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1. Introduction 

In this note, we make two loosely related observations on Rabin's probabilistic primality test. 
The first remark gives a rather strange and provocative reason as to why is Robin's test so good. 
It turns out that a single iteration fails with a non-negligible probability on a composite number of 
the form 4j+3 only if this number happens to be easy to split. The second observation is much more 
fundamental because is it not restricted to primality testing: it has profound consequences for the 
entire field of probabilistic algorithms. There we ask the question: how good is Robin's algorithm? 
Whenever one wishes to produce a uniformly distributed random probabilistic prime with a given 
bound on the error probability, it turns out that the size of the desired prime must be taken into 
account. 

2. A Brief Survey of Primality Testing 

How difficult is it to distinguish prime numbers from composite numbers ? This is perhaps the 
single most important problem in computational number theory. We do not attempt here an exh'aus- 
tive review of its long history. Let us only mention some of the most outstanding modem steps. 
It has been known for several years that the problem of recognizing prime numbers belongs to P 
under the Extended Riemann's Hypothesis [Mi] and that it belongs to Co-RP m1, S S ]  and NP PI 
without any assumptions. It can also be solved in almost polynomial time by a deterministic algo- 
rithm that runs for a number of steps in O(mo(loglo~)), where m is the size of the number to be tested 
[APR]. More recently, it was found to lie in RP [GK, AH], and therefore in ZPP [GI as well. 
In other words, this problem can be solved in probabilistic polynomial time by a Las Vegas [Bl algo- 
rithm: whenever an answer is obtained, that answer is correct. 

From a theoretical point of view, the problem of primality testing is therefore solved (atthough it 
remains of interest to figure out whether or not it belongs to P without assumptions). However, the 
polynomial that gives the running time of [GK] is of the twelfth degree and [w does not improve 
on this, which makes these algorithms of little practical use. For very large numbers (several 
hundreds of decimal digits), this leaves us with Rabin's probabilistic test [Rl] as the best approach. 
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Let prob[Rabin(n) = verdict] denote the probability that one iteration of this algorithm on input n 

returns verdict, where verdict can either be “prime” or “composite”. The basic theorem about 
Rabin’s test is that 

prob[Rabin(n) = “prime” I n is indeed prime] = 1 

whereas 

prob[Rabin(n) = “prime” I n is in fact composite] I G . 
One is therefore certain that n is composite whenever any single run of Ru&in(n) retums “compo- 
sire”. On the other hand, one can never be sure that n is a prime no matter how many runs of 
Rubin(n) have returned “prime”. This test is usually run in a loop as follows : 

function RepearRabin(n, k) 
{ n is an odd integer to be tested for rimality; 
var I : integer. done : Boolean 
i t 0  
repeat 

until done or i 1 k 
if done then return “composite” { for sure } 

else return “prime” {probably (?) } . 

k is a safety parameter discussed bepow } 

i c i + l  
done t (Rabin(n) = “composite” ) 

There is a trade-off in the choice of the parameter k above: the bigger it is, the more conf%dent we 
are in the advent of a “prime” answer but the more time it takes to build up this confidence. This 
paper addresses two aspects of the question: just how confuient in u number’s primality can we be 
after running this test? 

3. Why is Rabin’s Test so Good? 

This section only applies when n is of the form 4~+3. In this case, Rabin’s test (which is then 
equivalent to Solovay-Strassen’s [SS]) becomes quite simple. Let 

* 
Z, = {x I 1 S;x< nand gcd(x, n) = 1 )  

and R, = { a  E Z, I = fl (mod n)}. * 
* The basic theorem states that R,, = Zz whenever n is a prime, whereas #R, I #Z, / 4  other- 

wise, S t i l l  assuming that n = 3 (mod 4). Notice that both 1 and n-1 always belong to R,. This 
theorem is used naturally as follows : 

function Rubin(n) 
{we assume that n is of the form 4j+3 } 
a t random integer uniformll selected in 2..n-2 
if a E R, then return ‘‘prime 

else return “composite” . 

Whenever n is composite, the error probability of this procedure is clearly given by 
(#R, - 2) / (n - 31, so that elements of R, others than 1 and n-1 are known as false witnesses for n. 

