
A Pseudo-Random Bit Generator Based on Elliptic Logarithms 1 

Burton S. Kaliski, Jr. 
MZT Labomtoy for Computer Science 

545 Technology Square 
Cambridge, MA 08159 

Abstract 

Recent research in cryptography has led to  the construction of several pseudo-mndom bit generators, 
programs producing bits i ~ s  hard to  predict as solving a hard problem. In this paper, 

1. We present a new pseuderandom bit generator based on elliptic curues. 

2 .  To construct our generator, we also develop two techniques that are of independent interest: 

(a) an algorithm that computes the order of an element in an arbitrary Abelian group; and 
(b) a new oracle proof method for demonstrating the simultaneous security of multiple bits of a 

discrete logarithm in an arbitrary Abelian group. 

3. We present a new candidate hard problem for future use in cryptography: the elliptic logarithm 
problem. 

1 Introduction 

This paper describes a method for producing pseudo-random bits based on the elliptic logarithm problem. 
The paper contains background on elliptic curves and pseudo-random bit generation, two new results of 
independent interest, and the construction and proof of a pseudo-random bit generator. This section gives 
an overview of the paper. 

1.1 Motivation and overview 

Recently considerable progress has been made in formalizing the theory of pseudo-random number gen- 
eration based on computational difficulty [BM84] [Yao82] [GGM84] [Lev85]. However, the generality of 
this theory (finally based on one-way functions in a weak sense [LevSS]) is in sharp contrast with the 
very few concrete candidates for one-way functions. Discrete logarithm and integer factorization (of which 
quadratic residuosity and inverting RSA are special cases) are essentially the only hard problems on which 
to build one-way functions. One of the main contributions of this paper is that it introduces a new hard 
problem diflerent than those previously studied. Since cryptography stimulates mathematical research, i t  
is interesting to note that  ours is one of the first cryptographic tools based on 20th century mathematics. 

In simplest form, an elliptic curve is the set of solutions (z,y) to an eqaation 

y2 = z3 + Az + B (1) 

Over the finite field with p elements, where p i s  a prime. A well-known result is that the points on an elliptic 
curue form an abelian group under an additive composition operation called "tangents and chords." We 
use the group structure to apply the main ideas of the Blum-Micali generator in an entirely new context. 

In the Blum-Micali case, the hard problem is "discrete logarithms" modulo p: given g,y E Z;, find 
a such that y z 9" modulo p .  In our case, the hard problem is "elliptic logarithms" on an elliptic curve 
modulo p: given points G,Y,  find a such that Y = aG. 

Despite the similarity of the statements and of the names, we are dealing with two very distinct 
problems. First, the structure of elliptic curve groups differs greatly from those groups previously studied. 
Second, the representation differs: points on elliptic curves require two coordinates. Third, while there 

'This research was supported by NSF grant MCS-8006938. 

A.M. Odlyzko (Ed.): Advances in Cryptology - CRYPT0 '86, LNCS 263, pp. 84-103, 1987. 
0 Springer-Verlag Berlin Heidelberg 1987 



05 

are closed formulas for computing the order of 2; and other groups, there are no such formulas for elliptic 
curves. To summarize, elliptic logarithms involve entirely different mathematics. (They are also conjectured 
to be harder to compute than discrete logarithms [Mi185J.) 

To construct a pseudo-random bit generator based on elliptic c w e s ,  and to prove that the bits it ont- 
puts are as hard to predict as solving the elliptic logarithm problem, is not a straightforward generalization 
of previous work. The differences pointed out above make previous constructions and proofs inadequate. 
In developing our construction and proofs, we also develop several related results. 

1. We construct a novel method of finding the order of an element of an Abelian group. 

2. We also introduce a new proof technique that generalizes proofs of bit security to abelian groups of 
arbitrary structure. 

3. Furthermore, we lay the foundation for the development of uyptosystems using elliptic curves directly. 

We make use of Lenstra's new factoring algorithm based on elliptic curves [Len851 [Bac85] (which, at 
first glance, would seem more suitable to breakcryptosystems than to constmct them!). Lenstra's algorithm 
has the remarkable property that its running time depends on the size of the smallest prime factor of its 
input. This allows us, for instance, t o  find elements that generate an abelian group quickly with negligible 
probability of error. This solves a major problem encountered in earlier constructions of pseudo-random 
bit generators. We believe ours is the first cryptographic application that exploits the special features of 
Lenstra's algorithm. 

2 Background 

2.1 Number theory 

Let cp(N) be the Eufer totient function, the number of integers N or smaller relatively prime to N .  RD- 
and Schoenfield [RS62] give a lower bound for N > 3 of 

2.2 Groups 

A group G is additive if its composition operation is written +; multiplicative if written x (or implied). 
Abelian is a synonym for commutative. In an additive group, we write az to denote repeated composition 
of z with itself a times; in a multiplicative group, za. Given an element z in G, we say the order of z, 
written orderG(z), is the smallest positive integer a such that ax = 0, where 0 is the identity element of G. 

Definition 1 Let G be an additive Abelian group. A generating set for G is a set 

((91, NI), . . ., (9kj Nk)}r Sr E G, N, > 1, (3) 

such that every element z E G can be written uniquely as 

z = algl + . " + a k q k ,  0 5 < ~VI. (4) 

We say a generating set is canonccalif N,+l  divides N ,  for 1 5 i < k. Every Abelian group has canonical 
generating sets. Furthermore, the sequence Nl, . . . , Nk is the same for all canonical generating sets. The 
mnk of G is the cardinality of its canonical generating sets. Thus we may speak of the r-tuple (91,. . .,gr), 
where r is the rank, as a genemtmg tuple for G. If the rank is 2, then we have a generating pair (gi,gz); 
and if the rank is 1, then we have simply a genemtor g. 

Also observe the isomorphism 
G % ZN, X . . ' X ZN,. (5) 

To every z g G there corresponds a unique r-tuple. We call this the indez tuple, and i t  is defined 

index (z) = (al,. . ., 
G.gi ..... gr 



86 

For groups with rank 2 and 1, we have the in&+ pair and indez. In any group, we also write 

index(x) = a c-.r z = ay, (7) 
C * Y  

for arbitrary y, but this may not be defined for all x. 
The following are results of the lower bound on 'p( N) (equation 2). 

Lemma 2 The probability that an element z has maximum order in G is at least 

(8) 
1 

61nln Nl ' 
where N, > 3 is the maximum order. 

Lemma 3 Let G be a group with N elements, and let T be its rank. Then the probability that (21,. . .,zT) 
is a generating tuple is at least 

1 
6'( In In N)' (9) 

assuming each N; > 3. 

3 Elliptic curves 

Elliptic curves, like many other topics in number theory and algebraic geometry, enjoy a rich history as well 
as recent applications t o  computer science. As Cassels writes, "It has exercised a fascination throughout 
the centuries and the number of isolated results is immense" [Cas66]. The study of elliptic curves has led to  
a solution of the Congruence problem [Kob84], and a "Riemann hypothesis" [Cho65] [Jo173]. More recently, 
Lenstra has proposed a novel factoring algorithm using a group law that relates the points of an elliptic 
curve [Bac85] [Len85]. This same group law is the basis for Miller's "elliptic logarithm" adaptation [Mi1854 
of the Diffie-Hellman key exchange protocol [DH76], and for the primality certification of Goldwasser and 
Kilian [GK86]. 

