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Abstract. Given a family C of regions bounded by simple closed curves
in the plane, the complerity of their union is defined as the number of
points along the boundary of UC, which belong to more than one curve.
Similarly, one can define the complexity of the union of 3-dimensional
bodies, as the number of points on the boundary of the union, belonging
to the surfaces of at least three distinct members of the family. We survey
some upper bounds on the complexity of the union of n geometric objects
satisfying various natural conditions. These problems play a central role
in the design and analysis of many geometric algorithms arising in motion
planning and computer graphics.

1 Introduction

Given a family C of polygons in the plane (or, a family of polyhedra in R?),
the number of sides of their union (resp., the total number of its faces of all
dimensions) is called the combinatorial complexity, or, simply, the complexity
of UC. This notion can be easily generalized to families of other simply shaped
geometric objects with piecewise smooth boundaries. The complexity of a set is
closely related to its description size, i.e., the number of parameters needed for
its description.

Many basic problems in computational geometry related to motion planning
[39, 40, 41], range searching [22, 18], computer graphics [1], and geographic
information systems [6] lead to questions about the complexity of the boundary
of the union of certain geometric objects. This was the motivation behind a lot of
research during the past 15 years, establishing upper bounds for the complexity
of the union of various objects.

We mention three simple examples.

1.1. Linear programming. Given a family C of n half-spaces in IR?, we want to
maximize a linear function on the boundary of their union, Bd(UC). The running
time of the simplex algorithm, as well as many other naive solutions to this
problem, is proportional to the total number of vertices of BA(UC). According

* Supported by the National Science Foundation (USA) and the National Fund for
Scientific Research (Hungary). e-mail: pach@cims.nyu.edu



to McMullen’s Upper Bound Theorem [31], this number cannot exceed

(n fd%jﬂ) * <n i E(d_ —[(il)ﬁj)m)’

with equality for cyclic polytopes and for all other simplicial neighborly poly-
topes.

1.2. Motion planning amidst obstacles. Let R be a “robot,” i.e., a convex polyg-
onal object with a small number r of sides, which is free to translate amidst a
collection of n convex polygonal obstacles, Cy,Co, ..., C,. Fix a reference point
O (the origin) within R. In order to decide whether the robot can be moved from
a fixed position to another without colliding with any of the obstacles, and to
plan such a motion if it exists, we want to describe the space F' of free placements
of R, i.e., the locus of all positions of the reference point which correspond to
placements of the robot, in which it does not intersect any C; (see Fig. 1). It is
easy to see that R intersects C; if and only if the corresponding reference point
belongs to the “expanded obstacle” C! = C; @ (—R), where @& stands for the
Minkowski sum, i.e.,
Ci={c—r|ceCiyr€R}.

Figure 1: The space of free placements of the robot R.

In other words, the space F of free placements of the robot is equal to the
complement of U?,C!. Therefore, the running time of any algorithm for the



description of F' is at least the number of vertices of the union of the expanded
obstacles, and there are a number of efficient algorithms which almost achieve
this time bound.

The above approach was initiated by Lozano-Pérez and Wesley [29], and it
can also be applied to the situation when the robot is allowed to rotate [25],
moves in three dimensions [4], has many arms [17], etc.

1.8. Overlay of maps. In most geographic information systems the data is stored
in several thematic maps, each representing only one kind of information. E.g.,
there are separate maps for average temperature, for average precipitation, al-
titude, etc. A face of a map corresponds to a region where the given parameter
is roughly constant. One often has to combine the information, i.e., to compute
the overlay of two or more maps. This procedure results in a new map, more
complex than the original ones. Consider, for example, two maps, and put their
faces in a single list F1, F>, ..., F,. Let F] denote a region obtained from F; by
very slightly shrinking it. It is easy to see now that the total number of vertices
of the new combined map is proportional to the complexity of the boundary of
U?,, F}. Indeed, each vertex of the overlay will give rise to a “hole” determined
by the F.

2 An example — Translational motion planning

First we make some simple observations related to the motion planning problem
stated above (1.2). Two curves, 1 and s, are said to cross each other at a point,
if at this point v; passes from one side of v, to the other.

Lemma 2.1. ([24]) Let C1,C2, and R be convez bodies in the plane, and assume
that Cy and Cy are disjoint. Then the boundaries of the Minkowski sums Cj =
C1 @ (—R) and Cj = Cy ® (—R) cross at most twice.

Let C = {C1,C4,...,Cy} be afamily of simply connected regions in the plane
bounded by simple closed curves. Assume, for simplicity, that these curves are in
general position, i.e., any two of them cross only a finite number of times, no two
touch each other, and no three pass through the same point. If any two distinct
curves Bd(C;) and Bd(C};) cross at most twice, then C is usually called a family
of pseudo-disks. A maximal connected piece of the boundary of UC = UL, C;,
which belongs to the boundary of a member of C, is said to be an elementary
arc.

