A HIGH SPEED MANIPULATION DETECTION CODE

Robert R. Jueneman
Computer Sciences Corp.
3160 Fairview Park Drive
Falls Church, VA 22042
(703) 876-1076

Abstract

Manipulation Detection Codes (MDC) are defined as a class of checksum algorithms which can
detect both accidental and malicious modifications of an electronic message or document.
Although the MDC result must be protected by encryption to prevent an attacker from
succeeding in substituting his own Manipulation Detection Code (MDC) along with the modified
text, MDC algorithms do not require the use of secret information such as a cryptographic key.
Such techniques are therefore highly useful in allowing encryption and message authentication to
be implemented in different protocol layers in a communication system without key management
difficulties, as well as in implementing digital signature schemes. It is shown that cryptographic
checksums that are intended to detect fraudulant messages should be on the order of 128 bits in
length, and the ANSI X9.9-1986 Message Authentication Standard is criticized on that basis. A
revised 128-bit MDC algorithm is presented which overcomes the so-called Triple Birthday
Attack introduced by Coppersmith. A fast, efficient implementation is discussed which makes
use of the Intel 8087/80287 Numeric Data Processor coprocessor chip for the IBM PC/XT/AT
and similar microcomputers.

Key words: Manipulation Detection Code (MDC), Message Authentication Code (MAC),
checksums, birthday problem attacks, authentication, encryption, digital signature, cryptography,
numeric data processor chip, math coprocessor chip, 8087, 80287, IBM PC.

AM. Odlyzko (Ed.): Advances in Cryptology - CRYPTO ’86, LNCS 263, pp. 327-346, 1987.
© Springer-Verlag Berlin Heidelberg 1987

328

1 Introduction

A common theme throughout a series of papers?® by the author and his colleagues, Dr. S. M.
Matyas and Dr. C. H. Meyer of IBM, has been the desirability of separating the function of
encryption from that of authentication, so that they could operate at different architectural
layers or levels in an communications system. In the context of the ISO Open System
Interconnect reference model, for example, it was suggested that link encryption might be
applied to all of the communications from a host, using a stand-alone link encryption device
operating at ISO OSI layer 1, the data link layer. In this case the appropriate place for
authentication would probably be in the Presentation or Application layers (layer 6 or 7),
implemented in an application program inside the host. We have also suggested that since the
mode of encryption might change depending on the physical medium involved, it would be
desirable if the method of authentication were independent of the encryption scheme used.

The recently announced decision of the National Security Agency not to endorse new DES
equipment for certification in accordance with Federal Standard 1027 after 1988, and in general
to move on to a new family of encryption algorithms for both Unclassified, National-Security
Related traffic as well as classified data, should serve to underscore the advisability of such a
separation of function, as it will result in an increased requirement for "keyless" Manipulation
Detection Code algorithms. Until the new Commercial COMSEC Endorsement Program (CCEP)
algorithms are widely available (and perhaps for an even longer period, in the case of
international circuits which may have to continue running DES), application programs might be
supported by two or even three different link encryption algorithms (DES, an unclassified CCEP
Type 2 algorithm, and a classified CCEP Type 1 algorithm, depending on the destination), but
should require only one authentication algorithm. It should be observed that there is a
fundamental difference between encryption and authentication with respect to the need to
change algorithms, for in the case of encryption it is very difficult to know whether your traffic
is being broken surreptitiously. In the case of authentication, however, it usually becomes
obvious sooner or later if you have been spoofed. The objective is to minimize the amount of
time required to detect the spoofing. It would therefore seem that authentication algorithms
would not have to be changed nearly as often as encryption algorithms, and that there is perhaps
less need for secrecy in their design.

In the papers presented to date, our primary concern was to find an authentication algorithm
that would be more efficient than a MAC (especially when implemented in software on a
microprocessor), and/or would not require a traditional encryption operation. Only secondarily
did we focus on what this author now believes to be the fundamental distinction between an
MDC and a MAGC, i.e., that whereas a MAC involves one or more secret keys, an MDC makes use

-

. Jueneman, Robert R., "Analysis of Certain Aspects of Output Feedback Mode", Advances in Cryptology: Proceedings of
Crypto82, Plenum Press, New York, 1983, pp 99-127.

3]

. Jueneman, R. R., C. H. Meyer, and S. M. Matyas, "Message Authentication With Manipulation Detection Codes”, Proceedings of
the 1983 IEEE Symposium on Security xnd Privacy, IEEE Computer Society Press, 1084, pp 33-54.

[2]

. Jueneman, R. R., C. H. Meyer, and S. M. Matyas, "Message Authentication”, IEEE Communications Magasine, Sept. 1985 -
Vol. 23, No. 9, pp 29-40.

329

of only publicly known quantities, and is therefore considerably more convenient from the
standpoint of key management.

1.1 Cryptographic Checksum Requirements

Let us assume that we wish to apply a cryptographic seal to some electronic message or
document, and that we will either use a digital signature approach, or else use link or end-to-end
encryption to protect the MDC result. We must assure that the set of all checksums is very
nearly one to one with respect to the set of all message texts, so that we can easily check the
checksum (for example in the digital signature) instead of having to process the entire text.
That is, given two messages A and B with checksums, we desire that checksum (A) and checksum
(B) be identical if and only if the messages A and B are themselves identical. Assuming a good
checksum algorithm, the chances that A and B are not identical given that checksum (A) equals
checksum (B) should be 27X, where k is the number of bits in the checksum and the probabilities
are averaged over all possible messages.

More specifically, the algorithm should have the following properties:

1. If two different texts (of arbitrary length) are checksummed, the probability that the two
checksums will be the same when the two documents are not identical should be a
uniformly distributed random variable that is independent of the text, with an average
value over all possible texts of 2°N where N is the number of bits in the checksum.

2. The checksum must be sensitive to permutations, so that the message ABC will produce a
different value than ACB, etc.

3. As will be seen, the resulting checksum must be on the order of 128 bits in length, in
order to resist a so-called "birthday attack" against the text itself.

4, Finally, all of the bits of the checksum must be an over-determined function of all of the
bits of the text and all of the bits of the checksum of the previous block, in order to
defeat several attacks that will be discussed below.

