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Abstract. Several studies have focused on the efficient processing of simple 
spatial query types such as selections and spatial joins. Little work, however, 
has been done towards the optimization of queries that process several spatial 
inputs and combine them through join and selection conditions. This paper iden-
tifies the dependencies between spatial operators and illustrates how they can af-
fect the outcome of complex queries. A thorough analysis yields selectivity es-
timations that can be used to optimize any combination of spatial and non-
spatial selection and join operators. The accuracy of the formulae is evaluated 
through experimentation with various queries. In addition to their importance 
for spatial databases, the presented results can be applied in several other do-
mains, where dependencies exist between operators. 

1.   Introduction 

Relational queries are processed by combining operators (e.g., sort-merge, hash-join, 
index-based search) in an optimal way [10]. Optimization algorithms (e.g., dynamic 
programming) search through the space of valid plans in order to identify one with 
low cost. Most query optimizers estimate the output sizes using catalog information 
(e.g., size and distribution) about the relations involved in the queries. The core as-
sumption is that there are no dependencies between different attributes. Therefore, the 
results of any complex query are assumed to depend solely on the distribution of the 
data from the base tables. In many cases the independence assumption holds and the 
optimizer returns accurate results. For instance, assume that two tables Employee and 
Department are joined through the common attribute DeptId, and the following selec-
tions apply: Employee.Age>35 and Department.Sales<10000. The DeptId values after 
the application of selections are expected to maintain their initial distribution, since 
there is no explicit dependency between the query attributes. Thus the cost of the join 
can be estimated using the selectivity of the selections and statistical information 
about the base tables. 

In spatial database systems [9], a complex query may contain several spatial and 
non-spatial components. For instance, the query “find all cities within 400km of Mu-
nich, which are less than 10km away from a forest and are crossed by a river wider 



than 20m” includes two spatial joins (City Forest, City River), a non-spatial selec-
tion (River.Width > 20m) and a spatial selection (City.CRegion within 400km of Mu-
nich). Although there may be no dependency between the non-spatial attribute 
River.Width with the spatial (i.e., location/extent), notice that there is always a de-
pendency between the spatial operators involved in a query. We do not expect that 
cities located in America or Asia will be part of the result. Therefore the spatial selec-
tions affect not only the number of objects that will participate in a succeeding join, 
but also their spatial distribution, which determines the query result. 

The next example strengthens our point. Consider the plan of Figure 1a, where R1, 
R2 are spatial relations, σw1, σw2 spatial selections (e.g., window queries) and R3 a third, 
not necessarily spatial, relation. Figures 1b and 1c illustrate example results of the 
selections applied to the corresponding dataset. Clearly the cost of the last join de-
pends on the selectivity of the first (spatial) one. The output of the spatial join, how-
ever, does not depend solely on the results of the window queries, but also on their 
relative position. As Figure 1d shows, the output size of the join increases with the 
intersection area of the windows since only objects inside or near the intersection may 
participate in the result. If the windows are far apart, the result of the spatial join is 
expected to be empty.   
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Fig. 1. Example of spatial operator dependency 

Although interdependencies between selection and join attributes are not common in 
non-spatial queries (i.e., relations are typically joined on a key attribute, whereas se-
lections apply on non-keys), they always exist in spatial queries because there is typi-
cally only one spatial attribute per relation. This paper studies selectivity estimation of 
complex spatial queries that involve spatial selections and joins. More specifically, 
given a query consisting of n relations joined on their spatial attribute and potentially 
restricted by selection windows, we provide accurate formulae that estimate its output 
size. Following the common conventions in spatial query optimization, we assume that 
the input data are uniformly distributed and that the predicate is intersect (overlap). 
The proposed formulae use catalog information about the mean sizes of the objects in 
spatial relations to estimate the query result. 

Our techniques can be applied for arbitrarily distributed datasets using local statis-
tics like 2D-histograms. They are also appropriate for spatial queries with predicates 
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other than intersect (e.g. meets, covers), since such queries can be transformed to 
intersection queries (see [20] for a case study). Even more importantly, the methods 
are not strictly limited to the spatial domain, because dependencies between operators 
can also be found in other database applications. The rest of the paper is organized as 
follows. Section 2 provides background on processing and optimization of simple 
spatial query types and multiway spatial joins. Section 3 presents formulae that esti-
mate the selectivity of complex spatial queries. In Section 4 we evaluate the accuracy 
of the proposed models for complex spatial queries on uniform data. Section 5 dis-
cusses extensions to real data and Section 6 concludes the paper. 

