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ABSTRACT 

Public-key cryptosystems using very large distance algebraic codes have 

been studied previously. Private-key cryptosystems using simpler codes have _, 

also been subject of some study recently. This paper proposes a new ap- 
proach to the private-key cryptosystems which allows use of very simple codes 
such as distance 3 and 4 Hamming codes. 

This new approach gives not only very efficient encoding/decoding and 

very high information rates but also appears to be secure even under chosen- 
plaintext attacks. 
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1. INTRODUCTION 

McEliece introduced a public-key cryptosystem based on algebraic coding 

theory using t-error correcting Goppa codes [McEliece ’781. But McEliece 

Public-key Cryptosystem (MPBC) requires large block lengths with capabilities 

to correct large number of errors (n = 1000 bits, t x 50 bits) to be effective. 

This involves very large computational (encryption and decryption) overhead 

to be practical in computer communications. 

Private-key Algebraic-coded Cryptosystems (PRAC) were suggested by 

Rao [Rao ’84b] using the same techniques as MPBC but keep the public gen- 

erator matrix as private. PRAC provides better security with simpler error 
correcting codes, hence, requires relatively low computational overhead. Howev- 

er, we show that PRAC can be broken easily by a chosen-plaintext attack. 

Both MPBC and PRPLC are classified as Algebraic-Coded Cryptosystems 
(ACC) here. 

This paper introduces a new approach to  PRAC, which requires simple 

error correcting codes (i.e. distance 3 codes) and also provides much higher 

security level. 

1.1. McEliece Public-key Cryptosystems (MPBC) 

Encryption 

Let G be a t-error correcting k*n generator matrix of a linear code over 

GF(2) capable of t-error correction. The rate of the code is -. W e  can 

select a random k*k nonsingular matrix S called scrambler and a random n*n 

permutation matrix P. Having G, S and P, we can compute the public gen- 

erator matrix G’ such that  G’ = SGP, which is combinatorially equivalent to 
G. 

k 
n 

Then the encryption is done by: 

C = MG’ + Z 
where C : ciphertext of length n, 
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M : plaintext message of length k, 
Z : random error vector of length n with weight t. 

Note that the vectors are italic lettered, and weight meam Hamming weight. 

Decryption 

The decryption is very straight forward. 

Fro= the encryption equation 

G' = SGP 

c =  MG' i- z 
= MSGP + Z 

= M' G P  + Z where M '  = MS 

Hence, we can recover M as given by the following steps. 

Step 1 compute C' : 

C' = C P T  = M ' G  + Z P T  

= M ' G  + 2' where Z' = Z P T  

(Note: 2' has same weight as Z since 

P and P T  are permutation matrices) 

Step 2 Decoding and error correction: 

(Patterson Algorithm [MCEL 771). 

Step 3 recover plaintext M :  

M = M ' S - '  

Cryptanalysis of MPBC 

As suggested by McEliece in his paper [McEliece '781, there could be two 

kinds of basic attacks for the cryptanalyst to try. 

(a) Factoring S, G and P from G' 

Since the number of codes which are combinatorially equivalent to  a 
given code is astronomical, it is hopeless task to find out exact keys s, 
G and P used for G'. However, the cryptanalyst needs only some 



Si , Gi and Pi such that S, G, Pi = G’ and Gi is t-error correcting 

code. For the given G’, the cryptanalyst can obtain Sj , G, and Pi 
satisfying the equation S, G, P, = G’, where G, is a generator in s y ~ -  
tematic form. G, is obtained from G’ by.elementary row operations 

(row canonical reduction) and column operations. G’, G, and G are all 

said to be combinatorially equivalent. Where as G corresponds directly 

to a Goppa code which has well understood and well-known decoding 

algorithms, no such would be possible for G,. Trial and error manipu- 

lation to obtain a G, coinciding with an equivalent Alternant code 

generator would require an astronomically large work factor. 

(b) Recovering M from C directly without keys 

Another approach involves solving a set of k-unknowns from n simul- 

taneous equations for all possible Z values. 

Let M and C be a plaintext pair 

M = m l m 2 m 3  . . _  mk 
c =  c 1  c 2 c 3  . . . ck . . . cn 

z =  z l b 2 z 3  . . .  t k  . . .  Zn 

G’ = [ Gij’ 1 i = 1, ... , k 
j = 1, ... , n 

(t-error correcting algebraic code) 

Then, for j= 1, ... , n 

C 1  = m1G11’ f m 2 G 2 1 ’  +. . .+  mkGk{ + Z I  

C 2  = m1G12’ f m z G 2 2 ’  + . . .+  mkGk$ + ~ 2  

To solve k unknowm (rn l , m 2 ,  . . . operations are required 

because k equations are sufficient to solve the equations if the code 

is maximal distance separable (MDS) code. Otherwise, at  most 

k’ = n-d+l equations are required to solve for k-unknowns [Pless ,821. 