In addition, in a number of applications it is necessary to add a random Initialization Vector to
the text itself, and to chain the blocks of messages together by including the checksum of the
previous block in the checksum of the current block, so that one properly authenticated value
cannot be substituted for another in a playback artack. For example, il a particular dialog
occurs frequently, and the answer to some question is either "Yes" or "No", without the
appropriate chaining the attacker could easily substitute the entire contents of a previous
message, together with its valid checksum, and the message would be accepted. A 64-bit random
Initialization Vector will suffice to initialize the authentication, but message chaining may still
be required. It should be noted that an Initialization Vector may also be necessary to ensure that
the same text is encrypted differently each time it is transmitted, in order to prevent a so-called
dictionary attack. [n general it appears that the same Initialization Vector (sometimes called a
Message Indicator) could be used for both purposes, but it would be necessary to carefully
examine both the encryption and the authentication scheme before making a blanket statement.

330

Finally, we must point out that although a DES-based Message Authentication Code or MAC
could be used to authenticate either an encrypted or unencrypted text without further encryption
because it makes use of a secret key?, that is not true of a Manipulation Detection Code.
Although the text itself does not need to be encrypted, the MDC must be, so that the attacker
cannot substitute his own MDC with any significant probability of success. In most cases, the
MDC can simply be appended to the message, and if the entire message is encrypted together
with the MDC, that will provide adequate protection. If the MDC is easier to calculate than an
MAC, then if the message would be encrypted for secrecy in any case the MDC technique would
be more efficient than a MAC.

2 Attacks Against Checksum Techniques

In the three previous papers in this series, we have addressed different aspects of the problem of
authenticating the contents of a message against possible modification or corruption. In the
first, a flaw in a draft of a federal standard regarding Manipulation Detection Codes was
pointed out briefly, and a quadratic residue technique suggested as an alternative form of
checksum. That paper also pointed out the need for two independent keys for encryption and
authentication if a Message Authentication Code (MAC)® is generated through the use of a secret
(DES) key and appended to the message, for it was shown that the errors introduced in the
plaintext by an error or by manipulation were exactly the errors needed to cause the MAC to be
erroneously computed so as to validate the manipulated text.

The second paper presented an extensive analysis of various forms of Manipulation Detection
Codes, including block XOR and linear addition techniques, when used in combination with
Cipher Block Chaining, Cipher Feedback, and Output Feedback modes. That paper also
discussed the architectural advantages of a Manipulation Detection Code that was independent
of an encryption algorithm, particularly in those cases where low-level link encryption may be
used to protect the traffic flowing into or out of a main-frame host processor, yet it is desired
for an application program in the host to verify the authenticity of the messages received. In
addition, the potential speed advantages of an MDC technique compared to the calculation of a
MAC were discussed.

During the course of writing that paper and reviewing it with our peers, a number of attack
scenarios were identified that must be considered whenever new schemes are proposed. In
particular, Dr. Don Coppersmith introduced several attacks which he called under-determined
knapsack attacks. These have also been called "birthday" attacks, because they generally involve
generating random variations in the text and calcutating a MAC or an MDC, then working

4. This is not recommended, however, because an unencrypted MAC reveals something about the message iteelf, and may form the
basis for a dictionary attack.

5. As defined in Federal Information Processing Standard FIPS PUB 46, "DES Modes of Operation” published by the National
Bureau of Standards, "A MAC may be generated using either the CFB [Cipher Feedback] or CBC [Cipher Block Chaining] mode.
In CFB authentication, » message is encrypted in the normal CFB manner except that the cipher text is discarded. After
encrypting the final K bits of data and feeding the resulting cipher text back into the DES input biock, the device is opersted one
more time and the most significant M bits of the resulting DES output block are used as the MAC, where M is the number of bits
in the MAC. In CBC authentication, a message is encrypted in the normal CBC manner but the cipher text is discarded.
Mesaages which terminate in partial data blocks must be padded on the right (LSB} with zeros. In CBC authentication, the most
significant M bits of the final output block are used as the MAC."

331

forward and backward until two matching MACs or MDCs are found. Making random variations
in the text in two places and then sorting and comparing the results for a match allows the
attacker to take advantage of the so-called Birthday Problem in statistics to reduce the work
required to approximately the square root of the effort required to match a particular given
MAC or MDC.

2.1 The Fundamental Birthday Attack.

The third paper abstracted the second for a more general audience, but also added some new
information. In particular, it was recognized that any Manipulation Detection Code (MDC) or
Message Authentication Code (MAC) is susceptible to a birthday attack against the text itself,
unless the MDC or MAC is on the order of 128 bits in length. This fundamental attack proceeds
as follows, and assumes that one user is attempting to defraud another by devising a version of a
bogus or unfavorable contract or agreement which would have an identical checksum as would
an acceptable version of a legitimate one, having the other party digitally "sign" the legitimate
version, and then produce the bogus version in front of a judge and claim that the other party
has defaulted on his obligations:

1. Assume that a 64-bit MAC or MDC is used, and that if necessary the attacker can exercise
the authentication system ad infinitum to generate a MAC or an MDC, even if a secret key
which he does not know is used in the case of the MAC.

2. The attacker secretly prepares a number of subtle variations of the legitimate text in
advance, and calculates (or has the system calculate) the MDC or MAC for each one. In
the case of an electronic mail message or document, for example, suppose that a number
of lines contain the ASCII character sequence "space-space-backspace™ between selected
words. The attacker might prepare a set of variations of that document in which the
sequence in selected lines would be "space-backspace-space”. The length of the text would
not be altered thereby, and all of the variations of the document would appear to be
identical, both when printed and when displayed on the normal video display, unless
"dumped" in hexadecimal format. Other, more consequential changes to the text could also
be made, of course. By systematically altering or not altering the text in each of say 32
different lines, 23? or 4.3 billion variations could be generated. A file of records
consisting of the MAC or MDC plus a 32-bit permutation index could be used to
summarize what lines were altered by a given variation, and what MAC or MDC resulted.

3. The attacker then prepares an equally large number of variations on the bogus text he
would like to substitute for the legitimate text, and calculates (or has the system calculate)
the MDC or MAC for each one of those variations as well, producing another file of
MAC/MDC results plus the permutation index records.

4. The attacker then compares the two files, searching for a pair of identical MACs or MDCs
and noting the permutation indices. (If no match is found, the attacker can simply
generate a few more random variations of the legitimate and the bogus texts until 2 match

6. Other combinations, such as null-character, or carriage return - line feed would also work, as well as less subtle variations such as
changing "the” to "an”, or inserting or deleting commas or spaces in a numeric fieid.

332

is found.) He then recreates the full text of both the acceptable and the unacceptable
documents with the specific modifications necessary to produce the matching MACs or
MDCs, based on the permutation indices.

5. Finally, he offers the appropriate variation of the legitimate contract to the other party
and both "sign" it. At some time in the future the attacker substitutes the unfavorable
contract, and tells the judge that the digital signature containing the MAC/MDC "proves”
it was that version that was signed by both parties.