2.   Background 

Spatial database systems [9] organize and manage large collections of multidimen-
sional data. Spatial relations, apart from conventional attributes, contain one attribute 
that captures the geometric features of the stored objects. For example, the last attrib-
ute in relation City(CName, PostalCode, Population, CRegion) is of spatial type poly-
gon.  In addition to traditional data structures (e.g., B-trees) for alphanumeric attrib-
utes, spatial relations are indexed by multidimensional access methods [7], usually R-
trees [8], for the efficient processing of queries such as spatial selections (or window 
queries) and spatial joins. Selections (e.g., “cities in Germany”) apply on a single 
relation, while spatial joins (e.g. “cities crossed by a river”) combine two relations 
with respect to a spatial predicate (typically intersect, which is the counterpart of the 
relational equi-join). 

Complex spatial queries include spatial and non-spatial selections and joins. They 
can be processed by combining simple operators in a processing tree (plan) like the 
one illustrated in Figure 1a. The efficiency of an operator depends on whether its input 
(inputs) is (are) indexed. For instance, the cost of a window query applied on an R-tree 
is typically linearly related to the size of the window. On the other hand, if the selec-
tion applies on intermediate results, the whole input needs to be scanned independ-
ently of the selectivity of the operator. The same applies for join operators. The most 
efficient spatial join method is the R-tree join (RJ) [5], which matches two R-trees. 
Some methods [15, 18] join an R-tree with some non-indexed dataset (e.g., an inter-
mediate result of another operator). Others [16, 19, 14, 2] organize two non-indexed 
inputs in intermediate file structures (e.g., hash buckets) in order to join them effi-
ciently in memory. 

Typically, a complex query has a large number of potential execution plans with 
significant cost differences. For instance, an alternative plan to that of Figure 1a would 
be to first join R2 with R3, then apply the selection on R2 and finally join the intermedi-
ate result with R1, after it has been restricted by w1. The number of plans increases 
exponentially with the number of involved relations (see [18, 25] for an analysis on 
spatial and non-spatial domains). Optimization algorithms search either in a determi-
nistic (e.g., dynamic programming) or a randomized way (e.g., hill climbing [12]) to 
find a cheap plan. The cost of a specific plan is computed using formulae for (i) the 



operators involved in the plan, and (ii) the output size of each sub-query of the plan. 
The first provide an estimate for the cost of each node in the plan, while the second 
determine the cost of succeeding operators. In the query of Figure 1a, for instance, the 
selectivity of the spatial join R1 R2 affects the cost of the final operator. 

There has been extensive research on the accurate estimation of the selectivity and 
cost of spatial operators. The selectivity of spatial selections has been studied as a 
prerequisite for the I/O cost estimation of R-tree window queries [13, 24, 23, 27]. 
Given a spatial dataset R of N d-dimensional uniformly distributed rectangles in a 
rectangular area r (workspace), the number of rectangles that intersect a window query 
w (output cardinality - OC) is estimated by the following formula: 
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where ds is the average length of the projection of a rectangle s ∈ R at dimension d. 

dw and dr are the corresponding projections of w, r respectively. The last factor 

(product) of Equation 1, called Minkowski sum, is the selectivity of the window query 
(i.e., the probability that a random rectangle from R intersects w). This probability at 

some dimension d equals the sum of projections ds  and dw  on that dimension nor-

malized to the workspace. Equation 1 can be extended for the output cardinality of an 
(intersection) spatial join between two relations R1 and R2 as follows [28]: 
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N1, N2 denote the cardinalities of the datasets, and ds ,1 , ds ,2 correspond to the average 

length of the projection of rectangles s1 ∈ R1 and s2 ∈ R2 on dimension d. In other 
words, the expected number of rectangle pairs that intersect is equal to the number of 
results after applying N2 window queries of area s2 on R1. 

The selectivity of multiway spatial joins can be accurately estimated only for acy-
clic and clique (i.e., complete) query graphs. Let R1, ..., Rn be n spatial datasets joined 
through a query graph Q, where Qij = True, iff rectangle ri ∈ Ri should intersect rec-
tangle rj ∈ Rj. When Q is acyclic, the number of qualifying object combinations can be 
estimated by: 
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The above formula actually restricts the Cartesian product of the datasets using the 
selectivities of the query edges, which are independent. When the query graph con-
tains cycles, the pairwise selectivities are no longer independent. For instance, if a 
intersects b and b intersects c, the probability that a intersects c is relatively high be-



