
Selectivity Estimation of Complex Spatial Queries

Nikos Mamoulis1 and Dimitris Papadias2

1 CWI, Kruislaan 413, 1098 SJ Amsterdam, The Netherlands
nikos@cwi.nl

2 Department of Computer Science, Hong Kong University of Science and Technology,
Clear Water Bay, Hong Kong
dimitris@cs.ust.hk

Abstract. Several studies have focused on the efficient processing of simple
spatial query types such as selections and spatial joins. Little work, however,
has been done towards the optimization of queries that process several spatial
inputs and combine them through join and selection conditions. This paper iden-
tifies the dependencies between spatial operators and illustrates how they can af-
fect the outcome of complex queries. A thorough analysis yields selectivity es-
timations that can be used to optimize any combination of spatial and non-
spatial selection and join operators. The accuracy of the formulae is evaluated
through experimentation with various queries. In addition to their importance
for spatial databases, the presented results can be applied in several other do-
mains, where dependencies exist between operators.

1. Introduction

Relational queries are processed by combining operators (e.g., sort-merge, hash-join,
index-based search) in an optimal way [10]. Optimization algorithms (e.g., dynamic
programming) search through the space of valid plans in order to identify one with
low cost. Most query optimizers estimate the output sizes using catalog information
(e.g., size and distribution) about the relations involved in the queries. The core as-
sumption is that there are no dependencies between different attributes. Therefore, the
results of any complex query are assumed to depend solely on the distribution of the
data from the base tables. In many cases the independence assumption holds and the
optimizer returns accurate results. For instance, assume that two tables Employee and
Department are joined through the common attribute DeptId, and the following selec-
tions apply: Employee.Age>35 and Department.Sales<10000. The DeptId values after
the application of selections are expected to maintain their initial distribution, since
there is no explicit dependency between the query attributes. Thus the cost of the join
can be estimated using the selectivity of the selections and statistical information
about the base tables.

In spatial database systems [9], a complex query may contain several spatial and
non-spatial components. For instance, the query “find all cities within 400km of Mu-
nich, which are less than 10km away from a forest and are crossed by a river wider

than 20m” includes two spatial joins (City Forest, City River), a non-spatial selec-
tion (River.Width > 20m) and a spatial selection (City.CRegion within 400km of Mu-
nich). Although there may be no dependency between the non-spatial attribute
River.Width with the spatial (i.e., location/extent), notice that there is always a de-
pendency between the spatial operators involved in a query. We do not expect that
cities located in America or Asia will be part of the result. Therefore the spatial selec-
tions affect not only the number of objects that will participate in a succeeding join,
but also their spatial distribution, which determines the query result.

The next example strengthens our point. Consider the plan of Figure 1a, where R1,
R2 are spatial relations, σw1, σw2 spatial selections (e.g., window queries) and R3 a third,
not necessarily spatial, relation. Figures 1b and 1c illustrate example results of the
selections applied to the corresponding dataset. Clearly the cost of the last join de-
pends on the selectivity of the first (spatial) one. The output of the spatial join, how-
ever, does not depend solely on the results of the window queries, but also on their
relative position. As Figure 1d shows, the output size of the join increases with the
intersection area of the windows since only objects inside or near the intersection may
participate in the result. If the windows are far apart, the result of the spatial join is
expected to be empty.

R1 R2

σw1 σw2

R3

(a) a query plan (b) σw1

(R1) (c) σw2
(R2) (d) σw1

(R1) σw2
(R2)

Fig. 1. Example of spatial operator dependency

Although interdependencies between selection and join attributes are not common in
non-spatial queries (i.e., relations are typically joined on a key attribute, whereas se-
lections apply on non-keys), they always exist in spatial queries because there is typi-
cally only one spatial attribute per relation. This paper studies selectivity estimation of
complex spatial queries that involve spatial selections and joins. More specifically,
given a query consisting of n relations joined on their spatial attribute and potentially
restricted by selection windows, we provide accurate formulae that estimate its output
size. Following the common conventions in spatial query optimization, we assume that
the input data are uniformly distributed and that the predicate is intersect (overlap).
The proposed formulae use catalog information about the mean sizes of the objects in
spatial relations to estimate the query result.

Our techniques can be applied for arbitrarily distributed datasets using local statis-
tics like 2D-histograms. They are also appropriate for spatial queries with predicates

w1

w2

w1 w2

other than intersect (e.g. meets, covers), since such queries can be transformed to
intersection queries (see [20] for a case study). Even more importantly, the methods
are not strictly limited to the spatial domain, because dependencies between operators
can also be found in other database applications. The rest of the paper is organized as
follows. Section 2 provides background on processing and optimization of simple
spatial query types and multiway spatial joins. Section 3 presents formulae that esti-
mate the selectivity of complex spatial queries. In Section 4 we evaluate the accuracy
of the proposed models for complex spatial queries on uniform data. Section 5 dis-
cusses extensions to real data and Section 6 concludes the paper.

2. Background

Spatial database systems [9] organize and manage large collections of multidimen-
sional data. Spatial relations, apart from conventional attributes, contain one attribute
that captures the geometric features of the stored objects. For example, the last attrib-
ute in relation City(CName, PostalCode, Population, CRegion) is of spatial type poly-
gon. In addition to traditional data structures (e.g., B-trees) for alphanumeric attrib-
utes, spatial relations are indexed by multidimensional access methods [7], usually R-
trees [8], for the efficient processing of queries such as spatial selections (or window
queries) and spatial joins. Selections (e.g., “cities in Germany”) apply on a single
relation, while spatial joins (e.g. “cities crossed by a river”) combine two relations
with respect to a spatial predicate (typically intersect, which is the counterpart of the
relational equi-join).