This is Yuval’s? classic "How to Swindle Rabin" form of a so-called "Birthday Problem™ attack.

According to the famous birthday paradox® problem in statistics, this kind of an attack is likely
to succeed if the number of variations of each document that are generated and compared
approaches the square root of the total number of possible MAC/MDC values. That is, if a 32-
bit checksum were used, the probability of a successful attack would be about 50% after only 218
or 65536 variations were computed, and would increase rapidly after that point. If a 64-bit MAC
or MDC were used, then the 4.3 billion iterations produced by systematically varying 32 lines of
text would be likely to suffice.

In order to see whether this attack would be computationally feasible against a 64-bit MAC, let
us assume that the variations all occur at the end of the text and that exactly one variation
occurs in 8 bytes of text, so that only one DES iteration would be required to account for that
variation. The brute-force way to calculate the resulting MAC for the entire text would be to
recalculate the last 32 DES blocks for each variation, which would require 2 x 32 x 232 DES
iterations for the two sets of variations of the text. Howevér, by only encrypting those blocks
that have changed and those for which earlier blocks have changed, the number of DES
iterations can be reduced to 2 x (23%-1). A hardware DES implementation running at 10
microseconds per iteration could complete the task in just under 2 CPU days.

However, the amount of I/0 required to sort and compare the data must not be neglected. A 64
bit MAC and a 32 bit permutation index per variation would require 12 bytes per entry times 232
entries, or 51.5 gigabytes per file. At an effective rate of 20. microseconds per variation
(including encrypting due to the requirement to reencrypt blocks after a change), data would be
generated at the rate of 4.3 Mbps or 600 kilobytes per second, which is well within the channel
capacity of a mainframe computer to record. The process of comparing two files consisting of
340 reels each of 6250 bpi high-density tape (151 megabytes per reel), searching for any one
value on one file that matches any one value on the other file, would admittedly be a lengthy
task even for a2 mainframe computer, but it is not infeasible. One approach would be to presort
the information by distributing the data across 22 tape drives while the information is being
generated, producing 22 files of approximately 15 to 16 reels each for each variation. Each of
those files could in turn be distributed onto 20 reels of tape at maximum tape speed, and then
those approximately 680 individual reels could be sorted one at a time using a conventional tape

7. Yuval, G, "How to Swindle Rabin”, Cryptologia, Yol 3., No. 3, July 1979, pp 187-190.

8. How many people must there be in a room in order to have a good chance that at least two people in the room will have the same
birthday.

333

or disk sort routine, and finally compared. Assuming each reel requires 15 minutes to sort, the
total process could be completed in about a week.

An interesting alternative technique was suggested by Caron and Silverman’s distributed processing approach to fncton'nxg. Let us
assume that the attacker has at least the occasional use of 256 Intel 80386-based microprocessors or similar machines which are
connected via a high-speed LAN. Each of these slave hi will be d to have two boards of 8 megabyteam each of the new

1 megabit memory chips. In addition, a master station will be equipped with a hardware DES implementation, four 8-megabyte
memory boards, and two 85 megabyte hard diska.

The total amount of memory in the 256 slave processors would be 4.295 gigabytes, or 235 bits. Let us assume that after each
calculation of a MAC in the first set of variationa, the master workstation sends 24 bits {bits 8 through 32) of the MAC to the
appropriate slave processor based on bits 0 to 7 of the MAC. Each slave processor would then use those 24 bits to address a
particular bit within its memory, and would turn on that bit. At the end of the first pass through all of the variations of a single
document (requiring about 24 hours), the contents of the ficst 32 bits of all 232 MACa calculated would be repr ted as a set of bits
turned on in all of the memories. Because there are 232 bits turned on out of 235 bits total, the probability that a particular bit will

be on after the first pass is 1/8, with many bits having been turned on multiple times within this pass. At the end of the first pass,

all of the slave processors would dump memory to a hard disk, then zero all of the bit storage area.

The maater processor would then begin processing the second set of variations and would again send 24 bits of the MAC to all of the
slave processors. This time, however, the slave proceseors would check to see if that particulac bit had alresdy been turned on. If it
had, it would signal the master CPU, which would record that permutation index. Because the probability of a particular bit being
turn on in both the first and the second passes is 1/64, a 1 byte increment from the previous permutation index would normally
suffice and there would be approximately 232/64 or 67,108,859 values to record, so one 35 megabyte hard disk would be sufficient to

contain one set of permutation indices.

The master CPU would then repeat the calculations of the firat pass in a third pass, again broadcasting 24 bits of the MAC to the
sppropriate slave stations, which would replay whenever a collision was found. The master station would then record the

ot o3

per iated with those collisions on the second 85 megabyte hard disk.

This entire three pass process would then be repeated, but instead of examining the first 32 bits of the MAC the last 32 bits would be
used. The fourth pass would initially turn a set of bits based on the first document, and the fifth pass would check for a possible
collision. However, the master CPU would not have to generate all 232 variations, but would only process the variations that were
previously recorded as potential matches after the second and third passes. Therefore, instead of taking two days for this processing,
it would only take about 45 minutes.

During the fifth and sixth passes, the various slave processors would send back acknowledgements as before, and the master station
would erase any permutation index that did not produce s collision. This time, the probability of a false alarm collision is only
1/4096, 80 the expected number of collisions r ining to be pr d is 1,048,576.

The master station would then make two internal passes over the remaining permutation indices for the two different documents,

using a hash table lookup scheme to store/search the 64-bit MAC and 32 bit permutation indices.

2.2 Other Opportunities For Birthday Attacks.

Similar attacks could potentially succeed against command and control systems, especially if the
attacker is able to send bogus commands and random variables over a channel that cannot be
shut down without denying service to the legitimate users as well. An example would be an
attacker who attempts to take over or disrupt a communications satellite by sending spurious
commands via the Telemetry, Tracking, and Control channel to the satellite in an attempt to get

9. Caron, Thomas R. and Robert Silverman, "Parallel Implementation of the Quadratic Sieve”, Advances in Computer Science -
CRYPTO '86 Proceedings, Springer-Verlag, Berlin, 1987.

10. Sixty-four microprocessors with 64 megabytes of memory would be significantly cheaper, but tha:‘.' would be a very specialised
system, s opposed to a configuration that might be used for other purposes and could be "borrowed" for our purposes.