cause the rectangles are expected to be close to each other. Thus Equation 3 is not 
appropriate for such cases. For the special case where Q is complete (clique) a closed 
formula that estimates the output of the multiway join is proposed in [21]: 
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This formula can be derived by the observation that if {s1, s2, …, sn-1} is a clique then 
{s1, s2, …, sn-1, sn} is also a clique iff sn intersects the common area of all rectangles in 
{s1, s2, …, sn-1}. Equations 1 through 4 are accurate for uniform datasets covering the 
same workspace r. In real life applications these assumptions may not hold, therefore 
researchers have extended some of them for skewed datasets. A histogram-based 
method that estimates the selectivity of window queries is presented in [3]. This 
method decomposes the space irregularly using buckets that cover objects of similar 
density and keeps statistical information for each bucket, considering that its contents 
are uniform. A similar technique that divides the objects using a quad-tree like parti-
tioning is presented in [1]. Another method that applies only on point datasets and uses 
theoretical laws is proposed in [4]. Regarding the selectivity of spatial joins, relatively 
little work has been done. In [28, 18] the space is decomposed using a regular grid and 
uniformity is assumed for each cell. The output of the join is then estimated by sum-
ming up the estimations from each cell. In [6] an interesting law that governs the se-
lectivity of distance spatial joins (i.e., is joins that return point pairs within a distance 
parameter) is presented. 

As discussed in the introduction, the relative positions of selection windows deter-
mine the skew of the joined rectangles from each dataset. Thus existing formula that 
focus exclusively on spatial selections or joins are not applicable. In the next section 
we study the selectivity of complex spatial queries, where the dependency of operators 
affects the query result.  

3.   Selectivity of complex spatial queries 

When only one selection window wi that applies on a single dataset Ri exists, selectiv-
ity estimation is rather simple. Since the result is the same independently of the order 
according to which operators are applied, we can assume that the selection follows the 
join. The output cardinality can then be estimated by multiplying the corresponding 
join formulae with the selectivity of the window query: 
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where OC(Join) can be any of Equations 2, 3 or 4. 
The problem is more complicated when two or more spatial selections exist on the 

joined datasets. A simple approach is to assume that the join workspace is the com-
mon area of all selections, and apply a single selection on the multiway join result 



using this area. This, however, would be inaccurate since the common area of selec-
tion windows may be empty, while there may exist objects that qualify the query, 
especially if the non-intersecting windows are close to each other and the data rectan-
gles are large. 

3.1   Selectivity of a pairwise join restricted by two selections 

Let us first confine our study to the special case where a pair of joined datasets R1 and 
R2 are restricted by two query windows w1 and w2, respectively. Based on the extents 
of w1 and w2 we will try to identify the area that should be intersected by rectangles 
from each dataset in order to participate in the join. Thus, we will compute the query 
selectivity in three steps: (i) determine a number of candidate join objects from each 
dataset using w1, w2, (ii) estimate the workspace area of the join and (iii) compute the 
join selectivity using the number of candidates, the estimated workspace area and the 
average rectangle extents according to Equation 2. 

Let wi,d be the projection of wi on dimension d, wi,d,s and wi,d,e be the starting and the 

ending point of wi,d, respectively, and diw ,  be the length of wi,d. Consider also similar 

notations for the corresponding properties of the average extents of a rectangle si in 

dataset Ri (e.g., dis ,  is the average projection of si on dimension d). We define two 

updated windows w1′, w2′, as follows: 

w1,d,s′ = max{w1,d,s, w2,d,s- ds ,2 } (6a) 

w1,d,e′ = min{w1,d,e, w2,d,e+ ds ,2 } (6b) 

w2,d,s′ = max{w2,d,s, w1,d,s- ds ,1 } (6c) 

w2,d,e′ = min{w2,d,e, w1,d,e+ ds ,1 } (6d) 

In order for a rectangle from Ri to be candidate for the join and intersect wi, it should 
intersect wi′. For instance, consider the selection windows w1, w2 and the updated ones 
w1′, w2′ in Figure 2a. Object a, belonging to R1 and intersecting w1, cannot participate 
in the join because it may not overlap some object from R2 that intersects w2. On the 
other hand, object b that intersects w1′ is a potential query result.  

Intuitively, w1′ and w2′ define the area where the spatial join is restricted. The num-
ber of rectangles that participate in the join from dataset Ri is determined by the selec-
tivity of the corresponding wi′. Notice that the end points set by Equations 6a-d do not 
always define valid intervals, since the lower end point may be greater than the upper 
end point. This situation may arise when the actual windows do not intersect and there 
is a large distance between them. In this case (if wi,d,s′ > wi,d,e′ for some i, d), the length 



of the corresponding projection is negative, and the selectivity of wi,d′ is positive only 

when dis , > wi,d,s′ - wi,d,e′; otherwise, the selectivity of the complex query is zero. 