Complex spatial queries include spatial and non-spatial selections and joins. They
can be processed by combining simple operators in a processing tree (plan) like the
one illustrated in Figure 1a. The efficiency of an operator depends on whether its input
(inputs) is (are) indexed. For instance, the cost of a window query applied on an R-tree
is typically linearly related to the size of the window. On the other hand, if the selec-
tion applies on intermediate results, the whole input needs to be scanned independ-
ently of the selectivity of the operator. The same applies for join operators. The most
efficient spatial join method is the R-tree join (RJ) [5], which matches two R-trees.
Some methods [15, 18] join an R-tree with some non-indexed dataset (e.g., an inter-
mediate result of another operator). Others [16, 19, 14, 2] organize two non-indexed
inputs in intermediate file structures (e.g., hash buckets) in order to join them effi-
ciently in memory.

Typically, a complex query has a large number of potential execution plans with
significant cost differences. For instance, an alternative plan to that of Figure 1a would
be to first join R2 with R3, then apply the selection on R2 and finally join the intermedi-
ate result with R1, after it has been restricted by w1. The number of plans increases
exponentially with the number of involved relations (see [18, 25] for an analysis on
spatial and non-spatial domains). Optimization algorithms search either in a determi-
nistic (e.g., dynamic programming) or a randomized way (e.g., hill climbing [12]) to
find a cheap plan. The cost of a specific plan is computed using formulae for (i) the

operators involved in the plan, and (ii) the output size of each sub-query of the plan.
The first provide an estimate for the cost of each node in the plan, while the second
determine the cost of succeeding operators. In the query of Figure 1a, for instance, the
selectivity of the spatial join R1 R2 affects the cost of the final operator.

There has been extensive research on the accurate estimation of the selectivity and
cost of spatial operators. The selectivity of spatial selections has been studied as a
prerequisite for the I/O cost estimation of R-tree window queries [13, 24, 23, 27].
Given a spatial dataset R of N d-dimensional uniformly distributed rectangles in a
rectangular area r (workspace), the number of rectangles that intersect a window query
w (output cardinality - OC) is estimated by the following formula:

∏
=










 +⋅=
k

d d

dd

r

ws
NwROC

1

,1min),((1)

where ds is the average length of the projection of a rectangle s ∈ R at dimension d.

dw and dr are the corresponding projections of w, r respectively. The last factor

(product) of Equation 1, called Minkowski sum, is the selectivity of the window query
(i.e., the probability that a random rectangle from R intersects w). This probability at

some dimension d equals the sum of projections ds and dw on that dimension nor-

malized to the workspace. Equation 1 can be extended for the output cardinality of an
(intersection) spatial join between two relations R1 and R2 as follows [28]:

∏
= 









 +
⋅⋅=

k

d d

dd

r

ss
NNRROC

1

,2,1
2121 ,1min),((2)

N1, N2 denote the cardinalities of the datasets, and ds ,1 , ds ,2 correspond to the average

length of the projection of rectangles s1 ∈ R1 and s2 ∈ R2 on dimension d. In other
words, the expected number of rectangle pairs that intersect is equal to the number of
results after applying N2 window queries of area s2 on R1.

The selectivity of multiway spatial joins can be accurately estimated only for acy-
clic and clique (i.e., complete) query graphs. Let R1, ..., Rn be n spatial datasets joined
through a query graph Q, where Qij = True, iff rectangle ri ∈ Ri should intersect rec-
tangle rj ∈ Rj. When Q is acyclic, the number of qualifying object combinations can be
estimated by:

∏ ∏∏
=∀ == 









 +
⋅=

TRUEQji

k

d d

djdi
n

i
in

ij r

ss
NQRROC

:, 1

,,

1
1 ,1min),,...,((3)

The above formula actually restricts the Cartesian product of the datasets using the
selectivities of the query edges, which are independent. When the query graph con-
tains cycles, the pairwise selectivities are no longer independent. For instance, if a
intersects b and b intersects c, the probability that a intersects c is relatively high be-

cause the rectangles are expected to be close to each other. Thus Equation 3 is not
appropriate for such cases. For the special case where Q is complete (clique) a closed
formula that estimates the output of the multiway join is proposed in [21]:

∏ ∑ ∏∏
= = ≠== ⋅−

⋅=
k

d

n

i

n

ijj
dj

d

n

i
in s

rn
NQRROC

1 1 ,1
,

1
1

)1(

1
),,...,((4)

This formula can be derived by the observation that if {s1, s2, …, sn-1} is a clique then
{s1, s2, …, sn-1, sn} is also a clique iff sn intersects the common area of all rectangles in
{s1, s2, …, sn-1}. Equations 1 through 4 are accurate for uniform datasets covering the
same workspace r. In real life applications these assumptions may not hold, therefore
researchers have extended some of them for skewed datasets. A histogram-based
method that estimates the selectivity of window queries is presented in [3]. This
method decomposes the space irregularly using buckets that cover objects of similar
density and keeps statistical information for each bucket, considering that its contents
are uniform. A similar technique that divides the objects using a quad-tree like parti-
tioning is presented in [1]. Another method that applies only on point datasets and uses
theoretical laws is proposed in [4]. Regarding the selectivity of spatial joins, relatively
little work has been done. In [28, 18] the space is decomposed using a regular grid and
uniformity is assumed for each cell. The output of the join is then estimated by sum-
ming up the estimations from each cell. In [6] an interesting law that governs the se-
lectivity of distance spatial joins (i.e., is joins that return point pairs within a distance
parameter) is presented.

As discussed in the introduction, the relative positions of selection windows deter-
mine the skew of the joined rectangles from each dataset. Thus existing formula that
focus exclusively on spatial selections or joins are not applicable. In the next section
we study the selectivity of complex spatial queries, where the dependency of operators
affects the query result.