From the basic theorem, we know that this error probability is always smaller than 25%. However, it 
is well known to be often much smaller. Monier gives an exact (but rather scaring) formula for this 
probability Wo]; see also [Kr]. As a corollary of Monier’s formula, the error probability never 
exceeds (@(r~)/2~-’  - 2 )  / (n  - 3), where r is the number of distinct prime factors of n and $(n) = #z, * 
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denotes Euler’s function IHW]. Despite this tightening of the bound on the error probability (at least 
when n has more than three distinct prime factors), it turns out that the latter is usually still much 
smaller. In other words, Rabin’s test performs in practice much better than one might naively expect. 

For instance, 42,799 (=127x337) admits only 880 false witnesses, compared to 
$(42.799)/4 = 10,584. Even better, Rabin’s test never fails on integen of the form 3 x 5 ~ 7 ~ 1 1 ~  * . * 

such as 15,015: these admit no false witnesses at all. More impressively, it is enough to test deter- 
ministically for each u E {2,5,7,13} in order to decide primality without any failures up to 25x10’ 
(using {2,3,5,7} still leaves one error in this range IpSWl). Although “high risk numbers exist, 
such as n = 79,003 (=199x397) or 3,215,031,751 (= 151~751~28,351) with #R, = #Z:/4 and 
(#R,- 2) / (n - 3) 24.8%, these are not the rule (one can nonetheless prove, using Monier’s formula, 
that every composite number of the form (lh+7)(24m+13) is such a high risk number, provided 
both 1 h + 7  and 24rn+13 are prime). We address here the following bizarre question: why is Rabin’s 
test so good ? 

In order to give some sort of answer, we define the following set : 

H, = { b E Z): I b @ R, and (3u E RJ[d I 9 (mod n)] }. 
Assume for the moment that n is not a prime power (i.e. not of the form pm for some prime p and 
some integer rn 2 2). Theorem 1 states that each element of H, is a handle that allows easy splitting 
of n (i.e. finding at least one non trivial factor of n) and that there are at least as many such handles 
as there are false witnesses. Our provocative interpretation states that it is only possible for u single 
irerution of Rabin’s test to fail (i.e. declare n prime) with a non-negligible probability if it happens 
that n is easy to split (and hence obviously composite)! This result extends to every composite n of 
the form 4j+3 in an obvious way since prime powers are easy to split In other words, there exists a 
simple probabilistic splitting algorithm whose running time is small  on every composite number 
congruent to 3 modulo 4 on which Rabin’s test is not extremely effective. More precisely, for any 
polynomial p ,  the splitting algorithm succeeds at finding a non trivial factor in expected polynomial 
time on all those composite integers n such that prob[Rabin(n) = “prime”] 2 l/p(lnl) and 
n I 3 (mod 4), where In/ denotes the size of n (in bits or in decimal digits). 

What happens when n is of the form 4j+l? We leave this as an open question. Let US only 
point out that Rabin’s test could actually work better on numbers congruent to 3 modulo 4 than on 
numbers congruent to 1 mcdulo 4. Indeed, among the 4812 odd composite integers smaller than 
25x10’ that count 2 as a false witness, only 1033 ( ~ 2 1 % )  are of the form 4j+3 [PSW]. 

Theorem 1 

(i) (Wb E HJ[gcd(n, 1 + b(“-’* mod n) is a non mvial divisor of n] ; 

(ii) #H,, 2 #R, . 

Proof 

Except for the exponents, all calculations in this proof are done modulo n. 

(i) Consider any b E H, . Let u E R, be such that d = b2. Let x = d”’)’‘. We know 
that x # k l  because b @ R, . On the other hand, 1 = P1 = = ( u ’ ) ( ~ - ’ ) ~  = 

(a(n-1)’2)2 = (+I)* = 1. Therefore, x is a non trivial square root of 1, and this is 
enough to split n by the well-hown formula gcd(n, l+x) W].  
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(ii) For each u E R, , define B,(u) = { b E Z: I 2 I bZ (mod n) 1. Because n is com- 
posite and is not a prime power, B,,(a) contains at least 4 elements [Hwl. Consider 
b E B,(a) such that b # h. We have 

b ( w a  = ( g ) w ~ 4  (because n = 3 (mod 4)) 
- - ( g ) w w 4  = a ( ~ l ) ~  

= u x & ' f l = + ,  (becauseuER,,). 