So far, we have calculated the windows w1′ and w2′ that should be intersected by 
each rectangle from R1 and R2, respectively, in the result. These windows can be used 
in combination with Equation 1 to determine the number of join candidates from each 
dataset. The next step is to estimate the workspace of the join c , i.e., the area where 
the query results lie. The rectangles from Ri that may participate in the join are inside a 

window ci, which is generated by extending wi,d′ with dis , at both sides on each dimen-

sion. For instance, in Figure 2b we know that join candidates from R1 are included in 
c1. Since c1 and c2 do not cover the same area, we need to average them in order to 
acquire a unique rectangle c that reflects best the area where the spatial join is re-
stricted. Figure 2c provides an example of this normalization. Formally: 

cd,s = max{w1,d,s′- ds ,1 , w2,d,s′- ds ,2 } - |w1,d,s′ - ds ,1 - w2,d,s′+ ds ,2 |/2 (7a) 

cd,e = min{w1,d,e′+ ds ,1 , w2,d,e′+ ds ,2 } + |w1,d,e′+ ds ,1 - w2,d,e′- ds ,2 |/2 (7b) 

Figure 3 shows some more one-dimensional examples with four representative win-
dow configurations over one pair of datasets. In case 3, the workspace is non-empty, 
although the original windows do not intersect. In case 4, the updated windows w1′, w2′ 
are invalid; a rectangle from Ri should intersect both endpoints of the invalid window 
wi′ in order to be a candidate join object. However, the average length of a rectangle s1 
∈ R1 is smaller than the distance of the endpoints of w1′, thus the join is considered to 
have zero selectivity. 

Given the join workspace c, selectivity can be computed using the existing formu-
lae for spatial selections and joins. Summarizing, the output cardinality of a query that 
includes the spatial join of two datasets R1, R2 restricted by window queries w1, w2, 
respectively, is estimated by the following formula: 
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Fig. 2. Generation of join workspace 
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Fig. 3. Windows that define the selectivity of a complex pairwise join 

3.2   Selectivity of multiway joins with selections 

Equation 8 can be extended for complex spatial queries that join n datasets, potentially 
restricted by spatial selections. Selectivity is again computed in three steps. At the first 
step the updated window wi′ is calculated for each dataset Ri, using the windows of the 
neighbors in the join graph Q. At the second step, depending on Q, the workspace area 
of each join edge or of the whole graph is computed. Finally, the multiway join selec-
tivity is estimated using (i) the selectivity of wi′ for each Ri, (ii) the workspace area(s) 
and (iii) Equations 3, 4. 

The updated selection window wi′ for each Ri is estimated using the initial windows 
and the query graph. It turns out that the calculation process is not simple, since the 
update of a window wi to wi′ may restrict the already updated window wj′ of a neighbor 
Rj. This process is demonstrated in the example of Figure 4, where three datasets are 
joined by a chain query and three windows restrict the joined rectangles. Assume that 
we attempt to calculate the updated window wi′ for each wi using the following formu-
lae: 

wi,d,s′ = max{wi,d,s, max{wj,d,s- djs , , Qij = True}} (9a) 

wi,d,e′ = min{wi,d,e, min{wj,d,e+ djs , , Qij = True}} (9b) 

First w1 is restricted to w1′ using w2 and s2 (Figure 4c). Then w2 is restricted to w2′ using 
w1, s1, w3 and s3 (Figure 4d). Observe that the left point end of w2 has changed, and this 
change should be propagated to w1′ (Figure 4e), which is shortened on the left side. In 
general, each change at a window should be propagated to all neighbor windows in the 
query graph. 
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Fig. 4. Selection window update propagation in a network of joined datasets 



The problem of window updates is similar to achieving local consistency in constraint 
satisfaction problems [29]. Therefore, we use a variation of an arc consistency algo-
rithm [17] to estimate the final wi′ for each Ri. The algorithm first places all selection 
windows in a queue. If a dataset Ri does not have a selection window we set wi = r, 
i.e., the workspace of the datasets. Then the first window wf from the queue is picked 
and updated according to the current windows of the neighbors. If there is a change in 
wf, the windows of all neighbors not currently in the queue are inserted in it because 
the changes need to be propagated to them. The process continues until the queue is 
empty. The pseudocode of the algorithm is given in Figure 5. 

window_propagation(window w[], Query Q[][])  
 initialize queue; 
 for each Ri do 
  if wi does not exist then wi = r; 
  queue.insert(wi); 
 while not queue.empty() { 
  wf = queue.getfirst(); 
  for each dimension d do 

   wf,d,s = max{wf,d,s, max{wj,d,s- djs , , Qfj = True}}; 

   wf,d,e = min{wf,d,e, min{wj,d,e+ djs , , Qfj = True}}; 

   if wf has changed 
    for each j, Qfj = True do 
     if wj not in queue then queue.insert(wj); 
 } 

Fig. 5. The window_propagation algorithm 

After the execution of the window_propagation algorithm, each window wi will be 
transformed to the minimum intersection window wi′. Window wi′ is determined by 
the end points of the most restricted window wj on each dimension. The path connect-
ing Ri with Rj contains at most n-2 graph nodes (where n is the number of datasets 
involved in the query), meaning that the end points of the window wi′ can be adjusted 
at most n-1 times per dimension. Thus, the worst case complexity of the algorithm is 
O(d⋅n2), and its computational overhead in the optimization process is trivial. 