334

it to move out of position, use up all of the maneuvering fuel, go into a spin, etc. There is no
easy way that the attacker can be located, and if he is operating out of a foreign country there
may be nothing that can be done to stop his transmissions. The attacker can simply send random
data, and even if the command link were encrypted there is a possibility that the decrypted
information might be accepted as a valid command. Unless a sufficiently long checksum is used,
random data and a random MDC or MAC will eventually result in a random command being
accepted!l,

Another instance could arise in a multilevel-secure system, where a cryptographic "seal” is
applied to an "object”, in order to prevent classified information from being disclosed or
modified without proper authorization. For example, if the security classification associated
with the object could be manipulated by a Trojan Horse program, a classified object’s label could
be changed to "unclassified”, and the information released. Similarly, the contents of a properly
marked, unclassified object could be changed and classified information inserted. Because the
sensitivity label must be very closely associated with the contents of the object (to prevent a
simple cut-and-paste attack), the security seal of the object typically includes both the sensitivity
label and the contents of the object as well. In this case, the Trojan Horse program could
conceivably manipulate the label together with some innocuous portion of the data, and
repeatedly present the information to the cryptographic seal mechanism until two versions, one
good and one bad, happened to produce the same cryptographic checksum. The substitution
would then be prepared.

2.3 Recommended Length For Cryptographic Checksums.

Based on these attacks, we conclude that it is essential that any MAC or MDC checksum be on
the order of 128 bits in length, in order to protect against situations where the opponent could
systematically change both the text and the MAC/MDC until he finds a combination that works.

A 128-bit checksum is sufficient, because in addition to the sorting and searching problem
rapidly becoming insurmountable (after about 80 bits), the 255 basic MAC/MDC calculations
required by the birthday problem attack would not be computationally feasible, even if they
were to take only 1 nanosecond apiece. It must be stressed that this attack has nothing to do
with the cryptographic strength of the MAC or MDC algorithm, or whether conventional keys,
public keys, or no keys at all are used, but only whether the length of the result is sufficient to
withstand any computationally feasible number of random "birthday attack” trials.

In this connection, it is worth observing that the recently revised ANSI X9.9-1986 authentication
standard!? specifies the use of a 32-bit MAC, although the future use of a 48-bit or 64-bit MAC
is also discussed. In analyzing the protection afforded by that standard, we should consider both
external attacks and internal fraud. With respect to an external threat in this environment, a 32-
bit MAC is arguably sufficient. Even though an attack against such a system would be likely to

11. Actually, satellite command processors typically echo the command received back to the ground, and then require an "Execute”
command within a certain period to make the received command take effect. Assuming that the Execute command is also
encrypted and authenticated it is much leas likely that this particular attack would succeed, but the point is clear.

132. Financial Institution Message Authentication (Wholesale) X9.9-1986 (Approved August 15, 1986), published by the X9
Secretariat, American Bankers Association, 1120 Connecticut Avenue, Washington, D.C. 20038.

335

succeed after only 65 thousand attempts, hopefully all of the false MACs should generate some
alarm, and the investigative agencies would be called in to stop the perpetrator before he (or
she!) was successful,

With respect to a possible internal threat or Trojan Horse program, however, it is obvious that if
the security of the system were to rést solely on the authentication provided by the MAC, then a
32-bit MAC is grossly inadequate. It should be apparent from the preceding discussion that even
a 64-bit MAC would provide inadequate protection from a member bank or insider who might
attempt to defraud another institution, if that were the only mechanism used to protect against
such attacks. In the banking environment, of course, there are all sorts of reconciliation
processes that would presumably uncover such attempts at fraud sooner or later, but in other
environments this might not be the case. System developers are therefore cautioned not to apply
the X9.9-1986 authentication standard outside of the specific wholesale banking environment for which
it was developed.

2.4 The Need For Super-Authentication.

It should be noted that if an MDC technique were used to authenticate a message that is
protected by Output Feedback (OFB) mode (or worse yet, not protected at all), the opponent
could casily calculate a valid MDC to go with the modified text, and append the new MDC to
the text at will, since there is no separate cryptographic key used to protect the authentication
information. Even though the attacker doesn’t know the key used to encrypt the message, if we
assume that he does know the plaintext (perhaps because he generated it) he can determine the
keystream output from OFB by XORing it with the plaintext, and can then change the
keystream to suit his purposes. This particular attack can be defeated by having the system
introduce a secret, varying, random component which the opponent doesn’t know (an
Initialization Vector) into every message, and inciuding that random value in the MDC
calculation. The Initialization Vector is not a key, since it doesn’t have to be known in advance
by either party. It doesn’t even have to be deterministic, and it can be discarded by the receiver
after the MDC is checked. However, the random value should be at least 64 bits long, so that the
attacker cannot discover its value and then the true value of the MDC and therefore the
corresponding bits of the key stream by exhaustively trying all possible values of the initial
random component.

With this in mind, let us reconsider the delayed transmission OFB attack that was discussed in
the second and third papers. That attack made use of a lengthy message whose plaintext was
known to the attacker, so that an extensive amount of keystream would become known. The
beginning and end of the message would then be jammed, and an invalid message substituted
based on the keystream. The invalid message could even contain a random component, since the
attacker would have already recovered the keystream bits for that portion of the output.

In order for this attack to succeed, it is necessary for the attacker to precisely synchronize the
plaintext and the ciphertext, know the current message sequence number, intercept the ciphertext
and block it, jam the portion of the message containing the secret, random component to make it
look like a noise burst on the transmission medium, and then fabricate any desired random
value, bogus message, and a corresponding fraudulent MDC, and follow it with a valid HDLC

336

frame check sequence. Finally, the end of the message containing any remaining message text,
the old MDC, frame check, and the start of the next message would be replaced with random
characters to cause another noise burst to be simulated, which would then be rejected by the
standard HDLC error recovery mechanism at the receiver.

It should be clear that this real-time interception and modification technique, although difficult
to put into practice, could theoretically be applied to any MDC scheme that does not involve the
use of a secret key for authentication, if the message text being sent is known to the attacker.

Although this attack was previously considered legitimate, and a potentially serious obstacle to
the use of an MDC technique, it can only succeed if the message being attacked is considered in
isolation, as if it were the only message being sent. In order to defeat the attack it is only
necessary to chain the individual messages together in such a manner that a change in one
message will affect the MDC in the next message. Therefore, instead of the MDC in a given
message pertaining to that message, it should instead pertain to the previous message. The MDC
contained in the first message should cover the Call Request/Call Acknowledgement or other
session establishment message sent by the other correspondent, and containing a secret, random
component known to that correspondent, or the system at that end. By MDCing something that
the other correspondent already knows, the chain is anchored at the beginning, defeating an
attack that would systematically change every message in the sequence.