3.1 Definition and notation 

In simplest form, an elliptic curue is the set of (z, y) solutions over a field K to the equation 

E : y2 = z3 + Az + B ,  (10) 

where A, E E K ,  (z, y) E K*, and 4A3 + 27BZ # 0. Most elliptic curves can be expressed this way, called 
Weierstmss form. Much study in this century has been devoted to elliptic curves over the fields C,  R, Q, 
2 [CasSS] [Cho65] [Ful69]. Also of interest are elliptic curves over finite fields and their algebraic closures, 
F, and F. [BMP75] {Sch85] [Tat74]. 

An elliptic curve may also be defined in projective coordinates, as 

E : y 2 ~  = x 3  + A Z Z ~  + B Z ~ ,  (11) 
where A,B E K and the discriminant 

A = 4 A 3 +  27B2 # 0 
in K. 

The point (z, y, 1) in projective coordinates corresponds to the point (z, y) in f i n e  coordinates, where 
1 is the unit of the field K. The point (0,1,0) corresponds to a point at infinity on the elliptic curve in 
affine coordinates. 

Let E ( X )  denote the set of solutions of the curve E over the field K, together with the point a t  infinity, 
denoted 0. A well-known result is that E ( K )  is an abelian group under a composition operation called 
"tangents and chords." The description of this operation is easiest for E(R). Any line in R2 intersects the 
curve E in either zero or three points. (A point of tangency is counted twice, the third point of intersection 
for a vertical line is considered 0.) The composition of points P and Q, written P + Q, is the reflection of 
the third point colinear with them. Thus 0 is the identity. Figure 1 illustrates this operation. 

Most of the group axioms are easily verified; to show E(R) is associative requires certain theorems of 
algebraic geometry [Rr169]. Since the composition operation can be expressed as a rational polynomial 
function, it can be generalized from R to any field. We will assume for analysis of algorithms that we can 
compose points on an elliptic curve E(F,) in time O ( n 2 ) ,  where n = logp. 



a7 

3.2 Group structure 

Lemma 4 E(F,) has rank 2. 

Proof. This follows from a morphism with C / L ,  where C is the complex plane and L is a lattice. Since 
two generators are sufficient for the lattice, two are sufficient for the elliptic curve. a 

Lemma 5 If E(F,) 2 Z N ,  x Z N ~ ,  where N Z  divides N l ,  then Nz divides p - 1. 

Proof. This is a fairly deep result. See, for example, Cassel's survey [Cas66]. 

Lemma 6 The only points of order 2 on an elliptic curve are 0 and those with y-coordinate 0. 

Proof. By definition of composition, if P = (I, y) then -P = (I, -y), since they lie on the same vertical 
line. Points of order 2 are self-inverse, and thus P = 0 and P = (z,O) are the only solutions. 

3.3 Simple case 

Definition 7 The simple case of elliptic curves consists of those curves over a finite field F, 

E : y2 = z3 + B 

for which p = 2 modulo 3 and B # 0. 

We show several useful properties. 

Lemma 8 Then to every y-coordinate in F, there corresponds exactly one point on an elliptic curve E(F,) 
in the simple case. 

Proof. For any y E F,, the point (m, y) is on the curve. Since p I 2 
unique and therefore there is exactly one point for each y. a 

Corollary. Np = p + 1. 

Lemma 8 Let E(F,) be an elliptic curve in the simple case. Then E(F,) is cyclic. 

Proof. By lemmas 4 and 5, E(F,) 2 Z N ,  x Z N ~ ,  where NlN2 = p + 1 and Nz divides p - 1. Thus Nz 
must be either 1 or 2. But E(F,) has only two points of order 2, (m,O) and 0, so N2 must be 1 and 
the group is cyclic. 

(mod 3), cube roots are 

4 Pseudo-random number generators 

Recent research in computational complexity has led to the notion of a cryptqmphically stmng pseud+ 
mndom bit  generator. Yao formalized this notion in terms in information theory [Yao82], and Blum and 
Micali gave sufficient conditions for constructing a generator, together with a concrete example using 
discrete logarithms [BMM]. Later, direct constructions were obtained for generators based on the RSA 
cryptosystem [ACGS] and the quadratic residuosity problem [BBS83]. Levin made research more formal 
with his study of weaker sufficient conditions and necessary conditions [Lev85]. 

A pseudo-random bit generator is interesting in at least two ways. First, it provides a source of 
randomness indistinguishable in polynomial time from a truly random source, and therefore it can be US& 
reliably in probabilistic algorithms. In fact, Ym shows that the existence of such a generator implies 
that any randomized polynomial-time algorithm can be simulated by a deterministic sub-exponential-time 
algorithm [Yaa82]. Ajtai and Wigderson generalize these results to probabilistic constant-depth circuits 
[AW85]. Second, a generator can be used both in public- and private-key cryptosystems; in the latter c-, 
it is the polynomial-time equivalent of the "one-time pad," an ideal, provably secure cryptosystem. 



88 

4.1 Sources 

We borrow the following definitions, slightly modified, from Yao's paper. We assume that probability 
distributions aze uniform, and therefore refer to sources simply as sets of strings. 

Definition 10 A source S is a set of strings of equal length. A source ensemble S is a sequence of sources 
S1,S2, . . .. If ( ( n )  is the length of the strings in S, and ( (n)  < ((n f l), then the source ensemble is called 
uniform. 

Definition 11 The truly mndom source ensemble 72 = R1, Rz, . . ., where each R, is the set of all strings 
of length n. 

4.2 Statistical tests 

Definition 12 A statistical test is a probabilistic algorithm that takes as input a string and outputs either 
0 or 1. 

Let T be a statistical test, and let S = S1,Sz,. . . be a source ensemble. We say that S passes the 
statistical test T if for all polynomials Q(n), for n sufficiently large, 

We say that S pczpses all polynomiaGtime statistical tests if it passes al l  such T that run in time 
polynomial in the lengths of their input. 

4.3 Approximation 

Definition 13 Let I be a set of strings, let b: I -+ (0 , l )  be a predicate, and let 6 : N -r [0,1/2] be a 
function. We say an algorithm bc: I + (0 , l )  c-approzimates b if for each n, 

Pr[b(z) = b,(z)] 2 1/2 + e(n), (15) 

where the probability is taken over coin 9ips in b, and x of length n in I. Such an algorithm is called an 
r-approximator for b. 

Let Tq(rr) be the running time of any algorithm that l/Q(n)-approximates b on inputs of length n. W e  
say a b is unapprozimable if for all polynomials Q(n),  Tg(n) grows faster than any polynomial in n. 