The next step of the estimation process is to determine the workspace area c of the 
multiway join. This process is performed in a similar way as described in the previous 
paragraph. First the coverage area ci of each window query wi′ is estimated by extend-

ing wi′ with dis , at both sides on each dimension. If the query is acyclic the selectivity 

of each query edge Qij is normalized with respect to the corresponding pairwise join 
workspace. Therefore Equation 3 is modified as follows: 
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In Equation 10, ci,j denotes the workspace of the pairwise join between Ri and Rj, 
which is calculated using wi′, wj′, si and sj and Equations 7a, 7b. In case of clique 
graphs, we need to consider a unique workspace c for the whole multiway join, since 
all rectangles in an output tuple mutually overlap. This workspace is defined by ex-
tending the common intersection i of all workspaces ci by the average difference of the 
ci′s from the common intersection at each side and dimension. Formally: 
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The output cardinality of a multiway clique join is then estimated by the selectivities 
of the windows and the multiway join selectivity (see Equation 4), normalized to the 
join workspace c. Formally: 
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4. Experimental Evaluation 

In this section we evaluate the accuracy of Equations 8, 10 and 12. For this purpose, 
we generated four series of synthetic datasets with uniformly distributed rectangles in 
the square workspace [0,1)2. The density1 of the datasets in the different series is 0.1, 
0.2, 0.4 and 0.8. Each dataset consists of 10,000 rectangles. By Uxy we will denote the 
yth dataset in the series of density x. For instance, U0.1a denotes the first dataset in the 
series having density 0.1. The lengths of the rectangles are uniformly distributed be-

tween 0 and 2⋅ dis , , where dis , is the rectangle side that leads to the desired density. 

For instance, in order for a dataset of 10,000 rectangles to have density 0.1, the aver-

age rectangle side should be 10000/1.0 . 
Table 1 shows analytical and experimental results on complex pairwise spatial 

joins. Each row corresponds to a different pair of datasets and each column to a repre-
sentative configuration of selection windows. Clearly, the estimated output is very 
close to the actual one. If we define the quantity |estimated-real|/min{estimated, real} 

                                                           
1 The density of a dataset is defined as the total area of the objects in it divided by the area of 

the workspace, or else as the expected number of objects that intersect a random point in the 
workspace. 



as estimation error, the median estimation error in the experiment is 8%. The overes-
timated and underestimated cases are balanced, indicating that the reasoning behind 
Equation 8 is correct. 

Table 1. Evaluation of the estimation formula for pairwise spatial joins with selections 
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U0.1a  U0.8a 633 659 167 179 24 19 46 31
U0.2a  U0.4a 511 506 134 106 18 12 30 35
U0.1a  U0.4a 395 406 103 80 12 15 17 17
U0.2a  U0.8a 780 855 207 252 33 36 69 67
U0.1a  U0.1b 169 175 43 45 3 3 1 1
U0.8a  U0.8b 1420 1469 384 433 81 81 199 179

Table 2. Evaluation of the estimation formulae for multiway spatial joins with selections 
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 estimated actual estimated actual estimated actual estimated actual 
U0.1a U0.2a

U0.4aU0.8a
 

1136 1107 1784 2464 52 25 40 86

U0.1a U0.2a

U0.4aU0.8a
 

279 395 443 542 3 3 5 6

U0.2a U0.8a

U0.8bU0.4a
 

9352 15577 14734 22604 355 425 438 480

U0.2a U0.8a

U0.8bU0.4a
 

1203 1602 1931 2399 32 54 18 21

U0.4a U0.2a

U0.2bU0.4b
 

1611 2506 2554 4168 44 17 51 31

U0.4a U0.2a

U0.2bU0.4b
 

251 348 404 555 4 5 2 3

In the next experiment we test the accuracy of Equations 10 and 12 for multiway spa-
tial joins restricted by selections. We use the uniform datasets described above and 
several window configurations for chain and clique graphs. Table 2 shows graphically 
four configurations of windows applied to six join graphs. The assignment of windows 
to graph nodes is done clockwise, e.g., for the first row w1 applies to U0.1a, w2 to 



U0.2a, w3 to U0.4a and w4 to U0.8a. We have experimented with queries that have 
windows on all datasets (e.g., first column) and queries with windows on some data-
sets. Typically the estimation is close to the actual result, but the accuracy is not as 
high as in the case of binary joins (the median error is now 38%). This happens be-
cause of (i) the propagation of the error in partial results and (ii) the fact that the in-
termediate results are more skewed than the input data. However, this is an unavoid-
able problem, which also exists in query optimization of relational queries involving 
many operators [11]. 