3. Selectivity of complex spatial queries

When only one selection window wi that applies on a single dataset Ri exists, selectiv-
ity estimation is rather simple. Since the result is the same independently of the order
according to which operators are applied, we can assume that the selection follows the
join. The output cardinality can then be estimated by multiplying the corresponding
join formulae with the selectivity of the window query:

∏
=










 +⋅=
k

d d

dd
i

r

ws
JoinOCwJoinOC

1

,1min)(),((5)

where OC(Join) can be any of Equations 2, 3 or 4.
The problem is more complicated when two or more spatial selections exist on the

joined datasets. A simple approach is to assume that the join workspace is the com-
mon area of all selections, and apply a single selection on the multiway join result

using this area. This, however, would be inaccurate since the common area of selec-
tion windows may be empty, while there may exist objects that qualify the query,
especially if the non-intersecting windows are close to each other and the data rectan-
gles are large.

3.1 Selectivity of a pairwise join restricted by two selections

Let us first confine our study to the special case where a pair of joined datasets R1 and
R2 are restricted by two query windows w1 and w2, respectively. Based on the extents
of w1 and w2 we will try to identify the area that should be intersected by rectangles
from each dataset in order to participate in the join. Thus, we will compute the query
selectivity in three steps: (i) determine a number of candidate join objects from each
dataset using w1, w2, (ii) estimate the workspace area of the join and (iii) compute the
join selectivity using the number of candidates, the estimated workspace area and the
average rectangle extents according to Equation 2.

Let wi,d be the projection of wi on dimension d, wi,d,s and wi,d,e be the starting and the

ending point of wi,d, respectively, and diw , be the length of wi,d. Consider also similar

notations for the corresponding properties of the average extents of a rectangle si in

dataset Ri (e.g., dis , is the average projection of si on dimension d). We define two

updated windows w1′, w2′, as follows:

w1,d,s′ = max{w1,d,s, w2,d,s- ds ,2 } (6a)

w1,d,e′ = min{w1,d,e, w2,d,e+ ds ,2 } (6b)

w2,d,s′ = max{w2,d,s, w1,d,s- ds ,1 } (6c)

w2,d,e′ = min{w2,d,e, w1,d,e+ ds ,1 } (6d)

In order for a rectangle from Ri to be candidate for the join and intersect wi, it should
intersect wi′. For instance, consider the selection windows w1, w2 and the updated ones
w1′, w2′ in Figure 2a. Object a, belonging to R1 and intersecting w1, cannot participate
in the join because it may not overlap some object from R2 that intersects w2. On the
other hand, object b that intersects w1′ is a potential query result.

Intuitively, w1′ and w2′ define the area where the spatial join is restricted. The num-
ber of rectangles that participate in the join from dataset Ri is determined by the selec-
tivity of the corresponding wi′. Notice that the end points set by Equations 6a-d do not
always define valid intervals, since the lower end point may be greater than the upper
end point. This situation may arise when the actual windows do not intersect and there
is a large distance between them. In this case (if wi,d,s′ > wi,d,e′ for some i, d), the length

of the corresponding projection is negative, and the selectivity of wi,d′ is positive only

when dis , > wi,d,s′ - wi,d,e′; otherwise, the selectivity of the complex query is zero.

So far, we have calculated the windows w1′ and w2′ that should be intersected by
each rectangle from R1 and R2, respectively, in the result. These windows can be used
in combination with Equation 1 to determine the number of join candidates from each
dataset. The next step is to estimate the workspace of the join c , i.e., the area where
the query results lie. The rectangles from Ri that may participate in the join are inside a

window ci, which is generated by extending wi,d′ with dis , at both sides on each dimen-

sion. For instance, in Figure 2b we know that join candidates from R1 are included in
c1. Since c1 and c2 do not cover the same area, we need to average them in order to
acquire a unique rectangle c that reflects best the area where the spatial join is re-
stricted. Figure 2c provides an example of this normalization. Formally:

cd,s = max{w1,d,s′- ds ,1 , w2,d,s′- ds ,2 } - |w1,d,s′ - ds ,1 - w2,d,s′+ ds ,2 |/2 (7a)

cd,e = min{w1,d,e′+ ds ,1 , w2,d,e′+ ds ,2 } + |w1,d,e′+ ds ,1 - w2,d,e′- ds ,2 |/2 (7b)

Figure 3 shows some more one-dimensional examples with four representative win-
dow configurations over one pair of datasets. In case 3, the workspace is non-empty,
although the original windows do not intersect. In case 4, the updated windows w1′, w2′
are invalid; a rectangle from Ri should intersect both endpoints of the invalid window
wi′ in order to be a candidate join object. However, the average length of a rectangle s1
∈ R1 is smaller than the distance of the endpoints of w1′, thus the join is considered to
have zero selectivity.

Given the join workspace c, selectivity can be computed using the existing formu-
lae for spatial selections and joins. Summarizing, the output cardinality of a query that
includes the spatial join of two datasets R1, R2 restricted by window queries w1, w2,
respectively, is estimated by the following formula:

∏
= 









 +
⋅′⋅′=

k

d d

dd

c

ss
wROCwROCwwRROC

1

,2,1
22112121 ,1min),(),(),,,((8)

b

w1

w2

w2

w1

s1

s2,x

average
rectangles a

s2

s2,y

s1,x

s1,y

w1

s2,x

s2,y

s1,x

s1,y

w2

c1

c
2

s1,x

c1

c2

2

s1,y

2

c

s2,x

2

s2,y

2

(a) updated windows w1′, w2′ (b) generation of c1, c2 (c) join workspace c

Fig. 2. Generation of join workspace

case 1 case 2 case 3 case 4
w1

w2

c

w1

w2

c1

c2

s2

s1

w1 s1s1

w2
s2s2

c1 c2∩
s22

s12

w1

w2

c

w1

w2

c1

c2

s2 s2

w1s1 s1

w2 s2s2

c1 c2∩ s12
s12

w1

w2

c

w1

w2

c1

c2

w1 s1s1

w2 s2s2

c1 c2∩

-s2w2,s w1,e

w2,s +s1w1,e

w1

w2

w1,e w1,s

w2,e w2,s

Fig. 3. Windows that define the selectivity of a complex pairwise join

3.2 Selectivity of multiway joins with selections

Equation 8 can be extended for complex spatial queries that join n datasets, potentially
restricted by spatial selections. Selectivity is again computed in three steps. At the first
step the updated window wi′ is calculated for each dataset Ri, using the windows of the
neighbors in the join graph Q. At the second step, depending on Q, the workspace area
of each join edge or of the whole graph is computed. Finally, the multiway join selec-
tivity is estimated using (i) the selectivity of wi′ for each Ri, (ii) the workspace area(s)
and (iii) Equations 3, 4.