4.4 Sufflcient conditions 

Definition 14 Let I be a set of strings, and let b: I - (0 , l )  and f: I 4 I be functions. Consider the 
source ensemble S where S, is the set of strings 

b(J'(s))ob(f'-'(s)) 0 * * - o b ( f ( s ) ) ,  (16) 

where s E I of length n is chosen uniformly at random. If S is uniform, polynomial, and passes all 
polynomial-time statistical tests, then then (I, f,  b) is called a Blum-Micali pseudo-mndom bit genemtor. 

Theorem 15 Let I be a set of strings, and let b: I -.+ (0 , l )  and f: I + I be functions. Also let I, be the 
subset of I containing strings of length n. Then (I, f, b)  is a Blum-MiCali pseudo-random bit generator, if 

1. (friendship) b ( / ( t ) )  is computable in time polynomial in 1.1. 
2. (stability) f is a permutation, If(z)l = (21, and f(z) is computable in time polynomial in 121. 
3. (accessibility) There is an algorithm that, given an integer n, selects elements z E I, uniformly (if 

4. (unapprozimability) b is unapproximable. 
any exist) in time polynomial in 121. 

Remark. Yao and Levin propose conditions less strict than these. In particular, Yao replaces I with an 
sequence of probability distributions. Levin shows that f n e d  not be a permutation. 

One condition which we will make less strict is accessibility, by allowing the algorithm to have negligible 
error. That is, the algorithm may output x # I, with probability asymptotically less than any inverse 
polynomial in n. 



5 

Finding a generating set for an Abelian group G is important both in the definition of pseudo-random bit 
generators, and in applications such as the Diffie-Hellman key exchange protocol. There are several parts 
to the problem: 

A new tool for finding generators 

1. finding the cyclic decomposition of G; 

2. computing the orders of elements; and 

3. testing that elements are "linearly independent." 

We present in this section a new tool for solving the second part of the problem. Let G be an Abelian 
group, let N be its order, and let n = log N.  The main result is an algorithm that uses polynomially-many 
(in n) group operations in G to compute the order of an element z E G, with negligible probability of error. 
For this method to be applied to a group, the group must have an efficient (Le., polynomial-time) algorithm 
to perform group operations, and its order (number of elements) must be known. Our order-computing 
algorithm utilizes Lenstra's new factorization algorithm [Bac85] [Len85]. 

The outline of this section is as follows. An intermediate result, a partial factorization algorithm using 
Lenstra's algorithm, appears in section 5.1. We then apply this algorithm in section 5.2 to show how to 
approximate the order of an element z E G. Finally, we present an example of a generating algorithm that 
uses the results in section 5.3. 

5.1 Partial factorization 

We now present a polynomial-time algorithm that extracts all "small" prime factors of an integer N,  using 
Lenstra's factorization algorithm. Throughout the discussion, assume that N is fixed, and let n = logN. 
Recall that Lenstra's algorithm yields a factor p of N in expected time O(L(p)f i+0(1)7 t3) ,  time, where 

~ ( p )  e m p .  (17) 

We will make much use of the key feature of Lenstra's algorithm, which is that its running time depends 
on the smallest prime factor. Pomerance observes that this feature can "usually" be applied to  determine 
whether a number is smooth with respect to some bound k, i.e., whether a l l  its prime factors are less than 
or equal to k [Pom85]. Using this technique, it is also possible to find all prime factors less than or equd 
to k. 

It is not known whether Lenstra's algorithm is able to find all prime factors. This depends on a 
conjecture concerning the distribution of smooth numbers. If this conjecture is not true, then there may 
be certain primes that Lenstra's algorithm never finds. In this case, the probability of error is no longer 
negligible. We assume the conjecture is true for the course of discussion. Indeed, Lenstra and others 
this assumption "reasonable" [Len851 (Bac851. 

This application of Lenstra's algorithm is significant, because to find small factors or to test smoothness 
using previous methods would require time proportional to k or to fi. With the new technique, it 
is possible to find small factors in polynomial time for much larger k ,  asymptotically greater than any 
polynomial in n. Algorithm small-factors, in figure 2, shows one way to do this, and the following theorem 
formalizes the observation. 

Theorem 16 Let N be an integer and let n = logN. Algorithm small-factors finds all factors of N 
than or equal to nhn/lnhn in time polynomial in n, with negligible error. 

Proof. We prove the theorem in three steps. First, we expand L(k) to determine the expected time to 
find a single small factor of N. Second, we show how to make the probability of error negligible for a single 
small factor. Finally, we analyze the expected time to find all small factors using algorithm small-factors. 

Expanding L(k) for k = nhn/lnlnn gives 

Thus, for sufficiently large n, 
L(k) 5 ,Jshn = n f i ,  



90 

and L(k)& = O(n*).  Therefore, the expected time to find a factor smaller than nhn/lnlnn, if one exists, 
is 0(n5+0(1)). 

If M is sufficiently large in step 2 of the algorithm, then with high probability we find a factor smaller 
than nhn/lnlnn, if one exists.  Consider the process of finding such a factor as a Bernoulli process, since each 
trial in Lensta's algorithm has the same probability of success, and these probabilities are independent. 
Let 11 be a random variable representing the time between successes; then 

E [ I ~ ]  = o ( ~ ~ + ~ ( ~ ) ) .  (20) 

Using a Poisson approximation [Dra67] we have, 

Pr[ll > nE[i,]] = e-". 

If we set the M as O ( ~ Z ~ ~ ( ~ ) ) ,  then the probability of error is negligible. 
We conclude the analysis as follows. Since N has at most n factors counting multiplicity, we run step 2 

at most n times. Each takes time O(ne+o(l)), so the total running time is O(n'+O(')), which is polynomial. 
The probability of error is e-" is negligible. m 

5.2 

We now present a probabilistic algorithm that determines the order of an element of an Abelian group in 
polynomial expected time with negligible probability of error. First we discuss an algorithm to determine 
the order of an element z, given the complete factorization of N, the order of G; then we analyze a similar 
algorithm in the case when only partial factorization is known-the small factors determined in section 
5.1. 

Without loss of generality, we assume that G is cyclic. If it is not cyclic, then the analysis and results 
would apply to the subgroup of G generated by z, where N is the order of the subgroup. 

Approximating the order of an element 

5.2.1 

Algorithm with-complete-facton'zation, in figure 3, shows how to determine the order of z E G given all 
factors of N .  We prove two lemmas about this algorithm: first, that it is correct; and second, that it runs 
in polynomial time. 

Determining order with complete factorization 

Lemma 17 Algorithm u;ith-complete-jactorizotion is correct. 

Proof. By a corollary of the Chinese Remainder Theorem, each z E G corresponds to a tuple in Zp, X 

'. . x Z,,, i .e .  
z c.* (21,. . . , Z ? ) , Z i  E zpp,. (22) 

For each i ,  computing (,V/p:')z has the bijection 

. . . , z;, . . . ,O). --I c.* (0, 
P" 
N 

(23) 

Finding the smallest pf' for which (N$' /pP*)z  = 0 is the same as finding the order of z in Z,;, . Since the 
pI are pairwise relativekJ prime, the order of z is the product of the orders of 5, in ZP;, , and the algorithm 
is correct. m 

Lem-ma 18 Algorithm u~th-complete-factorizotion uses polynomiaiiy-many (in n) group operations. 