Each MDC should therefore cover not only the data contents of the previous message, but the
previous MDC as well, so that changing a single bit of a message will affect all of the MDC
results from then on. The MDC for the previous message then satisfies the requirement for a
secret, random component in each message if OFB is used. In order to detect an attempt to
delete the final message of a session, a unique end-of-session message should be sent that
includes the MDC of the previous message, plus the MDC of the end-of-session message itself. If
a digital signature capability is implemented, it would be desirable to sign this final message. If
the final MDC is digitally signed, then the initial MDC could be a constant. This would aveid
the necessity of having a session established in real time so that the other correspondent can
check the original value of the MDC at the time of session startup. This would be particularly
useful in store-and-forward message systems, including electronic mail and bulletin board
systems, where the receiver is not in direct contact with the originator and the intermediate
system may be a public or untrusted system. It would also apply to unidirectional transmission
systems, including some command and control systems as well as systems that transmit to
destinations operating under radio silence rules.

Finally, it should be noted that in some cases the communications system may employ some
device such as an Automated Teller Machine to screen the messages being sent, allowing only the
"good" messages through. But in this case the system (the ATM machine and the bank) and the
user do not necessarily share common interests. The user may wish to ensure that his messages
are kept secret, and the legitimate user may also be interested in assuring the end-to-end
integrity of his messages. But the system, in this case the ATM machine, may also have a role to
play in assuring that the user does not compromise the integrity of his own messages.

We should not try to satisfy both of these possibly diverging requirements through one
mechanism. Instead, just as we sometimes use super-encipherment (for example using end-to-end

337

DES encryption to ensure writer-to-reader privacy, plus link encryption using classified
algorithms to protect against an external threat), we should talk about super-authentication.
That is, if the system has a requirement to assure that messages are not modified after they exit a
secure processing facility, then the system must independently provide that assurance without
depending upon the user’'s mechanisms.

3 A Quadratic Congruential MDC

Now that we have developed the rationale for the use of an MDC algorithm, we should certainly
try to define a suitable implementation:

3.1 The Original QCMDC.

The original Quadratic Congruential Manipulation Detection Code (QCMDC) function proposed
in the second paper in this series was defined as:

Z, = C = MDC initial value
Z; = (Z;; + X;)? modulo N
MDC = Z,,

where C, Z;, and MDC are all 32-bit integers in two’s-complement notation, and N was the
Mersenne prime 231-1, chosen 50 that the modulo result would fit in a 32-bit word.

In order to prevent an attack against the MDC in the case of Output Feedback Mode (where both
the text and the MDC could easily be changed), it was first proposed to make the first 32 bits of
the message a secret seed, S, withheld even from the message originator, so that if the opponent
attempted to attack his own message he would not know the secret seed and would therefore not
be able to intelligently modify the MDC.

However, a variation of the under-determined knapsack attack of Coppersmith involving the
taking of square roots modulo N and working backwards from the MDC in a meet-in-the-middle
attack showed that the use of the secret seed, S, was not sufficient; and that either a secret
quantity C would have to be introduced into the accumulator or the MDC would have to be
extended to 80 bits or more.

When the QCMDC algorithm was first implemented on the 8087, some variations were also coded
and tested which used an Exclusive OR operation (denoted e or XOR). These variations were
intended to defeat Coppersmith’s technique of working backwards taking square roots modulo P.
Although these operations were felt at the time to increase the cryptographic strength of the
algorithm by denying the attacker the opportunity to work backwards (by making the algorithm
non-invertible), the additional operations were quite time consuming.

However, we concluded in the third paper that the MDC must be on the order of 128 bits long in
order to foil the birthday problem attack in any case, and for that reason it was recommended

338

that four separate iterations of the MDC algorithm be performed over the text resulting in a 124-
bit MDC. It was therefore thought that Coppersmith’s attack on the QCMDC would be defeated
because of the difficulty of generating the requisite 262 different variations. We then concluded
that none of the variations on the basic QCMDC approach were necessary.

3.2 The Triple Birthday Attack

Ironically, one week before the publication of the third paper, Coppersmith!® pointed out 2
weakness in a double-iteration DES signature scheme by Davies and Price which also applied (to
a somewhat lesser degree) to the quadruple-iteration MDC scheme, as follows:

- Assuming the use of an arbitrary invertible function F(X,H) as a checksum function
operating over the message M = (M;, M,, .. M,), intermediate results H;, Hy, ... H, are
produced from the relation H; = F(M,H;,), or alternately from the inverse of F, H;; =
F-i(M,H,).

- During a precomputation phase, select some arbitrary n-bit quantity Z, which is going to
be the value of H,, H,, Hg, .. ,Hyg. Then randomly select approximately 236 values X,
compute the values F(X,Z), and store these values. Then randomly select 236 values Y,
compute the inverse function F-(Y,Z), and store those values as well. Then compare all
of the Y values to all of the X values searching for a matching pair, using 2 sort and
compare technique as required. This constitutes the first birthday problem. We expect to
find 256 such matching pairs, and if not, we will examine a few more values of X or Y or
both. Note that each such pair (X;, Y;) can be used as a message pair (Mg,M,), (Mgs,Mp), ..,
or (M;7,M;3) such that if Hy = Z, My = X;, M, = Y, then H, = Z, etc.

- Given a message M* = (Mg, My, .. , M), the chosen value of Z, and the 256 pairs (X;, Y))
obtained during the precomputation, our task is to select values of M;, M,, ... , M, which
will make Hy, a valid hash of M = (M, Mg, ... M,). We therefore find values of M; and M,
such that F(M,,Z) = F"(MZ,Z) to put ourselves in a standardized position. This takes on
the order of 233 hashing operations and 232 storage. This is the second birthday problem.

- Working backwards from H,, (note that this requires the checksum function to be
invertible), using the values M;, M,_j, .. , Myy, we find the value of H,,q the value of
the hash function on the second iteration. Finally, we make use of the precomputed pairs
(X, Y. For each of the 256* = 23% choices of the four pairs (X,Y;) to be the values of
(Mg, M,), (Mg, Mg), (M7,Mg), and (Mg,M,,), we compute the value of H, o that would result
then do the same thing with the values of (M;;,My,), (M1, M), (My5.M36), (M7, Mys),
computing backwards from H;4 to get a value for H;,, We again sort and compare these
values as the third birthday problem. We expect one match, and the corresponding values
of Mg through M;, finish our task for a two-pass checksum process.

- The process could be extended to attack a triple-pass hash algorithm by constructing eight
"super-pairs” consisting of M;q through M,; plus My through Mg, etc., up to Mjge. Each

13. Coppersmith, D., "Another Birthday Attack”, Advances in Cryptology - CRYPTO '85 Proceedings, Lecture Notes in
Computer Science, Vol. 218, Springer-Verlag, Berlin, 1986, pp 14-17.