The updated selection window wi′ for each Ri is estimated using the initial windows
and the query graph. It turns out that the calculation process is not simple, since the
update of a window wi to wi′ may restrict the already updated window wj′ of a neighbor
Rj. This process is demonstrated in the example of Figure 4, where three datasets are
joined by a chain query and three windows restrict the joined rectangles. Assume that
we attempt to calculate the updated window wi′ for each wi using the following formu-
lae:

wi,d,s′ = max{wi,d,s, max{wj,d,s- djs , , Qij = True}} (9a)

wi,d,e′ = min{wi,d,e, min{wj,d,e+ djs , , Qij = True}} (9b)

First w1 is restricted to w1′ using w2 and s2 (Figure 4c). Then w2 is restricted to w2′ using
w1, s1, w3 and s3 (Figure 4d). Observe that the left point end of w2 has changed, and this
change should be propagated to w1′ (Figure 4e), which is shortened on the left side. In
general, each change at a window should be propagated to all neighbor windows in the
query graph.

R1

R2

R3

s1

s2

s3

w1

w3

w2

 w3

w2

w1
s2

w2

w3

w1

s3 s1

w2

w3

w1
s2

(a)

query
(b) three windows (c) update of w1 to w1′ (d) update of w2 to w2′ (e) second update of w1′

Fig. 4. Selection window update propagation in a network of joined datasets

The problem of window updates is similar to achieving local consistency in constraint
satisfaction problems [29]. Therefore, we use a variation of an arc consistency algo-
rithm [17] to estimate the final wi′ for each Ri. The algorithm first places all selection
windows in a queue. If a dataset Ri does not have a selection window we set wi = r,
i.e., the workspace of the datasets. Then the first window wf from the queue is picked
and updated according to the current windows of the neighbors. If there is a change in
wf, the windows of all neighbors not currently in the queue are inserted in it because
the changes need to be propagated to them. The process continues until the queue is
empty. The pseudocode of the algorithm is given in Figure 5.

window_propagation(window w[], Query Q[][])
 initialize queue;
 for each Ri do
 if wi does not exist then wi = r;
 queue.insert(wi);
 while not queue.empty() {
 wf = queue.getfirst();
 for each dimension d do

 wf,d,s = max{wf,d,s, max{wj,d,s- djs , , Qfj = True}};

 wf,d,e = min{wf,d,e, min{wj,d,e+ djs , , Qfj = True}};

 if wf has changed
 for each j, Qfj = True do
 if wj not in queue then queue.insert(wj);
 }

Fig. 5. The window_propagation algorithm

After the execution of the window_propagation algorithm, each window wi will be
transformed to the minimum intersection window wi′. Window wi′ is determined by
the end points of the most restricted window wj on each dimension. The path connect-
ing Ri with Rj contains at most n-2 graph nodes (where n is the number of datasets
involved in the query), meaning that the end points of the window wi′ can be adjusted
at most n-1 times per dimension. Thus, the worst case complexity of the algorithm is
O(d⋅n2), and its computational overhead in the optimization process is trivial.

The next step of the estimation process is to determine the workspace area c of the
multiway join. This process is performed in a similar way as described in the previous
paragraph. First the coverage area ci of each window query wi′ is estimated by extend-

ing wi′ with dis , at both sides on each dimension. If the query is acyclic the selectivity

of each query edge Qij is normalized with respect to the corresponding pairwise join
workspace. Therefore Equation 3 is modified as follows:

∏ ∏∏
=∀ == 









 +
⋅′=

TRUEQji

k

d dji

djdi
n

i
iinn

ij c

ss
wROCQwwRROC

:, 1 ,,

,,

1
11 ,1min),(),,...,,,...,((10)

In Equation 10, ci,j denotes the workspace of the pairwise join between Ri and Rj,
which is calculated using wi′, wj′, si and sj and Equations 7a, 7b. In case of clique
graphs, we need to consider a unique workspace c for the whole multiway join, since
all rectangles in an output tuple mutually overlap. This workspace is defined by ex-
tending the common intersection i of all workspaces ci by the average difference of the
ci′s from the common intersection at each side and dimension. Formally:

id,s = max1≤i≤n{wi,d,s′- dis , }

cd,s = id,s - ()∑
=

+′−
n

i

disdisd swi
1

,,,, /n (11a)

id,e = min1≤i≤n{wi,d,e′+ dis , }

cd,e = id,e + ()∑
=

−+′
n

i

eddiedi isw
1

,,,, /n (11b)

The output cardinality of a multiway clique join is then estimated by the selectivities
of the windows and the multiway join selectivity (see Equation 4), normalized to the
join workspace c. Formally:

∏ ∑ ∏∏
= = ≠==

⋅
⋅−

⋅′=
k

d

n

i

n

ijj
dj

d

n

i
iinn s

cn
wROCwwRRQOC

1 1 ,1
,

1
11

)1(

1
),(),...,,,...,,((12)

4. Experimental Evaluation

In this section we evaluate the accuracy of Equations 8, 10 and 12. For this purpose,
we generated four series of synthetic datasets with uniformly distributed rectangles in
the square workspace [0,1)2. The density1 of the datasets in the different series is 0.1,
0.2, 0.4 and 0.8. Each dataset consists of 10,000 rectangles. By Uxy we will denote the
yth dataset in the series of density x. For instance, U0.1a denotes the first dataset in the
series having density 0.1. The lengths of the rectangles are uniformly distributed be-

tween 0 and 2⋅ dis , , where dis , is the rectangle side that leads to the desired density.

