rushforth, "A Cellular-Array Multiplier for 6F(2M)", IEEE Trans. Comput., vol.
€C-20, pp. 15673-1578, Dec. 1971.

{28] OA Orton, M.P. Roy, P.A. Scott, L.E. Peppard, and S.E. Tavares, "New Results in Mapping Data Encryption
Algorithms into YLSI™, presented at the Fourth int. Workshap on YLS! in Comm., Ottawa, Ont., June
1986. '

[29] T.W.Williams and K.P. Parker, "Design for Testability - 8 Survey”, Proc. IEEE, vol. 71, pp. 98-112,
Jen. 1983.