339

super-pair would be manipulated during the precomputed phase to continue to produce the
value of Z, even on the third pass. Only slightly more computation would be required,
but obviously 258 blocks of the message M would be constrained, limiting the messages
that could be attacked to fairly long ones. Finally, this process could be extended even
further to attack a quadruple-pass hash algorithm by computing eight "super-dooper” pairs
consisting of 512 blocks each, or a total of 4098 blocks.

The multiple birthday attack therefore serves to reduce the strength of an N-pass signature
scheme from an apparent 2N"%/2 to an almost trivial N*2%/2,

It is worth mentioning that the Coppersmith’s attack also applies to attempts to extend the MAC
of FIPS PUB 46 or ANSI X9.9 to 128 bits (in order to try to overcome Yuval’s attack against the
plaintext) by simply concatenating two or more MACs using two or more different
authentication keys. The reason is that the MAC function, i.e., DES Cipher Feedback mode
encryption, is invertible, and in addition the components are separable and individually too
small to resist a birthday attack!®t As a result, and contrary to the advice in the second and third
papers in this series, the 64-bit Message Authentication Code technigue by itself cannot be considered
sufficiently strong, and is not recommended if there is any possibility that the originator may
attempt to defraud the message recipient, or if a Trojan Horse could circumvent security controls
through such a mechanism. In addition, the use of a MAC in certain command and control
situations where the attacker may attempt to spoof computer-controlled equipment or processes is
also not recommended.

In practice, the likelihood of all of these blocks of being substituted without being noticed may
be remote, for in the case of the quadruple-iteration QCMDC routine this amounts to 16392 bytes
that would have to be inserted in the text. However, in the previous papers we had committed
ourselves to detecting even a single inserted, deleted, or manipulated bit, regardless of the
amount of text and independent of any internal syntactical or semantic content. After all, if we
were to rely solely on internal consistency checks to detect such manipulations we would first
have to invent a suitable manipulation detection scheme!

It should therefore be observed that Coppersmith’s triple-birthday attack will succeed against a
mulitiple~iteration QCMDC routine if two conditions are true:

1. If the checksum function is invertible, so that it is possible to work both forwards and
backwards to produce matching values in a birthday-problem attack.

2. If the checksum function is subject to decomposition into separate and independent
elements, each of which is sufficiently small that the birthday-problem attack is feasible
from the standpoint of computation time and storage. If the checksum function were to
involve a 128-bit result that could not be broken down into something smaller, then the
birthday attack would be infeasible because it would involve generating, storing, and
comparing on the order of 2% 128-bit checksums and 64-bit permutation indices, or about
8.8%10%° bytes of storage, or 5 quadrillion reels of 6250 bpi magnetic tape.

14. This is not to say that a suitable 128-bit checksum could not be constructed using DES or some other 64-bit block cipher, but
only to caution that the task is not nearly as trivial as il may appeac at first glance.

340

In the case of the simple QCMDC routine (where H; = ((H;,; + M;)?) modulo N), the addition of
H;; and M; makes the function technically non-invertible from the standpoint of exactly and
uniquely reproducing the input F;_; given some F;, since the H; is a function of two independent
variables. But it is sufficient if the attacker can construct a value Y;; = F-}(X;) which, when
computed in the forward direction, will produce the desired result for H; To do this, note that
(K*N + X) mod N = X. Therefore, multiply the modulus N by some variable K such that the
result is a perfect square; and take the square root of the result. Then Y;, = H; - K*N, and the
value of X, that will satisfy this relation is SQRT(K*N) - Y,

This suggests a variation of the QCMDC routine that would involve XOR(s) or some other non-
linear combining function that would not be susceptible to a square root attack. If in addition
the routine involved all 128 bits of the text and all 128 bits of the MDC of the previous block,
then neither of the two conditions would be true and the triple-birthday attack would therefore
be defeated. However, as the indefatigable Dr. Coppersmith pointed out, this is not necessarily a
trivial task.

In order to make the MDC function non-invertible it is necessary to introduce a history function,
i.e., some value that would not yet be known when working in the backwards direction,
calculated in some non-linear manner so that the square root attack will not work. In addition,
it appears necessary to incorporate multiple references to both the text to be authenticated and
to the previous MDC result, so that the only value that would satisfy the forward relationship is
the proper one. Not only must each bit of the checksum function be a function of all of the bits
in the full 128-bit text block together with all of the bits in the MDC of the previous block, but
additional dependencies should be introduced to ensure that the function is not just minimally
dependent on those bits but is over-constrained instead.

Finally, as stated previously, the MDC function must produce a value on the order of 128 bits in
length in order to defeat the various birthday attacks against the text itself.

3.3 The New, Improved QCMDCV4 Algorithm

The following algorithm, dubbed the Quadratic Congruential Manipulation Detection Code,
Version 4 (QCMDCYV4) for brevity, is proposed to satisfy these requirements:

Consider a 128-bit (16 byte) block of text, divided into four 32-bit words, Ty, ... , T For reasons
that will be explained later, we will be operating on a 31-bit subset of each of those 32-bit words
which consists of the sign bit and the low-order 30 bits, ie, T* = T; AND BFFFFFFF. In
addition, we will define a 30-bit fifth component, T**, consisting of the 6 high-order bits of T,
(with the 6 bits shifted right two bits and 2 leading zero bits introduced on the left or most-
significant-bit position), concatenated with the high order 8 bits of T,, Ts, and T, to make a 32
bit word with two high order zero bits.

Let the 128 bits of the MDC result {(obtained from the previous block of text) also be divided
into four 32-bit integer components M;, My, Mz, M; and let the 32-bit components of the new
MDC result be designated as M'i.

341

Finally, define a set of moduli N,.. N, consisting of the four largest prime numbers less than
the maximum 32-bit integer, namely 2147483629 (231-19), 2147483587 (231-61), 2147483579
(2%1-69), and 2147483563 (231-35).

Then calculate:

M* = [MyeT*)-
(M, 0 T*,) +
(Mg & T*;) -
Mg e T*) + T** I mod N,

M*; = [My;eT*)-
(Mg e T*) +
M e T%,) -
(M*; ¢ T*) - T** 12 mod N,

M*s = [(MgeT*)-
(M, & T*)) +
(M*; 0 T*) -
(M*; 0 T*) + T**]2 mod Ny

M, = [Mye T*l) -
(M*; 0 T*)) +
(M*; 0 T*) -
M*;e T*) - T** | mod N,

Several features of this algorithm should be noted. First, each of the 16 different XOR
combinations is unique. Second, even if a significant amount of the text contains all zeroes
(with the result that the XOR does nothing), the alternating signs for the M; and T** components
operate in such a manner that the contribution of the various terms will be different in each
case. Finally, the M'i values are introduced into the computation of the subsequent components
as soon as they are available, so that there is a great deal of inter-dependency and mixing. As a
result, each 32-bit component of the MDC result is an over-constrained function of all of the text
and all of the prior MDC.