Therefore, bc"-')R = b("+'n/ b = fa/b # +1 because b # +,, hence b E H, . This 
shows that to each pair a, -a of elements of R, corresponds at least two distinct ele- 
ments in H, , completing the proof that H, contains at least as many elements as R, . 
Notice also that this reasoning is trivially extended to conclude, as mentioned earlier 
in this section, that #R, 5 +(n)/2r-1, where r is the number of distinct prime factors 
of n, because each quadratic residue admits in this case exactly 2' distinct square 
roots[Hwl. 0 

Notice that part (i) of this proof still holds when n I 1 (mod 4). Unfortunately, part (ii) fails 
miserably because R,, is then always empty, due to the fact that each square root of the square of a 
false witness is also a false witness. This fact may partly explain the observed phenomenon that 
Rabin's test seems to be less effective on these numbers. 

4. How Good is Rabin's Test? 

We must first ask the following question: what is Rabin's test good for? At least two answers 
come to mind: to decide on the primality of a given integer and to generate one or several primes 
(perhaps of a given size). We shall consider these two settings in turns, starting with the second. 

4.1. How to Generate Random Primes of a Given Size 

The generation of large primes drawn with a uniform distribution from the set of all primes of a 
given size is of crucial importance in cryptography WSA]. Although it is possible to generate such 
primes with certainty using the algorithms of [APR, AH], their running time is currently too high to 
be used in practice. It is also possible to efficiently generate large certified primes by a variation on 
Pratt's non-deterministic algorithm lp] (generate the NP certificate and the resulting prime hand in 
hand) or by more sophisticated techniques [CQ], but the resulting distribution would not be uniform. 
Again, the most attractive solution in practice is to use Rabin's test as follows : 

function GenPrim(1, k)  
{ 1 is the size of the prime to be produced; 
k is a safety parameter discussed below ] 

repeat 
n t randomly selected 1 digit odd integer 

until RepearRabin(n, k )  = "przme" 
return n . 

The resulting output is a probabilistic prime in the sense that we can never be assured that it is 
indeed prime. We can nonetheless increase our confidence in the number's prhality by increasing 
the safety parameter k. (What a shame that Rabin's algorithm can certify those cryptographically 
useless composite numbers whereas it can only give probabilistic information on the useful primes! 
- which is precisely why [GK, m's algorithms are of such (as yet theoretical) interest.) 
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In order to use GenPrime for cryptographic purposes, it is important that its probability of 
returning a composite integer be estimated. The popular belief is that 

pmb[GenPrime(f, k)  is composite] I 4-k 

because each of the k rounds of Repeagabin has a probability smaller than % of failing on any given 
composite number. If we repeatedly use GenPrime to produce m distinct “primes”, we therefore 
expect on the average that less than of them will turn out to be composite. For instance, 
Gu th  writes : “if we certilied a billion different primes with such a procedure 4, the expected number 
of mistakes would be less than 1” [Kn, page 3791. 

1OOOOOO 

This assemon may be true5, but the reason is wrong. Indeed, it could onfy be true because 
prob[Rabin(n) = “prime”] is so much smaller than Y4 on most composite numbers. Should the error 
probability be auctfy ?A on every composite odd integer, the number of expected errors would be 
significantly larger than 109x4-25 = 

such that 
From now on, let us assume we use a hypothetical test (that we shall continue to call Rabin) 

prob[Rabin(n) = “prime” I n is indeed prime] = 1 

as before, whereas 

prob[Rabin(n) = “prime” I n is in fact composite] = % (exucrly) . 
It turns out that the error probability of each instantiation of GenPrime(2,k) depends on the size of 
the desired prime. As one can easily compute from Lemma 1 and Theorem 2 below, the expected 
number of errors exceeds 1 ~ 1 0 - ~  when k=25, provided 35 I I < 2x1013. In particular, if one wanted 
one billion 1000-digit primes, the expected number of mistakes would exceed 0.001. To be more pro- 
vocative, if one had a need for one billion one-billion-digit primes, running Rabin’s test a mere 25 
times per “prime” would result in an expected 1022 composite numbers among them. Worse still, 
each call to GenPrim(10’5, 25) has a roughly 50% chance of producing a composite number! 