For instance, in order for a dataset of 10,000 rectangles to have density 0.1, the aver-

age rectangle side should be 10000/1.0 .
Table 1 shows analytical and experimental results on complex pairwise spatial

joins. Each row corresponds to a different pair of datasets and each column to a repre-
sentative configuration of selection windows. Clearly, the estimated output is very
close to the actual one. If we define the quantity |estimated-real|/min{estimated, real}

1 The density of a dataset is defined as the total area of the objects in it divided by the area of

the workspace, or else as the expected number of objects that intersect a random point in the
workspace.

as estimation error, the median estimation error in the experiment is 8%. The overes-
timated and underestimated cases are balanced, indicating that the reasoning behind
Equation 8 is correct.

Table 1. Evaluation of the estimation formula for pairwise spatial joins with selections

 w1

w2

(0.4, 0.4)

(0.6, 0.6)

w1

w2

(0.55, 0.55)

(0.45, 0.45)

(0.6, 0.5)

w1

w2

(0.4, 0.5)

w2

w1
(0.9, 0.505)

(0.1, 0.5)

 estimated actual estimated actual estimated actual estimated actual
U0.1a U0.8a 633 659 167 179 24 19 46 31
U0.2a U0.4a 511 506 134 106 18 12 30 35
U0.1a U0.4a 395 406 103 80 12 15 17 17
U0.2a U0.8a 780 855 207 252 33 36 69 67
U0.1a U0.1b 169 175 43 45 3 3 1 1
U0.8a U0.8b 1420 1469 384 433 81 81 199 179

Table 2. Evaluation of the estimation formulae for multiway spatial joins with selections

(0.6, 0.15)

(0.5, 0.25)
(0.55, 0.2)

(0.65, 0.1)

w1
w2(0.2, 0.55)

(0.1, 0.65)

w3

(0.15, 0.6)

w4

(0.25, 0.5)

(0.5, 0.25)

(0.65, 0.15)

(0.1, 0.65) w1

w4(0.25, 0.75)

(0.1, 0.5) (0.6, 0.5)

w2

w3

(0.4, 0.9)

(0.9, 0.1)

w4

w1
(0.9, 0.505)

(0.1, 0.5)
w3

(0.1, 0.502)

 estimated actual estimated actual estimated actual estimated actual
U0.1a U0.2a

U0.4aU0.8a

1136 1107 1784 2464 52 25 40 86

U0.1a U0.2a

U0.4aU0.8a

279 395 443 542 3 3 5 6

U0.2a U0.8a

U0.8bU0.4a

9352 15577 14734 22604 355 425 438 480

U0.2a U0.8a

U0.8bU0.4a

1203 1602 1931 2399 32 54 18 21

U0.4a U0.2a

U0.2bU0.4b

1611 2506 2554 4168 44 17 51 31

U0.4a U0.2a

U0.2bU0.4b

251 348 404 555 4 5 2 3

In the next experiment we test the accuracy of Equations 10 and 12 for multiway spa-
tial joins restricted by selections. We use the uniform datasets described above and
several window configurations for chain and clique graphs. Table 2 shows graphically
four configurations of windows applied to six join graphs. The assignment of windows
to graph nodes is done clockwise, e.g., for the first row w1 applies to U0.1a, w2 to

U0.2a, w3 to U0.4a and w4 to U0.8a. We have experimented with queries that have
windows on all datasets (e.g., first column) and queries with windows on some data-
sets. Typically the estimation is close to the actual result, but the accuracy is not as
high as in the case of binary joins (the median error is now 38%). This happens be-
cause of (i) the propagation of the error in partial results and (ii) the fact that the in-
termediate results are more skewed than the input data. However, this is an unavoid-
able problem, which also exists in query optimization of relational queries involving
many operators [11].

In general, the experiments prove the accuracy of Equations 8, 10 and 12 and sup-
port their use for query optimization. However, the importance of this analysis is not
only restricted to this task. After proper modification the proposed methods can be
used to assure that a query has zero results and, thus avert processing. As explained, if
some updated window wi′ is invalid (wi,d,s′ > wi,d,e′ at some d) the average size of the

projection dis , at this dimension determines whether the query is expected to have any

solutions. If in the above methodology, instead of the average projections we employ

the maximum projections max(dis ,) for each dataset on every axis, we can determine

whether the query definitely has no solution. Thus if wi,d,s′ - wi,d,e′ > max(dis ,) and

max(djs ,) is used to derive wi′, processing can be avoided.

5. Extension to real data

In real life applications data are not usually uniform, but the distribution and size of
the objects may vary in different areas of the workspace. In such cases, we need mod-
els that take advantage of information about the distribution of the objects to estimate
the cost of complex queries. Models for range queries and distance joins [4, 6] on
point datasets are not readily applicable for intersection joins of datasets containing
objects with spatial extent. Techniques that keep statistics using irregular space de-
composition (e.g., [3]) are not appropriate either, due to the fact that two (or more)
joined datasets may not have the same distribution and the space partitions can be
totally different. Another limitation of such methods is that information cannot be
maintained incrementally, because they need to read the whole dataset in order to
update statistics.