Proof. Since A' has has no more that log N rime factors, counting multiplicity, a1 + . . . + ak I n. Thus 
the number of computations of the form ( N $ j p p ' ) z  is at most n. Each computation requires O ( n )  group 
operations, using successive doubling. Thus, O(n2)  group operations are needed, in all. 



91 

5.2.2 

Suppose only partial information is known about the prime factors of N .  Consider the modified version 
of algorithm with-complete-factoritation, called with-partial-factoration (figure 4). Again, we prove two 
lemmas about the algorithm: first, that  its probability of error is negligible; and second, that  i t  runs in 
polynomial time. 

For the first lemma, assume that m = p::l . . . p p ' ,  p ;  prime, pi  < p i + l ,  and without loss of generality 
assume pk < pk+1. One may ask, what is the probability that the algorithm errs, i .e . ,  outputs 0, where 
o # orderG(z)? 

L e m m a  19 Algorithm tm'th-partia[-factoriration errs with probability at most n/pk+l,  where pk+1 is the 
smallest prime dividing m. 

Proof.  Suppose orderG(z) = $ ...#, 0 5 pi 5 a;. How does the algorithm behave? There are three 
cases. 

Determining order w i t h  partial factor izat ion 

1. p k ;  . - . f l  = m; correct answer, o =$  . . . e m  = OrderG(z). 

2. p?: . . .fl = 1; correct answer, 0 = @ ...@ = orderG(r). 

3.  1 < p?: . . .@ < rn; incorrect answer, o = @ . . . e m  # orderG(z). 

To find the probability of the third case, consider the subgroup S of elements whose orders divide Nlm, 
and the quotient group G/S. Since G is cyclic, the order of G/S is m ,  and G/S P Z,. The number of 
elements of order neither rn nor 1 in G/S is rn - (p(m) - 1. The probability of an incorrect answer is exactly 
the probability that  an element of G/S has order neither m nor 1,  or 1 - cp(m)/m - l /m .  

An upper bound for the probability can be determined by expanding V ( m )  and observing that 1 - k 5 n, 
since each index represents a distinct prime factor.2 Expanding (p(rn) gives 

We can compute an upper bound on this value, as follows: 

This is the probability of error stated in the lemma, so we are done. m 

L e m m a  20 Algorithm Im'th-partial-factorization uses polynomially-many (in n) group operations. 

Proof. The proof is similar to that for algorithm with-complete-factorization. The running time is no 
greater, since the partial factorization of N has no more factors than the complete factorization. Therefore, 
O(n3) group operations are sufficient. 

The two lemmas lead to  our main result, that 

T h e o r e m  2 1  Let G be an Abelian group with an efficient composition operation, let z be an element of 
G. and let n = log LV where N is the order of G. Using Lenstra's factorization algorithm, given z and N ,  
it is possible to compute the order of z in G in time polynomial in R with negligible error. 

Proof. Let pk+1 = nhn/lnlnn; then algorithm smaI1-factors can compute a partial factorization of the form 
needed for algorithm tL-rth-partial-facton'ration in time polynomial in n, with negligible error. Assuming 
JV is in this partially-facrored form, the probability of error in computing the order is n1-lnn/lnlnn, which 
is negligible. By lemma 20. the algorithm runs in time polynomial in n, if G has an efficient composition 
operation. m 

By lemma 2, the subset of G consisting of those elements of maximum order is non-negligible. Thus 
we have a corollary to  the theorem. 
Corollary.  Let G, z, n and N be as in theorem 21. Using Lenstra's factorization algorithm, it is possible 
to test whether an element z of G has maximum order in time polynomial in n with negligible error. 

for I - k. One may also show that 1 - t 5 n/ logph+i .  However, the weak upper bound is adequate for the proof. 
'Knuth and Trabk-Pardo observe that an integer N has at most n l l o g n  distinct factars [KT76]; this is a stronger bound 



92 

5.3 An example 

We now present an example of a generating algorithm. The algorithm, cyclic-genemfing-test (see figure 5 ,  
operates on the family of multiplicative groups modulo p, where p is a prime, and tests whether an element 
is a generator. The test is a straightforward application of algorithm roith-partial-faclorilotion. If G has 
N elements, then we can apply with-partia[-factorizatj~n to answer, with negligible error, the question, 

“Is orderG(z) = N?“ 
If the answer is “yes,” then with high probability, z generates G. This is a result of the corollary to  theorem 
21. (It is interesting to note that if the answer is “no,” we cannot make the claim of high probability, 
because the subset of G consisting of those elements not of maximum order may be negligible.) 

6 A new oracle proof technique 

This section presents a new method of proving the equivalence of predicting the value of a single bit of a 
discrete logarithm, and computing the logarithm itself. If computing the logarithm is a “hard problem,” 
then the method is strong enough to prove that O(1og n) bits are simultaneously unapproximable, where 
n is the length of the logarithm. The method requires only that the group is Abelian, and that its cyclic 
decomposition is known. 

The novel idea in the oracle proof technique is a notion of ”correlation” that provides a measure of 
closeness to  the correct logarithm. This memure can be used to obtain information about the range of 
values an index may take; by refining this information, the index can be found. 

Previous methods for proving such theorems used properties of a group which are not always available. 
In particular, the B l u m - M i d i  proof method [BM84] (and others based on it, e.g.[LW83]) required that the 
order of the group be even and used “quadratic residuosity” and square root operations. Although there is 
a square root operation for elliptic curves (since composition is defined by rational polynomials), the order 
of the group may be odd, and therefore previous methods are not applicable. Furthermore, elliptic curve 
groups may be non-cyclic, a condition not encountered in previous proof methods. 

6.1 Preliminaries 

Definit ion 22 Let G be an additive, Abelian, cyclic group with N elements, and let g be a generator of 
G. (Thus G E Z N . )  The huff bit of the index bG,g,o: G - Z2 is defined as 

The half bit can also be called the most significant bit of the index. Other “most significant bits” can 
be defined recursively; the i-th most significant bit bc,o,i: G - Z2 is defined as 

In the discussion following, the group G and the generator g are assumed fixed, and the shorter notation 
b, (z )  is used. The main theorem of this section is 

Theorem 23 Let G be a cyclic group with an efficient composition operation, let g be a generator of 
G, and let n = l o g Y  where N is the order of G. Let E > 0,O 5 i < n. The following problems are 
probabilistically reducible to each other in time polynomial in n. c-’ and 2’: 

1. Compute index(z) 
2.  Compute bi(z)  correctly for 1/2 + E of z E G 

The reduction of the second problem to the first is obvious. The following sections discuss the reduction 
in the other direction: the ”oracle proof technique.” The reduction is so named because such theorems 
traditionally have been proved by constructing an algorithm to compute index(z) using an oracle that 
“guesses” one bit of the index with probability 1/2 + 6 .  

Computing b,(z) correctly for a fraction of z E G can be described more formally, in terms of approx- 
imation (see section 4). In particular, let b;,< be an c-approdmator to bi. Recall that G and g are fixed. 
We w e  the notion of approximation to  define correlation. 