In general, the experiments prove the accuracy of Equations 8, 10 and 12 and sup-
port their use for query optimization. However, the importance of this analysis is not 
only restricted to this task. After proper modification the proposed methods can be 
used to assure that a query has zero results and, thus avert processing. As explained, if 
some updated window wi′ is invalid (wi,d,s′ > wi,d,e′ at some d) the average size of the 

projection dis , at this dimension determines whether the query is expected to have any 

solutions. If in the above methodology, instead of the average projections we employ 

the maximum projections max( dis , ) for each dataset on every axis, we can determine 

whether the query definitely has no solution. Thus if wi,d,s′ - wi,d,e′ > max( dis , ) and 

max( djs , ) is used to derive wi′, processing can be avoided. 

5. Extension to real data 

In real life applications data are not usually uniform, but the distribution and size of 
the objects may vary in different areas of the workspace. In such cases, we need mod-
els that take advantage of information about the distribution of the objects to estimate 
the cost of complex queries. Models for range queries and distance joins [4, 6] on 
point datasets are not readily applicable for intersection joins of datasets containing 
objects with spatial extent. Techniques that keep statistics using irregular space de-
composition (e.g., [3]) are not appropriate either, due to the fact that two (or more) 
joined datasets may not have the same distribution and the space partitions can be 
totally different. Another limitation of such methods is that information cannot be 
maintained incrementally, because they need to read the whole dataset in order to 
update statistics. 

Here, we investigate the application of a histogram-based method [28]. We parti-
tion the space regularly using a uniform C×C grid and for each cell we keep track of 
the number of objects and the total length of their MBR per axis. Assuming uniformity 
at each cell, we can use this information to estimate the selectivity of spatial queries. 
For example, the selectivity of a range query can be estimated by applying Equation 1 
for each cell that is partially covered by the window, summing the results, and adding 
the number of objects in cells that are totally covered. The selectivity of a pairwise or 
multiway spatial join [28, 18] can be estimated by applying Equations 2, 3 and 4 (de-
pending on the query) for each combination of cells from the joined datasets that cover 



the same area, and summing up the results. Figure 6a illustrates a real dataset (T1) that 
contains road segments from an area in California. Figure 6b presents a regular 50×50 
grid that keeps statistical information about the dataset. The z-axis shows the number 
of objects per cell. Since the characteristics of the dataset vary significantly between 
cells, application of uniformity-based selectivity formulae is not expected to provide 
good estimates. The distribution of objects in each cell may not be uniform; however, 
the skew is not expected to have major effects in the total estimate. This was demon-
strated in a previous study [18] where the estimation error for pairwise and multiway 
joins was within acceptable limits. Moreover, the experimental study in [3] suggests 
that the accuracy of our method (called Equi-Area in this paper) increases significantly 
with the number of cells. Some histogram-based selectivity estimation methods [22] 
suggest approximating the distribution of data in a cell by a deviation function instead 
of assuming uniformity. However, these methods work for (multidimensional) points; 
the distribution of objects with spatial extents can hardly be described by simple func-
tions. Another important advantage of our method is that statistical information can be 
maintained incrementally with trivial cost at each insertion/deletion of a rectangle. 

  
(a) dataset T1 (b) number of rectangles per cell in a 50x50 grid 

Fig. 6. Skew in dataset T1 

In this section we show how the methodology of the previous section for uniform data 
can be applied to estimate the selectivity of complex spatial queries involving real-life, 
skewed datasets. We provide formulae that are based on the existence of the 2-
dimensional uniform grid and the assumption that rectangles in each cell are uniformly 
distributed. 

5.1 Selectivity of pairwise joins restricted by selections 

We estimate the selectivity of pairwise joins involving skewed datasets that are re-
stricted by selection windows using the methodology described in Section 3.1. Figure 
7a shows a configuration of selection windows w1, w2 and a statistical grid. We first 
compute the updated w1′, w2′ for each cell, as illustrated in Figure 7b. Instead of using 
the global statistics about the average rectangle in a dataset we use the information 
kept in each cell. Thus the updated windows are not regular rectangles but their length 
may vary between grids. After the update there might be cells which are totally cov-



ered by both windows (e.g., cell a in Figure 7b) or partially intersected by them (e.g., 
cell b). 

Selectivity is then estimated by summing the join result for each such cell. When a 
cell is totally covered by both windows, its selectivity is estimated using Equation 2 
and considering the area of the cell as the workspace. Otherwise, we apply the meth-
odology described in Section 3.1. Thus we (i) estimate the selectivity of w1′, w2′ in the 
cell, (ii) estimate the join workspace c and (iii) apply Equation 8. 

w2

w1

 

b

w1

w2

w2

w1

a

 
(a) two windows and a 2D histogram (b) irregular updated windows using grid information 

Fig. 7. Two selection windows and a grid 

5.2 Selectivity of multiway joins restricted by selections 

As in Section 3.2, we will study two configurations of multiway join queries that are 
restricted by selections; acyclic and clique (complete) join graphs. The first stage of 
the estimation involves the computation of the updated windows w′. This is done by 
applying the window_propagation algorithm of Figure 5. Notice that the updated win-
dows to be considered at each step of the algorithm may be irregular, depending on the 
rectangle extents at each cell (see Figure 7). 