Here, we investigate the application of a histogram-based method [28]. We parti-
tion the space regularly using a uniform C×C grid and for each cell we keep track of
the number of objects and the total length of their MBR per axis. Assuming uniformity
at each cell, we can use this information to estimate the selectivity of spatial queries.
For example, the selectivity of a range query can be estimated by applying Equation 1
for each cell that is partially covered by the window, summing the results, and adding
the number of objects in cells that are totally covered. The selectivity of a pairwise or
multiway spatial join [28, 18] can be estimated by applying Equations 2, 3 and 4 (de-
pending on the query) for each combination of cells from the joined datasets that cover

the same area, and summing up the results. Figure 6a illustrates a real dataset (T1) that
contains road segments from an area in California. Figure 6b presents a regular 50×50
grid that keeps statistical information about the dataset. The z-axis shows the number
of objects per cell. Since the characteristics of the dataset vary significantly between
cells, application of uniformity-based selectivity formulae is not expected to provide
good estimates. The distribution of objects in each cell may not be uniform; however,
the skew is not expected to have major effects in the total estimate. This was demon-
strated in a previous study [18] where the estimation error for pairwise and multiway
joins was within acceptable limits. Moreover, the experimental study in [3] suggests
that the accuracy of our method (called Equi-Area in this paper) increases significantly
with the number of cells. Some histogram-based selectivity estimation methods [22]
suggest approximating the distribution of data in a cell by a deviation function instead
of assuming uniformity. However, these methods work for (multidimensional) points;
the distribution of objects with spatial extents can hardly be described by simple func-
tions. Another important advantage of our method is that statistical information can be
maintained incrementally with trivial cost at each insertion/deletion of a rectangle.

(a) dataset T1 (b) number of rectangles per cell in a 50x50 grid

Fig. 6. Skew in dataset T1

In this section we show how the methodology of the previous section for uniform data
can be applied to estimate the selectivity of complex spatial queries involving real-life,
skewed datasets. We provide formulae that are based on the existence of the 2-
dimensional uniform grid and the assumption that rectangles in each cell are uniformly
distributed.

5.1 Selectivity of pairwise joins restricted by selections

We estimate the selectivity of pairwise joins involving skewed datasets that are re-
stricted by selection windows using the methodology described in Section 3.1. Figure
7a shows a configuration of selection windows w1, w2 and a statistical grid. We first
compute the updated w1′, w2′ for each cell, as illustrated in Figure 7b. Instead of using
the global statistics about the average rectangle in a dataset we use the information
kept in each cell. Thus the updated windows are not regular rectangles but their length
may vary between grids. After the update there might be cells which are totally cov-

ered by both windows (e.g., cell a in Figure 7b) or partially intersected by them (e.g.,
cell b).

Selectivity is then estimated by summing the join result for each such cell. When a
cell is totally covered by both windows, its selectivity is estimated using Equation 2
and considering the area of the cell as the workspace. Otherwise, we apply the meth-
odology described in Section 3.1. Thus we (i) estimate the selectivity of w1′, w2′ in the
cell, (ii) estimate the join workspace c and (iii) apply Equation 8.

w2

w1

b

w1

w2

w2

w1

a

(a) two windows and a 2D histogram (b) irregular updated windows using grid information

Fig. 7. Two selection windows and a grid

5.2 Selectivity of multiway joins restricted by selections

As in Section 3.2, we will study two configurations of multiway join queries that are
restricted by selections; acyclic and clique (complete) join graphs. The first stage of
the estimation involves the computation of the updated windows w′. This is done by
applying the window_propagation algorithm of Figure 5. Notice that the updated win-
dows to be considered at each step of the algorithm may be irregular, depending on the
rectangle extents at each cell (see Figure 7).

We estimate the output of acyclic queries with selections incrementally using the
algorithm of Figure 8. The algorithm first orders the nodes in the query graph, such
that each Ri, i>1, in the order is connected to some Rj, j<i. Then at each step i it com-
putes the selectivity of the subquery that includes nodes {R1,R2,...,Ri} for each cell gx,y
of the grid. The number of rectangles that participate in the join at gx,y are estimated by
the selectivity of the previous step OC(gx,y,R1,R2,...,Ri-1,w1′,w2′,...,wi-1′) and the selectiv-
ity of wi′, OC(gx,y,Ri,wi′). The join result at this step is determined by edge (Ri, Rj), thus,
the join workspace cx,y,i,j at cell gx,y is determined by extending wi′, wj′ at both edges and

all dimensions by the respective average rectangle extents diyxs ,,, , djyxs ,,, and aver-

aging as described in Section 3.1. The resulting cx,y,i,j is adjusted in all dimensions to be

no longer than the respective cell extents, i.e., ()dyxdjiyxdjiyx gcc ,,,,,,,,,, ,min= ∀ d.

Let OC(gx,y,i) = OC(gx,y,R1,R2,...,Ri,w1′,w2′,...,wi′) be the output of the query at step i
for cell gx,y. In summary, OC(gx,y,i) is estimated by multiplying the selectivities of wi′
and the previous sub-query OC(gx,y,i-1) and the join selectivity based on the estimated
workspace:

OC(gx,y,i)=OC(gx,y,i-1)⋅OC(Ri, gx,y, wi′)⋅∏
=










 +k

d djiyx

djyxdiyx

c

ss

1 ,,,,

,,,,,,,1min (13)

For clique queries the process is simpler. We assume that the multiway join has a
unique workspace which does not vary between join edges, as explained in Section
3.2. Thus, for each dimension we estimate the common intersection of all workspaces
ci and extend it by the average difference of the ci’s from it all each side and dimen-
sion. Naturally, like in the previous cases the common workspace might not be a regu-
lar window, but we estimate each extent at each cell of the grid. The selectivity of the
multiway clique join is then estimated by Equation 12 for each cell after doing the
appropriate normalization of the workspace according to the cell’s extent at each di-
mension.

selectivity_estimation(window w[], Query Q[][]) {
 window_propagation(w,Q);
 order datasets: ∀ i>1, Ri connected to some Rj, j<i;
 estimate the selectivity of the first edge (R1, R2);
 for i = 3 to n do {
 let Rj be the node connected to Ri, j<i;
 for each cell gx,y of the grid do {
 compute OC(gx,y, Ri, wi′); /* OC(Ri, wi′)on gx,y */
 compute the join workspace ci,j,x,y;
 estimate the join results using Equation 13;
 }
 sum up estimations for each cell and return result;
}

Fig. 8. Selectivity estimation for acyclic queries

Table 3. Description of real data used in the experiments

abv. Description cardinality (N) density

T1 California roads 131461 0.05

T2 California rivers and railroads 128971 0.39

G1 German utility network 17790 0.12

G2 German roads 30674 0.08

G3 German railroads 36334 0.07

G4 German hypsography 76999 0.04

5.3 Experimental evaluation

We evaluated the accuracy of the proposed extension of our methodology to handle
skewed data by using some real datasets from Geographical Information Systems. The
characteristics of the data used in the experiments are provided in Table 3. T1 and T2

are two layers of an area in California with large density differences. The last four
datasets capture layers of Germany’s map.