93 

Definition 24 Let 11 and 12 be elements of G. The i-th bit correlation of 21 and 2 2 ,  P; ,~ :G x G --* 

[-1/2,1/2], is defined as 

(28) 
def 1 

pi,c(zlt Q) = Pr[bi(zi + r g )  = bi,c(z2 + rg) ]  - - 2 '  
where r is a uniformly-distributed random variable taking integer valaes between 0 and N - 1. 

Lemma 25 The following are true for all integers k and elements 2 1  and 2 2  of G: 

N 2'+' 
I p i , c ( z l , z 2 )  - ~ i , c ( z l  + \ k ~ - ] g , 2 2 ) 1  5 - N 

(approzimotion) p i . c ( 2 1 , 2 1 )  2 6 

(periodicity) 

(locality) 

Proof. (Approrimation) Observe that by the definitions of correlation and approximation, 

(Periodicity, symmetry and locality) View the correlation as a piecewise constant function on a drde, 
taking values 0 and 1. (See figure 6.) 

Comparing pi ,<( r l ,  2 2 )  to p;,<(zl + A z l g , s 2 )  amounts to rotating the circle by Az, and comparing it 
to itself. However, since A21 is an integer, the rotation may cause regions to overlap slightly. In other 
words, one comparison in each contiguous region of 0's or 1's may yield an "erroneous" value. Since there 
are at most 2'+' such regions, we arrive at  the stated limits. 

6.2 Algorithms and analysis 

We now present three algorithms to show the proof: algorithms estimate-correlation in figure 7 ,  decide- 
square-rootsin figure 8 ,  and compute-indetin figure 9. We also analyze their running times and probabilities 
of error. 

6.2.1 Estimating correlation 

By choosing random d u e s  for r ,  it is possible to estimate the correlation very well. First, we present 
an algorithm that does this estimation; then we analyze its running time and probability of error. The 
algorithm, estimate-comelation, appears in figure 7.  

Lemma 26 Let 6 be a positive real number, and let &(cg, I ) ,  a random variable, be the estimate produced 
by algorithm estimate-correlation using M samples. If M > ~ - ' 6 - ' / ~ ,  then for all c and z, 

Pr[lc,,c(cg, - P t . c ( c g ,  211 > ;I < 6. (31) 

Proof. Let c and I be fixed, and write f = E,,e(cg,z).  Then, since the estimate is the average d u e  of a 
Bernoulli process, we have 

E[<1 = p,.c(cg, 5 ) ;  (32) 

By the weak law of large numbers, 



94 

as stated in the lemma. 
It is of significance to  note that the upper bound on the probability of error is independent of the values 

of c and 2, and of any other estimations made. This is because the estimation randomizes over 7 ,  and 6 is 
an upper bound regardless of the value being estimated. 

As an application of this lemma, we show that it is possible to estimate the correlation very well in 
polynomial time. 

Lemma 27 Using polynomially-many (in n, and 6-I) coin flips, group operations and oracle invoca- 
tions, algorithm estimate-comkztion errs by e/2 or more with probability at  most 6. 

Proof. Selecting iM = ~ - l 6 - ~ 1 ' ,  we use 0 ( ~ ' 6 - ' / ~ n )  coin flips and group operations, and 0 ( ~ - ~ 6 - ' / ' )  
oracle invocations, as follows. The first step of the algorithm computes M n-bit numbers, requiring O ( M n )  
coin flips. The second step uses the oracle once per trial, or M times, and each computation of r j g  requires 
O ( n )  group operations, using successive doubling. The time to compute b;(cg + rjg) (since c and 7 j  are 
known) and z + rjg is comparatively small. 

6.2.2 Deciding square roots 

We now present an algorithm to "decide square roots," a key method in determining the logarithm. Let 
[a,  b] denote the interval between a and b, inclusive, where a and b are real numbers. When a and b are 
sufficiently close, it is possible answer the question, 

"Given that index(2'+'z) E [2'+la, 2'+'b], is index(2'z) in [2'a, 2'b] or in [2'a+N/2,2'b+N/2]?" 

Lemma 28 Let [a, b] be  an interval with 

(35) 
NE N 
2'+' 2'+1 0 5 a < b <  a+-  - 3  < -. 

and let c be the integer closest to (a + b)/2. 
[2'+'a,2'+'b] and index(2'z) E [2'a,2'b], then for M > ~ - ' 6 - ~ / ~ ,  

Let 6 be any positive real number. If index(2'+'z) E 

Pr[Si.t(cg, 2) < 01 < 6. 

Proof. The hypothesis index(2'2) E [2'a, 2'b] implies 

N IV 
index(z) E u [a  + k F , b  + kp]. 

05k<2' 
(37) 

Then for some value of k: it is true that 

(38) 
N b - a f l  

Ic + Lk-1 - index(z)l 5 - 2' 2 .  
Furthermore, because p; ,<  is periodic, 

for all k. By lemma 25, 

Consequently, we have a lower bound on the correlation, 

p,,c(cg, I) > 4. 
(40) 

b - a t 1  2'+' E 
+--I-. 

1v 2 

(41) 

Using the estimation algonthm with A4 > ~ - ' 6 - ' / ~ ,  we arrive at  

Pr[Ei,c(cg, z) < 01 < 6, (42) 

proving the lemma. 

initial question. 
Using these obsertations. we construct an algorithm decide-square-roots (see figure 8) to answer the 



95 

Lemma 29 Given I, and assuming that index(2'+'1) E [2'+la,2'+'6], algorithm decide-square-roots is 
correct with probabifity > 1 - 6, where 6 is the error bound in estimating the correlation. 

Proof. The probability of error is less than 6, whether index(z) E [2'a,2'6] or index(z) E (2'a+ N/2,2'b+ 
N/2]. Since these are the only intervals in which the index may lie, the algorithm is correct with probability 
> 1 - 6. Furthermore, by lemma 27, the algorithm runs in time polynomial in n, r-' and 6-'i2. 

6.2.3 Computing t h e  index 

Algorithm compute-indez (figure 9) computes the index of z by successively restricting the range of indexes 
in which index(2j+'z) may lie. To show that this algorithm runs in polynomial time, we determine the 
probability that the restricted range for index(z) is incorrect, assuming an initial range for index(2"+'z) 
is correct. By showing the probability is sufficiently small, we determine that in few iterations of the main 
part of the algorithm, we can find the index. 

Lemma 30 Algorithm compute-indez finds index(z) using polynomially-many (in n, c-l and 2') expected 
coin ilips, group operations and oracle invocations. 

Proof. Suppose the interval [a, 61 selected in step 1 is correct. By lemma 29, the probability of choosing 
the next [a ,  61 correctly in step 2 is a t  least 1 - 6. Thus, the probability of success in n consecutive choices 
is 

(1 - 6)" 2 1 - n6, (43) 
since probabilities are independent by the definition of the estimation algorithm. 