, mk ), k 
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Since t is smaller than n-k, it is possible that the cryptanalyst could 

select k equations containing no errom from n equations. Therefore, 

the cryptanalyst could repeat solving equations by selecting arbitrary k 

equations from n simultaneous equations with- the assumption of no er- 

rors in selected equations until a meaningful plaintext is obtained. 

The probability of no errors in k equations, is: 

and the average number of repetition is Pk-'. 

Hence, the average work factor, T is: 
T = k 3  * Pk-1 

However, this does not include the work factor to check whether the 
plaintext M obtained by solving equations is correct (Le., meaningful) 

or not. It is assumed that the plaintexts are from a source such as 

natural language or a programming language which contains an enor- 

mous amount of redundancy penning '821. Redundancy in M heIps to 

determine the validity of the plaintext derived. 

1.2. Private-key Algebraic-coded Cryptosystems (PF2AC) 

To increase information rate and to reduce computational (encryption and 
decryption) overhead of MPBC, Private-key Algebraic-coded Cryptovstem 
(PRAC) were suggested [Rao '84b]. PRAC can provide better security with . 
simpler error correcting codes, hence, require relatively low computational over- 

head compared to MPBC. 

PRAC keeps G' private as well as S, P and G to provide higher security 
level. A known-plaintext attack to PFL4C is feasible by solving matrices for 

each column vector of G' independently but this method requires a very large 
set of known ( M , C )  pairs. Hence, this attack can be foiled by periodic change 
or modification of the keys by the cryptographer. However, the analysis given 

below shows that PRAC still requires large t to be secure from a chosen- 
plaintext attack. 
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Chosen- Plaint ext Attack 

The cryptanalyst is required to go through two steps. 

Step 1 : Solve for G’ from a large set of ( M , C )  pairs. 

Step 2 : Determine M from C using G’ obtained in Step 1 (same work fac- 

tor as in MPBC). 

It can be safely assumed that a chosen plaintext of the form M = (00 - - 
.010 . . .O) with only one 1 in i t h  position (for i = 1, . . . ,k) is not allowed 

by the cryptosystem. However, a chosen-plaintext attack may proceed as fol- 

lows. 

Let M1 and M2 are two plaintext differing in one p i t i o n  only, that is, 

M ,  - M ,  = (00 . . . 010 . . . 0)  

ith position for i = 1, . . . ,k 

then, 

C, - C, = g j ’  + ( 2 1  - 22) (Es. 1) 
where gi’  is the i th row vector of G’. 

The Hamming weight of (2, - 2,) is at most 2t. Since t is much smaller than 

n, the majority of the bits of the vector C, - C2 correspond directly with 9;’ . 
We can let C1 - C2 represent one estimate of g j ’  . By repeating the step 
several times a number of estimates of g;’ can be obtained. From these esti- 
mates of g j ’  can be 

correctly determined. This step repeated for all i = 1’2,. . . .k will give us G’, 
which can be used to  break the code by step 2. This step 2 will require a re- 

latively small work factor because t is small. 

and by majority voting for each position, the vector gj ’  

However, a chosen-plaintext attack of the above nature can succeed only when 
t - is small and it will not if t - n - 2’ 
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2. MODIFIED CRYPTOSYSTEMS 

2.1. Introduction 

Our intent here is to obtain private-key cryptosystems using simple alge- 

braic codes such as Hamming codes or distance 5 BCH codes. Furthermore, 

we would still want the Z vector to have a weight t sufficiently large to prc- 

vide good security. By a clever design we will show that we could obtain t 

e L. Obviously it would not be possible unless we change or modiy the origi- 

nal encryption method. 
2 

Here we develop such a modification and show that it is indeed possible 

to use simple (i-e., short distance) algebraic codes for PRAC which are very 
secure from chosen-plaintext attacks. Clearly a system that is secure from such 
an attack is also secure from other attacks including known-plaintext attacks. 

2.2. Encryption of Modified PRAC 

This approach uses a minimum distance 3 code generator G (as an exam- 

ple) and uses specific error patterns for the random error vector Z of which 

the average Hamming weight is approximately f. Encryption method- ‘L3 

modified as follow. 
2 

Let G’ = SG 

where S : k*k nonsingular matrix 

G : k*n distance 3 code generator matrix 

G’: k*n encryption matrix 

Then 
C = ( M G ’  + Z)P  

where M : plaintext of length k 
C : ciphertext of length n 

P : n*n permutation matrix 

Z : a  random ATE (Method 1) 

or an entry of the Syndrome-error table (Method 2) 



42 

(Method 1 and 2 are destribed below.) 