In the first experiment we test the accuracy of our methodology for pairwise joins
restricted by selections. We compare the accuracy of Equation 8 which assumes uni-
formity with the method of Section 4.1 using a 50×50 statistical grid. In Equation 8,
instead of the actual average rectangles sides, we used normalized averages taking
under consideration that the query workspace is not rectangular, but depends on the
area covered by the joined datasets. Table 4 shows the estimates of these methods and
the actual query results for various joined pairs and the window configurations of
Table 1. The first column for each configuration of windows shows the estimation of
Equation 8, the second the estimation of the histograms method and the third the ac-
tual result of the query. The results show that both methods are not as accurate as in
the case of uniform datasets. Observe that for queries where the windows have some
overlap (first and second), applying the grid method is better than assuming uniform-
ity, whereas in queries with trivial window overlap, using histogram information has
small effect. This is because the number of results is very small and estimations are
more error sensitive.

In the next experiment we study how accuracy is affected by the granularity of the
grid. For the first two window configurations and various grid sizes we estimated the
output of various joins. Figure 9 presents for each join pair and grid size the estimated
selectivity divided by the actual query output. Observe that typically the accuracy
increases with the detail of the grid, although this is not a rule (see for instance
G1 G3 in Figure 9a). This is expected, since the more detailed the grid is, the best
skew is handled. Nevertheless, very large grids are expensive to store and maintain.

We also studied the accuracy of grids for multiway join queries and the estimates
were less precise to the effects of error propagation. Table 5 presents some results
when uniformity is assumed and when a 50×50 grid is used. We experimented with
two multiway join configurations of the Germany’s layers and with the four selection
window configurations of Table 2. In general, using the grid is better than assuming
uniformity. The estimates are inaccurate for windows with overlap, but the error is not
extreme; it is within expected bounds given the increased deviation in pairwise joins
and the propagation. On the other hand, in the last two queries where the results are
small, error propagation may have large effects (see the last query of the first raw).

We expect windows in typical queries to have some overlap. Thus, the grid can be
used without major errors in optimization. On the other hand, when the actual query
result is very small, the relative estimation error can be too large. Notice, however,
that large relative errors in small results does not affect much estimates in the cost of
query operators, since the actual difference translates to few page accesses. The com-
putation cost of the output estimates was negligible. For multiway join queries with
selections when the grid is used (the most expensive case) the running time did not
exceed few milliseconds, indicating that the estimates can be used for efficient query
optimization.

Table 4. Evaluation of the accuracy of the 50×50 grid on pairwise joins with selections

 w1

w2

(0.4, 0.4)

(0.6, 0.6)

w1

w2

(0.55, 0.55)

(0.45, 0.45)

(0.6, 0.5)

w1

w2

(0.4, 0.5)

w2

w1
(0.9, 0.505)

(0.1, 0.5)

 No grid Grid Actual no grid Grid actual no grid grid actual no grid grid actual
T1 T2 3629 5722 7548 917 1333 2061 27 21 27 0 0 2
G1 G2 393 893 958 100 329 309 6 5 3 1 0 2
G1 G3 422 1085 1105 107 356 310 6 8 4 2 0 1
G1 G4 606 2069 1703 154 778 541 6 16 8 0 0 0
G2 G3 407 893 1353 103 319 418 4 4 6 0 0 0
G2 G4 505 1573 1284 127 630 436 4 7 6 0 0 0
G3 G4 498 1823 1370 125 639 404 3 8 5 0 0 4

 ��������� �	���
��� ��������

�	���
��� ��������
 ��������� ��
��
���

��� �

��� �

��� �

��� �

�

��� �

��� �

��� ��! " # �$� �%� &'� �$�%�
100×50 ××20×10

(%) *

(%) +
(%) ,

(%) -
.

./) *

./) +
./) ,
./) -

0%1�2'3 4 5 .$(*%(6�(.$(�(
100×50 ××20×10

(a) grid accuracy: first window configuration (b) grid accuracy: second window configuration

Fig. 9. Accuracy of grids for various joins

Table 5. Evaluation of the accuracy of the 50x50 grid on multiway joins with selections

(0.6, 0.15)

(0.5, 0.25)
(0.55, 0.2)

(0.65, 0.1)

w1
w2(0.2, 0.55)

(0.1, 0.65)

w3

(0.15, 0.6)

w4

(0.25, 0.5)

(0.5, 0.25)

(0.65, 0.15)

(0.1, 0.65) w1

w4(0.25, 0.75)

(0.1, 0.5) (0.6, 0.5)

w2

w3

(0.4, 0.9)

(0.9, 0.1)

w4

w1
(0.9, 0.505)

(0.1, 0.5)
w3

(0.1, 0.502)

 no grid grid actual No grid grid actual no grid grid actual no grid grid actual
G1 G2

G3G4

68 319 1036 108 650 1856 2 1 0 9 28 0

G1 G2

G3G4

15 88 266 25 164 264 0 2 0 0 3 0

6. Discussion

In this paper we have studied the problem of optimizing complex spatial queries that
involve multiple spatial joins and selections. We presented formulae that estimate the
output of such queries and evaluated them through experimentation. The results prove
the accuracy of the formula, the relative error being 8% for binary joins and 38% for
queries of four inputs. These numbers are comparable with previous work on selectiv-
ity of spatial selections [27] or joins [28], as well as, with error propagation experi-
ments in the context of relational queries [11]. The proposed models are essential for
the optimization of queries that involve several spatial logical operators, possibly in
addition to some non-spatial ones. We have extended our method for skewed, real-life
data using 2D-histograms. In this case, the accuracy is not that high due to the persis-
tence of skew in the cells of the statistical grid, but still the histogram-based method
does better than straightforward application of formulae that assume uniformity.