2 reduces b - a by a factor of 2 each time. Thus 
If [a, b] contains index(2'z) upon entering step 3, then [a, b] contains exactly one integer, because step 

upon entering step 3. Step 4 then recovers the index. 
TO determine the running time, observe that there are about 2'+'~-' intervals, so the expected number 

to search is 2;r-l. Further, if 6 = 1/2n, then the probability of success in equation 43 is a t  least 1/2, 
"and thus two trials of step 2 are expected given the correct interval. In all, 2'+'e-' trials of steps 1-3 are 
expected. Since algorithm decide-square-roots and all other operations are polynomial in n ,  r-l and 6-'/', 
algorithm compute-indez is polynomial in n, e-' and 2'. 

6.3 Proof of main theorem 

Finally, we complete the proof of the main theorem. Lemma 30 shows that an c-approximator for 6; can 
be used to compute index(z) in polynomially-many coin flips, group operations and oracle invocations. If 
the group has an effiaent composition operation, we have a probabilistic polynomial-time reduction from 
index computation to  r-approximation, and the theorem is proved. m 

6.4 Extensions 

The oracle proof technique is easily modified to handle non-cyclic groups and to show the simultaneous 
security of O(1og n) bits. 

7 Simple case of elliptic curves 

In a restricted class of elliptic curves, it is possible to construct apseudc-random bit generator in a relatively 
straightforward manner. This restricted class has certain properties that make the construction and proofs 
easy. The intent of discussing this class is to provide a simple application of the sufficient conditions for 
pseudo-random bit generation, which will set a better foundation for the generd case in section 8. 



96 

7.1 Statement of theorem 

Deanition 31 Let E(F,) be an elliptic curve in the simple case (section 3.3), and let G be a generator. 
Then (E(F,),G) is a curve-genemtor pair. 

We say an algorithm solves the elliptic logarithm problem for a cwe-generator pair (E(Fp), G) if for 
every P E E(F,) it computes indexEp,),G(P) correctly. Let Q(n) be a polynomial, and let Tg(n) be the 
running time of any algorithm that solves the elliptic logarithm problem for at least a fraction l/Q(n) of 
all curve-generator pairs, where TL is the length of p. By Miller's arguments [MilSSa], we have 

Conjecture 32 (Simple elliptic logari thm intractability assumption) Tg(n) grows faster than any 
polynomial in n. 

This leads to our main theorem. Let an instance of the sample case be a tuple 

(E(Fp), G, P)!  (45) 

where E(F,) is an elliptic curve in the simple case, G generates E(F,), and P is a point on the curve. The 
set of all instances where p is an n-bit prime is denoted Ina3 

Theorem 33 Let I be the set of instances in the simple case. Let f and b be defined for an instance 
= (E(Fp), G, P) 

f(s) = (E(Fp), G, $(P)) ,  (46) 
where 

and 
b ( s )  = ~E(F, ) ,G,o(~) .  

Under conjecture 32, (I, f ,  b) is a Blum-Micali pseudo-random bit generator. 

Proof. We prove the theorem by showing that the four sufficient conditions for a pseudo-random bit 
generator (section 4.4) are satisfied. Specifically, we show that b and f are friendship functions, f is a 
stable, b is accessible, and b is unapproximable. The proofs for each of these parts follow. 

7.2 Friendship 

Friendship is the easiest of the four parts to show. In particular, we simply prove 

Lemma 34 There is an algorithm that computes bf in the simple case in polynomial time. 

Proof. Let s = (E(F,),G, P) be an instance. Using the definitions of f and b, we can write bf as 

Since indexE(F,),G($(P)) = 4 ( P ) ,  substituting the definition of Q leads to 

1, if P = 0; 
1, if P = (z,y) and y 2 ( p +  1)/2; 
0, otherwise. 

This is easily computed in time polynomial in R. 

3A data structure representing an instance as would probably contain n, p ,  5. and the 2- and g-coordinates of C and P 
(or the special symbol "D"). We write (E(F,) .G,P)  for convenience. 



97 

7.3 Stability 

We base this on two intermediate results. 

Lemma 35 4 is a bijection of E(F,) and (0 , .  . . ,p} in the simple Case. 

Proof. By lemma 8 each point has a unique y-coordinate. Therefore points are mapped to  unique elements 
of (0,. . . , p } ,  a 

Lemma 36 $J is a permutation of E(F,) in the simple case. 

Proof. Since G generates E(F,), the set 

(aG 10 I a < p +  I} (51) 

contains all points on the curve. Thus r/, on input P generates E(F,) based on +(P). Since 4 is a bijection 
into (0 , .  . . , p } ,  the curve is completely generated, and rl, is a permutation. 

Lemma 37 (Stabi l i ty)  In the simple case, for each n, f is a permutation on I,,. Further, there is an 
algorithm that computes f in polynomial time. 

Proof. The first part is true by definition o f f ,  because r/, permutes E(F,). The second part is true because 
computing f requires O(logd(P)) = O ( n )  group operations, which is polynomial in n. a 

7.4 Accessibility 

TO show that the predicate b is accessible, we construct an algorithm and analyze it. The  algorithm is 
probabilistic and produces elements of I,, with uniform probability in polynomial expected time. The 
algorithm, called simple-accessibility, appears in figure 10. We prove two lemmas about this algorithm, 
thereby showing accessibility. 

We first recall the result of Bach [Bad31 also used in the Blum-Micali accessibility proof. (There it 
was used to produce p - 1 in factored form.) 

Lemma 38 (Bach, 1983) There is a probabilistic polynomial-time algorithm that takes as input n and 
outputs an integer of length n, together with its factorization. The integers are uniformly distributed. 

Lemma 39 Algorithm simple-accessibility produces elements z of I,, in the simple case with uniform 
probability. 

Proof. Since failure at steps 2-5 leads to ugo to  1,” it is sufficient to show that each step selects p ,  E ,  G, 
or P with uniform probability among the acceptable values for that component. Using Bach’s algorithm 
all p + 1 are equally likely; thus, all primes p = 2 mod 3 are as well. Since d l  legal B are equally likely for 
a given p ,  all curves E are also. Algorithm cyc[ic-generating-test accepts all generators of E(F,), because 
the factorization of p +  1 is known. Thus, since 4 is a bijection (lemma 35), generators G and points P are 
selected with equal likelihood. 

Lemma 40 Algorithm simpIe-accessibilityoutputs an element z E I,, in the simple case in p o l y n o d d  (in 
n) expected time. 

Proof. The expected number of trials is O(nlogn),  as follows. Step 1 always succeeds. By the prime 
number theorem, and hjsuming that half of all primes are congruent to 2 mod 3, the probability of success 
in step 2 is I /O(n).  h step 3,  finding a B has probability at least 1/2. In step 4, finding an a has 
probability at least 1/2;  a generator, l/O(logn), by lemma 3. In step 5, finding an a has probability at  
least 1/2. The probabiiity of success in every step is l/O(nlogn), leading to the expected value given 
above. 