Since the security of PRAC crucially depends on the weight of 2 ,  the selec- 

tion of Z is very important. We introduce two kinds of error patterns. 

Method 1 : Use adjacent t errors for Z. 

Definition 1 : Adjacent t Errors (ATE) 

An ATE is a vector of length n with t (5 i) adjacent errors, i.e., 

an ATE consists of n-t 0’s and t consecutive 1’s. ATE must not 

be a codeword. 

A random ATE can be used for 2 .  

for the given n and t (and n ATE’s for cyclic codes). 

There exist exactly n-t+l ATE’s 

Method 2 : Use of predetermined set of vectors (Syndrome-error table). 

A predetermined set of vectors consisting one from each coset of the 

standard array decoding table can be used for Z. Each coset has a 

distinct syndrome and there are exactly 2n-k cosets [Blahut ‘83, Lin 
’831. Therefore, we could select any set of vectors one from each of 
the 2n“ cosets. The set is predetermined in the sense the decryptor 
knows the Syndrome-error table used for 2. Fig.1 shows an example 
of standard array and Syndrome-error table. The vectors in the rec- 
tangular boxes are selected as z - vectors. 

0 1 1 1 0 0  

Coset leader 

000000 I 001110 010101 limiil 011011 101101 110110 111000 

Syndrome 

000001 I 001111 010100 100010 r-1 101100 110111 111001 
000010 I 001100 010111 100001 011001 101111 im1 111010 
000100 I 001010 010001 100111 011111 (lolooll 110010 111100 
001000 I 000110 101011 010011 100101 111110 110000 
010000 I 011110 000101 m l  001011 111101 100110 101000 
100000 1 [m- 110101 000011 111011 001101 010110 011000 
001001 I 000111 011100 101010 010010 100100 111111 plooorl 

Fig. 1. Standard array for the (6, 3, 3) code 

000 

001 
010 
100 
110 
101 
011 
111 

-A- 
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G' and P are secret encryption keys, and the Syndrome-error table is also 

secret in the Method 2. 

2.3. Decryption of Modified Cryptosystems 

From the encryption algorithm (Eq. 2) 

c = (MG' + z)P 
= M S G P  + ZP 
= M ' G P  + ZP. ( M '  = M S )  

Decryption can be done using secret keys S-l, HT (GHT = 0) and p 

through following steps. 

Step 1 Obtain C' : 

C' = c p =  = M ' G f Z  

Step 2 : Find the error pattern and recover M' : 

C' HT = M' GHT + ZHT 

= ZHT (Syndrome) 

Identify the error pattern. 

(use the Syndrome-error table look-up for the Method 2). 

Recover M' by correcting for the error pattern. 

Step 3 Recover plaintext M: 
M = M'  s-1 

Note : It appears that this approach requires long keys (S, P, G and the 

Syndrome-emr table for the Method 2). However, the keys could be 

generated by using a pseudo-random number generator algorithm. In 
that case the user may require only short seeds for keys S, P and the 

Syndromeerror table. This problem is not addressed here and it would 
be a topic for future work. 
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2.4. Application to JOEEC 

Recently Joint Encryption and Error-control Coding (JOEEC) was sug- 

gested pi-.. ’84a]. This approach combines data .encryption and error-control 

coding steps into one step to  gain speed and efficiency in implementation. 

The modified cryptosystems could also be implemented as JOEEC by us- 
ing higher distance codes. But the application to JOEEC of this approach is 

presently being studied. 

3. CRYPTANALYSIS OF MODIFIED CRYPTOSYSTEMS 

The encryption algorithm (Eq. 2) can be rewritten as follows. 

C = (MG’ + Z )  P 
= MG” + Z P  

where G” = G’P = [ g;” ] for i = 1, ... ,k, 
and gin  is a row vector. 

The following lemmas help us to establish the high level of security pro- 

vided by this new approach. 

Lemma 1 : The number of P’s that transform ATE’S into non-ATE’S is at 

- I)! if 2 < t <_ 2 where n is the length of 
2 ’  

least (n - 
ATE and t is the length of adjacent errors. 