Our contribution is not limited to spatial query processing, since operator depend-
encies may exist in other applications as well. Consider a relational query that consists
of a join between R and S on their common R.x = S.x attribute, and (range) selections
on other attributes of R and S (e.g., R.y < a, S.z ∈ [b,c]). A dependency between R.y
and S.z affects the query results. For instance, in the TPC-R benchmark [26] there are
multi-table constraints like O.Orderdate ≤ L.Shipdate (i.e., an order takes place before
the corresponding line items are shipped). The selectivity of queries that apply selec-
tions on these attributes and then join the corresponding tables can be estimated in a
way similar to that presented in this paper (i.e., by restricting the selections, taking
under consideration the constraints, and then estimating the join selectivity on the
restricted area). Another type of related complex queries involve distance joins of
high-dimensional point sets [6]. Our methodology can be applied if high-dimensional
selections exist in conjunction with the joins, since the domain of the query operators
is the same.

In the future we will investigate additional methods to handle the accuracy prob-
lems due to data skew. Another direction for future work is the study of alternative
techniques for processing spatial queries. Spatial join operators can be extended to
process multiple spatial selections and joins synchronously, since all logical operators
in a complex spatial query apply on the same attribute domain. Some preliminary
results towards this direction are very promising.

Acknowledgements

Part of this work was conducted while the authors were visiting the Knowledge and
Database Systems Laboratory of the National Technical University of Athens, Greece.
It was supported by the Research Grants Council of Hong Kong SAR, grants HKUST
6070/00E and HKUST 6090/99E.

References

1. Aboulnaga, A., Naughton, J.F. Accurate Estimation of the Cost of Spatial Selections. IEEE
ICDE, 2000.

2. Arge, L., Procopiuc, O., Ramaswamy, S., Suel, T., Vitter, J.S. Scalable Sweeping-Based
Spatial Join. VLDB Conference, 1998.

3. Achaya S., Poosala V., Ramaswamy S. Selectivity Estimation in Spatial Databases. ACM
SIGMOD, 1999.

4. Belussi A., Faloutsos C. Estimating the Selectivity of Spatial Queries Using the Correla-
tion Fractal Dimension. VLDB Conference, 1995.

5. Brinkhoff, T., Kriegel, H.P., Seeger B. Efficient Processing of Spatial Joins Using R-trees.
ACM SIGMOD, 1993.

6. Faloutsos C., Seeger B., Traina A., Traina C. Spatial Join Selectivity Using Power Laws.
ACM SIGMOD, 2000.

7. Gaede V., Günther O. Multidimensional Access Methods. ACM Computing Surveys, 30(2):
123-169, 1998.

8. Guttman, A. R-trees: A Dynamic Index Structure for Spatial Searching. ACM SIGMOD,
1984.

9. Güting R.H. An Introduction to Spatial Database Systems, VLDB Journal, 3(4): 357-399,
1994.

10. Graefe, G. Query Evaluation Techniques for Large Databases. ACM Computing Surveys,
25(2): 73-170, 1993.

11. Ioannidis Y., Christodoulakis S. On the Propagation of Errors in the Size of Join Results.
ACM SIGMOD 1991.

12. Ioannidis Y., Kang Y. Randomized Algorithms for Optimizing Large Join Queries. ACM
SIGMOD, 1990.

13. Kamel I., Faloutsos C. On Packing R-trees. ACM CIKM, 1993.
14. Koudas, N., Sevcik, K. Size Separation Spatial Join. ACM SIGMOD, 1997.
15. Lo, M-L., Ravishankar, C.V. Spatial Joins Using Seeded Trees. ACM SIGMOD, 1994.
16. Lo, M-L., Ravishankar, C.V. Spatial Hash-Joins. ACM SIGMOD, 1996.
17. Mackworth A. Consistency in Networks of Relations. Artificial Intelligence, 8, 1977.
18. Mamoulis, N, Papadias, D. Integration of Spatial Join Algorithms for Processing Multiple

Inputs. ACM SIGMOD, 1999.
19. Patel J.M., DeWitt D.J. Partition Based Spatial-Merge Join. ACM SIGMOD, 1996.
20. Papadias, D., Mamoulis, N., Delis, V. Approximate Spatio-Temporal Retrieval. To appear

in ACM Transactions on Information Systems.
21. Papadias, D., Mamoulis, N., Theodoridis, Y. Processing and Optimization of Multiway

Spatial Joins Using R-trees. ACM PODS, 1999.
22. Poosala, V. Histogram-based estimation techniques in databases. PhD Thesis, University of

Wisconsin-Madison, 1997.
23. Pagel, B.W., Six, H. Are Window Queries Representative for Arbitrary Range Queries?

ACM PODS, 1996.
24. Pagel, B.W., Six, H., Toben, H., Widmayer, P. Towards an Analysis of Range Query

Performance. ACM PODS, 1993.
25. Silberschatz, A., Korth, H.F., Sudarshan, S. Database System Concepts. McGraw-Hill,

1997.
26. Transaction Processing Performance Council, TPC Benchmark R (Decision Support), Rev.

1.0.1, http://www.tpc.org/, 1993 – 1998.

27. Theodoridis, Y., Sellis, T. A Model for the Prediction of R-tree Performance, ACM PODS,
1996.

28. Theodoridis, Y., Stefanakis, E., Sellis, T. Cost Models for Join Queries in Spatial Data-
bases, IEEE ICDE, 1998.

29. Tsang, E. Foundations of Constraint Satisfaction, Academic Press, London and San Diego,
1993.