The running time for one trial is O ( n 6 ) ,  as follows. Bach’s algorithm runs in time O(n5) .  Testing 
primality is O(n4) ,  using the technique of Solovay and Strassen [ S S i 7 ] .  Checking that G is a generator, With 
the factorization of p - 1 known, takes O ( n z )  group operations, or time O(n*) ,  by lemma 18. Computing 
4-l involves taking cube roots modulo p ,  which requires time O(n3). 

This leads to an ex?ected running time of O(n710gn), which is polynomial in n. 



98 

7.5 Unapproximability 

Let A be some algorithm that  computes 6 correctly with probability a t  least 1/2 f l /Q(n)  on elements of 
I,,, and let T ( n )  be i ts  running time. 

Lemma 41 There is a fraction 1/2Q(n) of a l l  curve-generator pairs (E(F,),G), where p i s  an n-bit prime, 
such that  algorithm A((E(F,), G, .)) 1/2Q(n)-approximates ~ E ( F , ) , G , ~ ( . ) .  

Proof. This follows from a counting argument. The main idea is that the probability is minimized when 
A is entirely correct on some curve-generator pairs, and nearly a 1/2Q(n)-approximator on the rest. For 
every E ( F p )  where p is an n-bit prime, we have 

2"-' + 1 5 N p  5 2" 

If the curves in the curve-generator pairs on which A is correct contain the maximum number of elements, 
and the rest contain the minimum number, then we arrive a t  the stated probability. 

Using algorithm A as the 6-approximator, we can compute index(z) with algorithm simple-indez (figure 
11). See figure 9 for algorithm compute-indez. 

Lemma 42 (Unapproximabiiity) The predicate 6 in the simple case is unapproximable. 

Proof. By theorem 23, algorithm simple-indez computes the index correctly for the fraction of curve- 
generator pairs for which A is an  1/2Q(n)-approximator in lemma 41. Furthermore, it does so in time 
polynomial in n, Q(n)  and T(n) .  Suppose b is not unapproximable, and T(n) is a polynomial in n. Then 
the algorithm solves the elliptic logarithm problem in time polynomial in n for the 1/2Q(n) fraction. This 
contradicts conjecture 32, and therefore b is unapproximable. a 

8 General case of elliptic curves 

The pseudo-random bit generator for the general case is like that for the simple case, but we use a pair 
of elliptic curves to  define the friendship function. The general case is described in detail in the author's 
dissertation. The following are the major differences between the general case and the simple case. 

An instance of the general case is a tuple containing two elliptic curves, two generators for each, and 
a point which may b e  on either curve. The curves are related by a transformation called tm'sting. 
This construction is essential to the definition of the friendship function f. 

The proof of accessibility requires a much more complicated algorithm than in the simple CW. TWO 
particular problems are that  the group E(F,) is not necessarily cydic in the general case, and that 
the complete factorization of i ts  order N p  is not known. The problems are solved by using the 
Weil pairing (for which Miller has recently developed a polynomial-time algorithm [MiMb]),  and 
algorithm ~ith-partial-factorization (section 5.2). 

Since two elliptic curves are involved. the counting arguments involved in proving unapproximability 
are more difficult than in the simple case, though not unreasonable. 

9 Conclusion 

We propose several extensions to our research. 

9.1 Reduction from discrete logarithm 

The discrete logarithm problem stands on its own as a hard mathematical problem. Unlike quadratic 
residuosity and inverting W X ,  it does not reduce easily to another hard problem, such as factoring. 
Whether it reduces to the elliptic logarithm problem is an interesting open problem. 



99 

9.2 

The results in the general case (section 8)  depend on an  algorithm to compute the partial factorization 
of the order of the group. While this is sufficient for the generation of pseudo-random bits, i t  would be 
more elegant t o  use a completely-factored order, as Blum and >fica.li do [BM84]. This would require an 
algorithm like Bach’s [Bac83] t o  generate an elliptic curves together with the factorization of its order. 

Elliptic curves with factored order 

. 

Is there a polynomial-time algorithm which, on input n ,  outputs an elliptic curve E(F,) together 
with the factorization of its order, where E(F,) is selected with uniform probability among all curves 
where p is an n-bit prime. 

9.3 Subexponential elliptic logarithm algorithm 

.4dleman’s algorithm for computing discrete logarithms [Ad791 was a breakthrough in 1979. Although 
Miller argues strongly for the  ineffectiveness of techniques similar to Adleman’s for computing elliptic 
logarithms [Mi185a], it  may be possible t o  devise an alternative method. Ideally, this method would run 
in subexponential time. 

Is there an algorithm tha t  computes elliptic logarithms in subexponential time? 

References 

[ACGS] 

[Ad1791 

[AW85] 

[Bac83] 

[Bac85] 

[ B B S83] 

[BM84] 

Werner Alexi. Benny Chor, Oded Goldreich, and Claus P. Schnorr. RSA and Rabin functions: 
Certain par t s  are as hard as the whole. To appear, S L W  Journal of Computing. 

Leonard Adlernan. A subexponectial algorithm for :he discrete logarithm problem with ap- 
plications to cryptography. In Proceedings of the 20th Annual Symposium on Foundations of 
Computer Science, pages 55-60, IEEE Computer Society, 1979. 

Miklos Ajtai and  Avi Wigderson. Deterministic simulation of probabilistic constant depth cir- 
cuits. In Proceedings of the 26th Annual Symposium on Foundations of Computer Science, IEEE 
Computer Society, 1985. 

Eric Bach. How t o  generate factored random numbers. h Proceedings of the 15th Annual ACM 
Symposium on Theory of Computing, pages 184-15s. Association for Computing Machinery, 
1983. 

Eric Bach. Lenstra’s algorithm for factoring with elliptic curves, an expos&. 1985. Unpublished 
manuscript. 

Lenore Blum. Manuel Blum, and Michael Shub. Comparison of two pseudo-random number 
generators. In Proceedings of Crypto’82, pages 61-78. Plenum Press, 1983. 

Manuel Blum and Silvio Micali. How to generate cryptographically strong sequences of pseudo- 
random bits. SIAM Journal of Computing, 13(4):850-864, 1984. 

[BMP75] I. Borosh, C.J .  Moreno, and H. Porta. Elliptic curves over finite fields: 11. Mathematics of 
Computation. 29( 131):951-96-4. July 1975. 

J.W.S. Case i s .  Diophantine equations with special reference to elliptic curves. Journal of the 
London .Clathematical Society, 41 : 193-291. 1966. 

S. Chowla. The Riemann Hypothesis and Hzlbert’s Tenth Problem. Gordon and Breach, 1965. 

Whitfield Dif ie  and Martin E. Hellman. New directions in cryptography. IEEE Transactions in 
Information Theory. IT-22( 6):644-654, November 1935. 

Alvin W. Drake. Fundamentals of Applied Probability Theory. McGraw-Hill, hc., 1967. 

William Fulton. Algebraic Curves. W.A. Benjamin. 1969. 