We estimate the output of acyclic queries with selections incrementally using the 
algorithm of Figure 8. The algorithm first orders the nodes in the query graph, such 
that each Ri, i>1, in the order is connected to some Rj, j<i. Then at each step i it com-
putes the selectivity of the subquery that includes nodes {R1,R2,...,Ri} for each cell gx,y 
of the grid. The number of rectangles that participate in the join at gx,y are estimated by 
the selectivity of the previous step OC(gx,y,R1,R2,...,Ri-1,w1′,w2′,...,wi-1′) and the selectiv-
ity of wi′, OC(gx,y,Ri,wi′). The join result at this step is determined by edge (Ri, Rj), thus, 
the join workspace cx,y,i,j at cell gx,y is determined by extending wi′, wj′ at both edges and 

all dimensions by the respective average rectangle extents diyxs ,,, , djyxs ,,, and aver-

aging as described in Section 3.1. The resulting cx,y,i,j is adjusted in all dimensions to be 

no longer than the respective cell extents, i.e., ( )dyxdjiyxdjiyx gcc ,,,,,,,,,, ,min=  ∀ d. 

Let OC(gx,y,i) = OC(gx,y,R1,R2,...,Ri,w1′,w2′,...,wi′) be the output of the query at step i 
for cell gx,y. In summary, OC(gx,y,i) is estimated by multiplying the selectivities of wi′ 
and the previous sub-query OC(gx,y,i-1) and the join selectivity based on the estimated 
workspace: 



OC(gx,y,i)=OC(gx,y,i-1)⋅OC(Ri, gx,y, wi′ )⋅∏
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For clique queries the process is simpler. We assume that the multiway join has a 
unique workspace which does not vary between join edges, as explained in Section 
3.2. Thus, for each dimension we estimate the common intersection of all workspaces 
ci and extend it by the average difference of the ci’s from it all each side and dimen-
sion. Naturally, like in the previous cases the common workspace might not be a regu-
lar window, but we estimate each extent at each cell of the grid. The selectivity of the 
multiway clique join is then estimated by Equation 12 for each cell after doing the 
appropriate normalization of the workspace according to the cell’s extent at each di-
mension. 

selectivity_estimation(window w[], Query Q[][]) { 
 window_propagation(w,Q); 
 order datasets: ∀ i>1, Ri connected to some Rj, j<i;
 estimate the selectivity of the first edge (R1, R2);
 for i = 3 to n do { 
  let Rj be the node connected to Ri, j<i; 
  for each cell gx,y of the grid do { 
   compute OC(gx,y, Ri, wi′ ); /* OC(Ri, wi′ )on gx,y */
   compute the join workspace ci,j,x,y; 
   estimate the join results using Equation 13; 
  } 
 sum up estimations for each cell and return result; 
} 

Fig. 8. Selectivity estimation for acyclic queries 

Table 3. Description of real data used in the experiments 

abv. Description cardinality (N) density 

T1 California roads 131461 0.05 

T2 California rivers and railroads 128971 0.39 

G1 German utility network 17790 0.12 

G2 German roads 30674 0.08 

G3 German railroads 36334 0.07 

G4 German hypsography 76999 0.04 

5.3 Experimental evaluation 

We evaluated the accuracy of the proposed extension of our methodology to handle 
skewed data by using some real datasets from Geographical Information Systems. The 
characteristics of the data used in the experiments are provided in Table 3. T1 and T2 



are two layers of an area in California with large density differences. The last four 
datasets capture layers of Germany’s map. 

In the first experiment we test the accuracy of our methodology for pairwise joins 
restricted by selections. We compare the accuracy of Equation 8 which assumes uni-
formity with the method of Section 4.1 using a 50×50 statistical grid. In Equation 8, 
instead of the actual average rectangles sides, we used normalized averages taking 
under consideration that the query workspace is not rectangular, but depends on the 
area covered by the joined datasets. Table 4 shows the estimates of these methods and 
the actual query results for various joined pairs and the window configurations of 
Table 1. The first column for each configuration of windows shows the estimation of 
Equation 8, the second the estimation of the histograms method and the third the ac-
tual result of the query. The results show that both methods are not as accurate as in 
the case of uniform datasets. Observe that for queries where the windows have some 
overlap (first and second), applying the grid method is better than assuming uniform-
ity, whereas in queries with trivial window overlap, using histogram information has 
small effect. This is because the number of results is very small and estimations are 
more error sensitive. 