The previous papers had proposed a constant value for the modulus, N, equal to the Mersenne
prime 2311 (2147483647), for all four of the 32-bit M| results, But as Don Coppersmith pointed
out when reviewing a draft of the current procedure, because 2%1-1 is the largest number that
can be contained in a four byte integer in two's complement form, XORing the hexadecimal bit-
string 80000001 has the effect of inverting the sign and the low order bit, which can be the
equivalent of adding or subtracting the modulus. As a result, even when the intermediate sum is
squared, the division by the 231.]1 modulus frequently produces no change in the result,
depending on the sign of the T, and whether a carry would be required, and a modification to
the text could thereby escape detection.

Coppersmith proposed picking up the text only 24 bits at a time to avoid this problem, using
additional iterations to get back to around 128 bits. In an attempt to overcome this problem
without the overhead of an additional iteration, the four different primes for the moduli N;

342

were introduced, all of them smaller than 23!, However, it was found that if the text consisted
of one 32-bit word of random bits and three words of zeroes, then in about 10% of the cases it
was possible to either add or subtract the value of the first modulus and have the change go
undetected in the corresponding 32-bit word of the MDC result. Although the use of four
different values for the moduli means that the substitution does affect the remaining 3 words, or
at least 96 bits, it was felt that the full 128-bit strength should be preserved.

For this reason, only 30 bits plus the sign bit of each 32-bit word of text is used in forming the
intermediate sum. Since the moduli are all greater than 230, it is impossible to add or subtract
the modulus from the text without detection. The final addition or subtraction of T** ensures
that all of the bits in the text affect all of the bits of the result.

One further improvement is possible. Because of the squaring operation, each 32-bit MDC
component will be positive, producing a 124-bit result. But we can calculate the parity of the
intermediate MDC result, just prior to the multiplication, and then change the sign of each 32-bit
result if the parity is even.

Finally, because the algorithm operates on 16-byte blocks, it is necessary to somehow
differentiate between a text string that is say 1 byte long and one that consists of the same byte
extended with up to 15 bytes of zeroes. For that reason the last few bytes (less than 16), if any,
are moved to a 16-byte buffer, the rest of the buffer zeroed, and the MDC algorithm executed
N+1 times on that same buffer, where N is the number of the last few bytes. N+1 is used
instead of N, because a block that is 16 bytes long has to be processed once, and therefore a 1
byte block has to be processed twice in order to be distinguished from the previous case. If
improved performance is needed, the length code of the text can be prefixed to the text, and the
size of the buffer extended to be an exact muitiple of 16 bytes. This technique must be used if
it is necessary to deal with text strings that are¢ not multiples of 8 bits in length.1®

In order to avoid a strong correlation between the text and the MDC result in the case where the
text is very sparse (contains mostly zero bits), it is desirable to use different values for the
starting values of M;. For purposes of standardization the values 141421356, 271828182,
314159265, and 57721566 are suggested.

4 Implementation Considerations

The QCMDCV4 algorithm has been implemented and tested on the IBM PC and AT
microcomputers and the Compaq 286 Portable, and should run correctly on any similar machine
which uses the Intel 8088, 8086, 80188, or 80286 CPU chip in combination with the 8087 or 80287
Numeric Data Processor chip. The 8087/80287 is used to significantly speed up the calculation
of the various arithmetic operations, in particular the division modulo the large primes.

15. It may be worth mentioning that the ANSI X9.9-1986 authentication standard and the definition of the MAC in FIPS PUB 46 do
not take this problem into account, and therefore do not differentiate between a short measage (one that is not a multiple of 8
bytes in length) that must be padded with zeroes, and one that is a multiple of 8 bytes in length and happens to contain zeroes at
the end. Although binary reroes would be interpreted as ASCII null characters and would not be confused with the ASCII *0”
{hexadecimal 30) character in coded text, formatted binary information is allowed by paragraph 5.1 of that standard, which does
not specify that a length indicator field must be used. The confusion therefore could occur in this case.

343

.

During the calculations the results are kept in IEEE Binary Floating Point 80-bit Temporary
Real format with 2 64-bit mantissa, and T; and M; are in Intel 32-bit integer (IBM/Microsoft
Pascal INTEGER4) format. (Note that the Intel format loads and stores register contents in
"reversed” order, i.e, with the low order byte coming first in mcmory, so that the text bytes are
processed in the order 4, 3, 2, 1, 8, 7, 6, 5, etc.)

In the worst case, the total resulting from the alternating sign terms could range from -23% to
2334, in which case the squaring operation would produce a value as large as 286 Because the
operation is carried out in floating point an overflow cannot occur, but a number that large
cannot be represented in the 64-bit mantissa without loss of precision. If the 8087/80287 control
word status were set to enable the precision interrupt then an interrupt would occur in that
event, but the normal Pascal setting is to disable such interrupts. The result in the normal case
will therefore be to round up or down to the nearest even value as appropriate (assuming the
normal setting for the rounding mode), and discarding up to four low order bits of the sum. It
should be noted that for precision loss to occur, the signs of the 32-bit result of the XOR must
be +, -, +, -, to match the order of operations. As a result, it would be extremely unlikely for a
loss of precision to occur on all four of the 32-bit intermediate result computations because of
the way the text is cycled through the algorithm. In addition, if the intermediate result is
viewed as the sum 2x + y, where x represents the 31 high order bits and y the two low order bits,
then the square is 4x? + 4xy + y2 Therefore, even though the low order y? bits are dropped
after the multiplication this does not mean that the low order bits of the original quantity are
ignored, since they affect the mid-square (4xy) component of the result. For this reason it is not
possible for the low order bit or bits of one or more of the 32-bit words of text to be changed
without causing a change in all 128 bits of the result.

The 8087/80287 FPREM instruction computes an exact remainder by successive subtractions the
way division is done by hand, instead of using the more usual technique of dividing, rounding,
multiplying, and subtracting from the original. The FPREM instruction is as fast as a divide,
and is guaranteed to be accurate, without any roundoff. However, because the modulus is
slightly less than 23! and the maximum value of the result after the squaring operation is 2%, the
FPREM operation is not guaranteed to be completed in one operation (since the difference in
magnitude between the dividend and the divisor may be larger than 2% and FPREM shifts at
most 64 bits in one operation), but it will always be complete in two operations. For this reason,
the 8087/80287 condition code is tested after each FPREM and an additional FPREM performed
if necessary.