[Cas66] 

[Cho65] 

[DH76] 

[Dra67] 

[Fu169] 



100 

[GGM84] Oded Goldreich, Shafi Goldwasser, and Silvio Micali. How to construct random functions. In 

[GK86] 

[Jo173] 

[Kob84] 

[KT761 

[Len851 

[Lev851 

[LW83] 

[Mi185a] 

[ Mi185 b] 

[Porn851 

[Rs621 

[Sch85] 

[SS77] 

[Tat741 

[Yao82] 

Proceedings of the 25th Annual Symposium on Foundations of Computer Science, IEEE Com- 
puter Society, 1984. 

Shafi Goldwasser and Joseph Kilian. A provably correct, probably fast primality testing al- 
gorithm. 1986. To appear, Proceedings of the 18th Annual ACM Symposium on Theory of 
Computing. 

Jean-RenL Joly. Equations et  varietbs algbbriques sur un corps fini. L’Enseignment 
Mathimatique, 59:74-79, 1973. 

Neal Koblitz. Introduction to Elliptic Curves and Modular Fonns. Volume 97 of Graduate Tezts 
in Mathematics, Springer-Verlag, 1984. 

Donald E. Knuth and Luis Trabb-Pardo. Analysis of a simple factorization algorithm. Theoret- 
ical Computer Science, 3:321-348, 1976. 

H.W. Lenstra. Elliptic curve factorization. Memorandum. 1985. 

Leonid Levin. One-way functions and pseudorandom generators. In Proceedings o j  the 17th 
Annual ACIM Symposium on Theory of Computing, pages 363-365, Association for Computing 
Machinery, 1985. 

Douglas L. Long and Avi Wigderson. How discreet is the discrete log? In Proceedings of the 15th 
Annual ACM Symposium on Theory of Computing, pages 113-420, Association for Computing 
Machinery, 1983. 

Victor Miller. Elliptic curves and cryptography. 1985. To appear, Proceedings of Crypto’85. 

Victor Miller. Short programs for functions on curves. 1985. Unpublished manuscript. 

Carl Pomerance. How t o  factor a number. Seminar, MIT Laboratory for Computer Science, 
1985. 

J. Rosser and L. Schoenfield. 
nlinois Journal of Mathematics, 6:64-94,1962. 

Ren6 Schoof. 
Mathematics of Computation, 44:483-494, April 1985. 

R. Solovay and V. Strassen. A fast Monte-Carlo test for primality. SIAM Journal of Computing, 

Approximate formulas for some functions of prime numbers. 

Elliptic curves over finite fields and the computation of square roots mod p .  

6:84-85, 1977. 

John T. Tate. The arithmetic of elliptic curves. Inuentiones Mathematicae, 23:179-206, 1974. 

Andrew C. Yao. Theory and applications of trapdoor functions. In Proceedings of the 29rd 
Annual Symposium on Foundations of Computer Science, pages 80-91, IEEE Computer Society, 
1982. 



101 

Figure  1: An elliptic curve, showing tangents and chords operation. 

Assume M is given. Algorithm computes small prime factors of an integer N. 
1. Initialize S + {}. 

2. Run Lenstra’s algorithm for time M to find a factor p. If no factor is found in this time, go to 4. 

3. Set S + S U  {p}, N + N / p ;  go to 2. 

4. Return S.  

Figure 2: Algorithm small-factors. 

Suppose N = py’  . . .pz’, pi prime, pi < piil, ai > 0. Algorithm finds order of z in Abelian group G using complete 
factorization of N .  

1. For each i ,  do step 2. 

2. Let Pi be the smallest integer such that (N&/pSs)z = 0. 

3. output  81 . , ,&. 

Figure 3: Algorithm with-complete-facton’zation. 

Suppose N = p:‘. .pZ”m, pi prime, pi < piil, a, > 0, m not necessarily prime. Algorithm finds order of z in 
Abelian group G using partial factorization of N .  

1. For each i ,  do step 2. 

2.  Let Pi be the smallest integer such that (N&/pr’)z = 0. 

3 .  If (N/m)z = 0, then output 8% . . .d’; else output p;” ...pfkrn . 

Figure 1: Algorithm with-partia[-facton~a~ion. 

Suppose N is the order of G. Algorithm determines whether z generates Abelian group G. 
1. Use slgorithm srnalLfactors to compute a partial factorization of ?I. 

2. Apply algorithm with-poriial-factoriratron to compute an approximation o to orderc(z) 

3. If o = N ,  output yyes”; else output ‘‘no.” 

Figure 5 :  Algorithm cyclic-genemting-test. 



102 

Figure 6: Correlation circle. 

Estimates pi , , (cg,  z) for an integer c. 

1. Choose r, at  random, 0 5 rj < N ,  0 5 j < M .  

2. For each rj, compare bi(cg + r j g )  to 6,,<(2 + r,g). Set correcf to the number of equal results 

3. Return c o r r e d l M .  

Figure i: Algorithm estimate-correlation. 

Given z, and assuming that  index(2'+'z) E [Z'+'a,2'+'b], determines in which interval index(2'z) lies. 

1. Let c the integer closest to  (a + b)/2, and compute [,,<(cg, z) using algorithm esfamafe-correlafion. 

2. If the estimate is positive, then return [2'a, 2'61; else return [2'a + N/2,2'b + N/2). 

Figure 8: Algorithm decide-square-roots. 

1. Choose an interval [a, b] with 
N €  N 

O < a < b < a + - - 3 < -  2'" 2'+1 

2. For J trom n - 1 to 0, Set y - 2jz  and use algorithm decide-square-roots to determine whether index(2'y) kin 
[2'a, Z'b] or [2'a+N/2, 2'b+iV/2], given index(Z'+'y) E [Zitla,  2'+'b]. In the former case, set [a, b] - [a/2, b/2]; 
in the latter, set [a, b] - [a/2 + N/2'+', b/2 +. N/2#+l]. 

3. Let c be the integer in [2'+'a, 2"'bI. If there is no integer, 01 if cg # 2'2, then go to 2. 

4. Given that index(2'r) = c, test up to 2' integer values of the form 

c 2' - + L-> 2' N 

0 5 L < 2', to find index(r). 

Figure 9: .iUgorithm compute-indez. 

Algorithm selects x E I,, with uniform probability in polynomial expected time. 

1. Apply Bach's algorithm to produce p + 1 in factored form. If p -!- 1 = Y-', then let p = 2" - 1 

2. Test that p is prime, and p 

3. Guess an n-bit number B. If B = 0 or B 2 p ,  go to 1. The elliptic curve is E : yz = z3 + B.  

4 .  Guess an n-bit number a .  If a > p ,  go to 1. Else let G = $-'(u). Check that G generates E(F,) using 
algorithm cyclic-gcnerafrng-~csi (section 5.3). If not, go to 1. 

5.  Guess an n-bit number a. If a > p ,  go to 1. Else let P = $-'(a) 

6. Output ( E ( F , ) , G , P ) .  

2 mod 3 .  If not, go to 1. 

Figure 10: Algorithm sample-accessibi[ily. 



103 

Computes indexE(F,),,(P) for some (E(F,), c). 
1. Run algorithm compute-inder using algorithm A with fixed (E(F,), C) as the approximator, to produce C. 

2. output c. 

Figure 11: Algorithm simple-indez. 