In a nutshell, the reason for this confusion is that prob[X I YJ # prob[Y IXj in general. In p d c u -  
lar, if X stand for “ n  is composite” and Y for “RepeafRabin(n,k) returned *prime””, then it is true 
that prob[YIXJ S 4-k, but this does nor allow us to conclude that prob[XIYl I 4-k as well. In order to 

get an estimate on prob[XIY], which is the cryptographically relevant probability, it is necessary to 

have an a priori probability that n is prime before even the first call to Rabin(n) is performed. For- 
tunately, the prime number theorem [Hwl comes to the rescue, which is where the size of the desired 
prime comes into piay : the a priori probability that a randomly selected odd f-digit integer be prime 
is roughly 2/ fa ,  where a z 2 . 3  stands for the natural logarithm of 10. More precisely, 

Lemma 1 

If n is unifomrly, randomly selected among the odd I-digit integers, then 
r 

2 prob[n is prime] = - 
(I-1)xa 

4. Knuth does not explicitly say how he would use Rabin’s test to certify those billion primes, except that 
he would run it “25-times-in-a-row” on each of them. It is OUT interpretation that he meant something along 
the lines of RepeaRabin(-.25). Of course, Knuth’s assertion is vacuously true if taken literally: if the in- 
tegers thus certified are indeed “one billion primes”, no mistakes are possible at all! 
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Proof 

Immediate from the prime number theorem [HWI, which says that the number of primes 
not exceeding n is asymptotic to n / l n n .  Notice that this approximation is fairly accurate 
even for reasonably small values of n. For instance, there are,50,847,478 primes smaller 
than lo9, whereas n / In n would give about 48,254,942. 

Theorem 2 

Let p be the probability that a uniformly, randomly selected odd /-digit number is prime. 
The probability that GenPrime(I,k) returns a composite number is given by 

1 
1+-4’ P 

1-P 

This is about ( fal2)x4-’  provided 1 is substantially smaller than 4k and about % when 
I = 2x4’1a. 

Proof 

Let X and Y be as before. Clearly, prob[X] = 1-p and prob[YIX] = 4-k (with our 
simplification to the effect that Rabin’s test fails with probability exucriy Y4 on composite 
numbers). We are interested in prob[X I yl. We thus use the formula 

which yields the theorem after routine algebraic manipulation because 

probM = prob[a x prob[Y In+ prob[not W x prob[Y I not XI 

= (1-p)~4-~  + p x l  . 

Intuitively, the confidence we get in the number’s primality from running Rabin’s test several 
times must be weighted by the a priori overwhelming probability that it is composite if randomly 
chosen among the odd integers of a substantial size. For instance, if the size is 2 ~ 4 ~ / a ,  only about 1 
in 4k odd integers is prime. If a random odd integer of this size passes k rounds of Rabin’s test, it is 
just as likely that this occurred because we were lucky enough to hit a prime or unlucky enough to 
observe such behaviour on a composite number! 

1.2. How to Decide on the Primality of a Given Integer 
Suppose some odd integer n is given to you. You are to decide whether you think it is prime or 

not. You therefore run Rabin’s test for some number k of rounds, and it never finds n to be compo- 
site. What can you tell from this ? 

One obviously wrong answer is: “this number is prime with probability 1-4-k”. This makes no 
sense because any given integer is either prime or not. 

The classic answer is: “I believe this number to be prime, and my error probability is at most 
4-k (in the sense that I expect to be wrong at most once every 4‘ such statements if you q u i z  me 
long enough)”. This is wrong as well because no estimate on the error probability of “I believe this 

5 .  We think the assertion is true, but we have not yet actually carried out the calculation necessary to 
prove i t  
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number to be prime” can be made without an a priori estimate on the probability that the number is 
prime. If you know that it was chosen randomly and uniformly among the odd integers of some 
given size I ,  section 4.1 teUs you that you can stiu achieve an error probability below 4-‘, but at the 
cost of running Rabin’s test for an additional (roughly) log41 rounds. However, if you do not know 
where the number comes from, you are at a complete loss. 

Still, there is one thing you can say: “I believe this number to be prime, and if I am wrong I 
have observed a natural phenomenon whose probability of occurrence was bounded by 4-k’r. This 
statement is certainly weak, but we cannot think of anything stronger one can infer in general from 
running Rabin’s test any number of times. 

As mentioned in the introduction, this observation is not restricted to primality testing. When- 
ever one runs any probabilistic algorithm that is not Las Vegas, c a ~ e  must be taken as to how to 
interpret the outcome. More implications of this issue are discussed in PB]. 
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