In order to produce the fastest possible implementation, the XORs and other CPU instructions
are executed in paralle! with the coprocessor addition, subtraction, multiplication, and FPREM
operations whenever possible. The FWAIT instructions necessary to ensure that the coprocessor
has finished with its computations before the CPU reads the results are delayed as long as
possible to permit the maximum possible overlap. Although the original version was coded using
a macro that was invoked four times for the four different iterations within one block, in the
final version the code was "unwound" and hand-optimized to permit maximum overlap.

On an IBM-PC with an 8088 & 8087 and a 4.77 MHz clock, the time to MDC check 1,000 512-byte
blocks was 43.5 seconds, or 1359.5 microseconds per 16 bytes. This corresponds to 94.2 kilabits

344

per second. By comparison, the time for the fastest known software implementation of DES for
the PC is 2801 microseconds per 8 bytes for the PC (22.8 Kbps, or 171K bytes per minute). With
an 80287 speedup kit (consisting of an 8 MHz 80287 with its own clock crystal on a plug-in
daughter-board) installed in an IBM AT with the standard 6 MHz 80286, the same test took 813.6
microseconds for 16 bytes (157.3 Kbps), or 1.18 megabytes per minute, compared to the DES time
of 933 microseconds per 8 bytes. We are currently awaiting the availability of the mnew Intel
80386 CPU together with the 80387 coprocessor to time that configuration. We expect to recode
the algorithm to take advantage of the new 386/387 instructions, and anticipate that the result
will run about 4 times faster than on the IBM AT. Depending on the clock speeds of the
processors involved, then, the 128-bit MDC technique is anywhere from 4.6 to 8.1 times qutcr
than computing two independent 64-bit Message Authenticgtion Codes in software using the
fastest known software DES implementation for the IBM PC or AT.}® From a human factors
standpoint, this means that the entire contents of a floppy disk (362K bytes) can be
authenticated to the most stringent standards in less than 15 to 30 seconds on current
microprocessors, without benefit of any special cryptographic hardware.

4.1 MDC Test Program

The following program, written in IBM/Microsoft Pascal for the IBM PC, can be used to verify
the proper operation of the QCMDCV4 algorithm:

{$TITLE: 'CHECKMDC' - Verify MDC algorithm.}
{$FLOATCALLS~ (Generate native 8087/80287 code.)}
PROGRAM checkmdc (input, output);

TYPE
checksums= ARRAY[1,.4] OF INTEGER4:

VAR [PUBLIC]
text: PACKED ARRAY[1..33] OF CHAR;

text_p: ADSMEM;
n_bytes: WORD;
result: checksuns;
i,3: INTEGER;

VAR [EXTERN]
mdc_name: PACKED ARRAY[l..8] OF CHAR;
{"QCMDCV4 "}

CONST

mdc_init = checksums (
141421356,
271828182,
314159265,
57721566) ;

check = checksums (
~1900412449,
676867420,
-689076088,
1333643940) ;

16. In addition, two independent 64-bit MACs are not believed to be nearly as secure as a single 128-bit MDC.

345

PROCEDURE mdc(text ptr:ADSMEM:
n_bytes:WORD;
VARS result:checksums):;
EXTERN;

BEGIN:

WRITE (output,
'Verifying MDC routine (!,
mdc _name,')...'};

FOR i:= 1 TO 33 DO text[i] := CHR(O):
text[1l] := CHR(1l):

text p
result

FOR i:= 1 TO 50 DO
BEGIN;
IF i<34 THEN n_bytes := WRD(i)
ELSE n_bytes := 32;

mdc(text p,n bytes,result);

FOR j:= 32 DOWNTO 1 DO
text[j+1] := text(i]:

text[l] :=
CHR (LOBYTE (LOWORD (result(4]))):

END;

IF result{l]=check[1] AND THEN
result[2]=check[2] AND THEN
result([3]}=check[3] AND THEN
result(4]=check({4]

THEN WRITE('OK.'}
ELSE
BEGIN;
WRITE('MDC is INCORRECT!'):
WRITELN(result[l],result{2],
result(3],result{4]):
END;
WRITELN;

END.

5 Summary and Conclusions

Several architectural justifications have been presented an authentication algorithm which does
not require a traditional crypto "black box" approach using secret cryptographic keys, with all of
the key management difficulties that entails. In particular, the relatively common practice of
using link encryption for secrecy at the OSI Data Link layer and implementing end-to-end
authentication at the Presentation Layer would profit from "keyless", non-cryptographic means of
authentication that could be easily implemented in both PCs and general-purpose main-frame

computers.

346

The need for a checksum on the order of 128 bits in length was reaffirmed, both in the case of
two mutually suspicious, potentially deceitful users where one may attempt to defraud the other,
and in the command and control case where the attacker may have an almost unlimited ability to
attempt to spoof the system. Contrary to the author’s previous position, it was concluded that
the 64-bit Message Authentication Code (MAC) approach of FIBS PUB 46 cannot be considered
sufficiently strong in the case where the originator of a message may attempt to defraud the
recipient, as well as in some command and control and multi-level security situations.

The MAC checksum technique used by ANSI X9.9-1986 is viewed as particularly unfortunate,
both because of the inadequate 32-bit length and because no provision was made to distinguish
between short block that was padded and a block that is a multiple of 8 bytes that happens to
end with the same characters.

Coppersmith’s Triple Birthday attack as it applied to the original QCMDC algorithm was
summarized, and it was concluded that in order for that attack to be defeated it was necessary
to ensure that the checksum function is not invertible, and that the length of the checksum be on
the order of 128 bits in length.

The QCMDCV4 algorithm was described, which uses XORs plus a history function to ensure that
the function is not invertible. The function computes a 128-bit result that is an over-determined
function of 128 bits of the text and the 128-bit MDC result of the previous text block than
cannot be decomposed. A "birthday attack” against the QCMDCV4 result cannot succeed, because
of the enormous number of variations that would have to be computed, sorted and compared. In
order to ensure that a message that is not an even multiple of 128 bits can be distinguished from
the same message extended with zeros, the algorithm is executed N + 1 times on the last buffer,
which contains the last N bytes of data extended with zeros.

The QCMDCV4 algorithm is recommended for use in microcomputer and main-frame
applications where encryption will be provided separately and it is desirable not to have to
replicate the encryption function for authentication. It is also suitable for use in combination
with a public-key algorithm when implementing a digital signature function to protect against
fraud.