In the next experiment we study how accuracy is affected by the granularity of the 
grid. For the first two window configurations and various grid sizes we estimated the 
output of various joins. Figure 9 presents for each join pair and grid size the estimated 
selectivity divided by the actual query output. Observe that typically the accuracy 
increases with the detail of the grid, although this is not a rule (see for instance 
G1 G3 in Figure 9a). This is expected, since the more detailed the grid is, the best 
skew is handled. Nevertheless, very large grids are expensive to store and maintain. 

We also studied the accuracy of grids for multiway join queries and the estimates 
were less precise to the effects of error propagation. Table 5 presents some results 
when uniformity is assumed and when a 50×50 grid is used. We experimented with 
two multiway join configurations of the Germany’s layers and with the four selection 
window configurations of Table 2. In general, using the grid is better than assuming 
uniformity. The estimates are inaccurate for windows with overlap, but the error is not 
extreme; it is within expected bounds given the increased deviation in pairwise joins 
and the propagation. On the other hand, in the last two queries where the results are 
small, error propagation may have large effects (see the last query of the first raw). 

We expect windows in typical queries to have some overlap. Thus, the grid can be 
used without major errors in optimization. On the other hand, when the actual query 
result is very small, the relative estimation error can be too large. Notice, however, 
that large relative errors in small results does not affect much estimates in the cost of 
query operators, since the actual difference translates to few page accesses. The com-
putation cost of the output estimates was negligible. For multiway join queries with 
selections when the grid is used (the most expensive case) the running time did not 
exceed few milliseconds, indicating that the estimates can be used for efficient query 
optimization. 



Table 4. Evaluation of the accuracy of the 50×50 grid on pairwise joins with selections 
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 No grid Grid Actual no grid Grid actual no grid grid actual no grid grid actual 
T1  T2 3629 5722 7548 917 1333 2061 27 21 27 0 0 2
G1  G2 393 893 958 100 329 309 6 5 3 1 0 2
G1  G3 422 1085 1105 107 356 310 6 8 4 2 0 1
G1  G4 606 2069 1703 154 778 541 6 16 8 0 0 0
G2  G3 407 893 1353 103 319 418 4 4 6 0 0 0
G2  G4 505 1573 1284 127 630 436 4 7 6 0 0 0
G3  G4 498 1823 1370 125 639 404 3 8 5 0 0 4
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Fig. 9. Accuracy of grids for various joins 

Table 5. Evaluation of the accuracy of the 50x50 grid on multiway joins with selections 
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 no grid grid actual No grid grid actual no grid grid actual no grid grid actual 
G1 G2

G3G4
 

68 319 1036 108 650 1856 2 1 0 9 28 0 

G1 G2

G3G4
 

15 88 266 25 164 264 0 2 0 0 3 0 



6. Discussion 

In this paper we have studied the problem of optimizing complex spatial queries that 
involve multiple spatial joins and selections. We presented formulae that estimate the 
output of such queries and evaluated them through experimentation. The results prove 
the accuracy of the formula, the relative error being 8% for binary joins and 38% for 
queries of four inputs. These numbers are comparable with previous work on selectiv-
ity of spatial selections [27] or joins [28], as well as, with error propagation experi-
ments in the context of relational queries [11]. The proposed models are essential for 
the optimization of queries that involve several spatial logical operators, possibly in 
addition to some non-spatial ones. We have extended our method for skewed, real-life 
data using 2D-histograms. In this case, the accuracy is not that high due to the persis-
tence of skew in the cells of the statistical grid, but still the histogram-based method 
does better than straightforward application of formulae that assume uniformity. 

Our contribution is not limited to spatial query processing, since operator depend-
encies may exist in other applications as well. Consider a relational query that consists 
of a join between R and S on their common R.x = S.x attribute, and (range) selections 
on other attributes of R and S (e.g., R.y < a, S.z ∈ [b,c]). A dependency between R.y 
and S.z affects the query results. For instance, in the TPC-R benchmark [26] there are 
multi-table constraints like O.Orderdate ≤ L.Shipdate (i.e., an order takes place before 
the corresponding line items are shipped). The selectivity of queries that apply selec-
tions on these attributes and then join the corresponding tables can be estimated in a 
way similar to that presented in this paper (i.e., by restricting the selections, taking 
under consideration the constraints, and then estimating the join selectivity on the 
restricted area). Another type of related complex queries involve distance joins of 
high-dimensional point sets [6]. Our methodology can be applied if high-dimensional 
selections exist in conjunction with the joins, since the domain of the query operators 
is the same. 

In the future we will investigate additional methods to handle the accuracy prob-
lems due to data skew. Another direction for future work is the study of alternative 
techniques for processing spatial queries. Spatial join operators can be extended to 
process multiple spatial selections and joins synchronously, since all logical operators 
in a complex spatial query apply on the same attribute domain. Some preliminary 
results towards this direction are very promising. 
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