Outline of Proof: Let vector V be an ATE of length n. We select a set of 

positions, (1, 2, t, 2t, ..., bt}, from V where b = 121. We reorder 

these positions as an ordered set, B = (1, t ,  2t, ..., bt, 2). This map- 

ping is illustrated in the figure below. 

t 

(ATE) v- = I-+--+ ---- + +--- - - - ---+____I 
1 2  t 2t 3t bt n b = 

(1, t, 2t, . . . , bt, 2) B = 

V’ = I-- - - - ---+ ____ B_--+ ______ - - - _-_I (non-ATE) 

We consider a permutation map of vector V to V’ with B embedded in 

V’. The purpose is to make V’ a non-ATE. This is achieved because B 
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contains at least one '1' separated by '0's. Strictly B could start from 

any position of V' and therefore, we have n-b-1 choices. In addition the 

number of permutations possible for V --> V of the remaining positions 

is (n-b-2)!. Thus the total number of permutations of transforming an 

ATE vector V to non-ATE vector V', N, can be shown to be at least 

Np = (n-b-1) * (n-b-2)! 

= (n-b-l)! QED. 

This formula gives a lower bound for N, of (n - 3)! when t = L t ] .  

Lemma 2 : The number of code generators combinatorially equivalent to a 

(n, k, 3) code generator is at least k!. 
Proof: Let G be a (n, k, 3) code generator in systematic form. 

G = [Ik P k , n - k  1 
where Ik is an identity matrix and 

P k  ,n -k is a parity check matrix. 

Then, there are k! row combinations of parity check matrix, which are 

distinct (n, k, 3) code generators also. All of these code generators can 

be obtained by row exchange and column permutation of G, and hence, 
are combinatorially equivalent to G [Peterson '721. 

Lemma 3: The number of k*k non-singular matrices over GF(2), Ns is given 

by 

Proof: We can start with any non-zero vector for the first row of non- 

singular matrix S and we have zk - 1 choices. The second row must be 

linearly independent of the first. That is we have 2" - 2 choices for the 

second row. For the third row the choice is any vector linearly indepen- 

dent of the first two. Clearly it has (zk  - 2 7  choices. Continuing this 

way, the number of non-singular matrices are given by the equality (Eq. 

3). Since there are k terms in the product, the smallest of which is Z k - l ,  
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the inequality is easily proved. 

An attack by exhaustive search for S, G and P is considered hopeless task due 

to the results of above Lemmas. The previously described method of the 

chosen-plaintext attack (described in Section 1.2.1)' can not be applied here be- 

cause the average Hamming weight of (2,-Z,)P is about 2, which is very 

large. Therefore, we have to look for a different method to  cryptanalysb and 

it could be as follows. 

n 

Let Cj and c k  be two distinct ciphertexts obtained for the same plaintext M. 
Then Cj = MG" + Zip 

Ck = MG" + ZkP 

cj - c, = (Zj -&)P 
The above step provides one value for (Z j  - zk)P. This step needs to be re- 

peated until all possible pairs of 2's are used. The number of distinct 2's is 

given by 

N = 2L for the Method 1, 

> - n for the Method 2; 

2 

N *-N 
2 

and the number of possible distinct values of (Zi -zj)P is -. 
An expression for gin by a computation as described in Section 1.2.1 is given 

by 
C, -Cz  = g in  + (Z1-ZJP 

g i n  = ~ 1 -  CZ - (2, - zJP. (Es. 4 )  

Hence, every possible value of (Zi - Zj)P should be tested for (2, - Z,)P of Eq. 

4. Since the correctness of each row vector of G", g i ,  can not be verified in- 

dependently, the complete solution of G" should be obtained and verified. 

This involves on the average work factor, T given by 
k T ?&]  1 N2 - 

Substituting for N, T can be shown to be 

lowing. 

(nu). Thus we establish the fol- 
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Claim : To determine G" from a chosen- plaintext attack (as discussed 
above) has a work factor T = fl ( n"). 

It can be easily shown that the above step, namely, the determination of 
G" is the really dominant factor. Determination of P and Z vectors are 

straight forward after that. As of now, the analysis and procedure ex- 

plained s e e m  to be the only possible approach to break the code and it 

requires an enormous work factor 0 ( n 2 k ) .  

4. CONCLUSION 

We have introduced a new approach to the private-key algebraic-coded 
cryptosystems requiring only simple codes such as distance 3 codes. These 

systems will be very efficient because of high information rates and low over- 

head for encoding and decoding logic. The chosen-plaintext attack given here 
appears to be the only plausible approach for cryptanalyst. 

It requires a work factor R (,a2&) and is therefore, computationally secure 

even for small k w a .  It will be a chalIenge to find alternate methods of attack 

which can be successful. 
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