Theorem 2.2. ([24]) Let C = {C1,Cs,...,Ch} be a family of n > 3 pseudo-disks
in the plane.

Then the boundary of U7, C; consists of at most 6n — 12 elementary arcs.
This bound cannot be improved.

In the case when each Cj is a disk, the proof of Theorem 2.2 is straightforward
(see Fig. 2). Assign to each C; its center, p;, and connect p; to p; by a straight-
line segment if and only if Bd(C;) and Bd(C;) cross each other, and at least
one of their crossing points belongs to Bd(UC). It is easy to verify that no two



segments cross each other, i.e., the resulting graph G is planar. Therefore, G
has at most 3n — 6 edges, each of which corresponds to at most two crossings
between the circles that belong to Bd(UC). Therefore, the number of crossings
on Bd(UC), and hence the number of elementary arcs is at most 6n — 12. Using
the terminology introduced in the first paragraph of this paper, we obtain that
the complexity of UC is at most linear in n.
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Figure 2: The proof of Theorem 2.2 for disks.

One can combine a well known algorithm of Bentley and Ottmann [7] for
reporting all intersections in a collection of line segments with some standard
divide-and-conquer techniques to obtain the following

Corollary 2.3. There is an O(nr log® n))-time algorithm for describing the space
of free placements of a convex polygonal robot with r sides among a set of polyg-
onal obstacles with a total of n sides, and for computing a collision-free path
between any two given positions of the robot, if such a path exists.

Leven and Sharir [27] reduced the log® n factor in the last result to logn.

3 Allowing 3 intersections — Ackermann’s function

What happens if we somewhat weaken the condition in Theorem 2.2, by as-
suming that the boundaries of any two members of C cross at most three times,
rather than twice? At first glance this problem seems to be foolish, because if
two closed curves are in general position, then they can cross only an even num-

ber of times. However, by a slight modification we obtain a meaningful question
with a surprising answer.



Construct recursively an infinite sequence of integer-valued functions Aj (n),
As(n), ... on the set of positive integers, as follows. Let A;(n) = 2n for every
n. If Ay, has already been defined for some k > 1, then let Ay (n) = A;n)(l).
In other words, we n times iterate the function Ay, and take its value at 1. The
function A(n) = A,(n) is called Ackermann’s function. It grows so fast that
A(4) is a tower of 65536 2’s! Consequently, the inverse of Ackermann’s function
is an extremely slowly growing funtion, whose all “practical” values are smaller
than 4. For basic properties of these functions, see [43].

Theorem 3.1. ([11]) Let {v1,72,---,Vn} be a family of simple curves in general
position in the upper half-plane. Assume that the endpoints of each curve are on
the z-axis, and that any two curves cross at most three times. Let C; denote the
bounded region enclosed by v; and the x-azis.

Then the boundary of U}, C; consists of at most O(na(n)) elementary arcs,
where a(n) is the inverse of Ackermann’s function. This bound is asymptotically
tight.

Let {f1, f2,-- ., fn} be a collection of real-valued functions, each defined on a
subinterval of R. For any = € IR, consider the set I(z) of all indices ¢, for which
fi(z) is defined, and let

flz) = nax fi(z).
This partially defined function (and its graph) is called the upper envelope of the
functions f; (and of their graphs).

Perhaps the most important special case of the last theorem is the following
result of Hart and Sharir, which answers a question of Atallah [5].

Theorem 3.2. ([20]) The upper envelope of n non-vertical straight-line segments
in the plane consists of at most O(na(n)) linear pieces.

To verify that this result follows from Theorem 3.1, it is sufficient to notice
that by attaching to each segment two vertical rays pointing downwards, one at
each of its endpoints, we obtain a family of two-way infinite curves, any pair of
which cross at most three times.

Wiernik and Sharir [46] showed that Theorem 3.2 is asymptotically tight.

A sequence of integers a(i) € {1,2,...,n} (i =1,2,...) is called a Davenport-
Schinzel sequence (of order 3) if no two consecutive elements are the same, and
there is no alternating subsequence of length 5, i.e., there are no indices i1 <
ia < ... < i such that a(i1) = a(i3) = a(is), a(iz) = a(is), but a(iy) # a(iz).

In fact, Hart and Sharir proved that the length of any such sequence is at
most O(na(n)). Theorem 3.2 can be easily deduced from this result. Indeed, if we
order the linear pieces of the upper envelope of the segments s1, s2, ..., s, from
left to right, and replace each piece by the index ¢ of the segment s; it belongs
to, we obtain a Davenport-Schinzel sequence (see Fig. 3). To see this, we have
to check only that this sequence has no alternating subsequence of length 5.
However, this immediately follows from the fact that any two segments cross at
most once.
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Figure 3: The upper envelope of segments and
the corresponding Davenport-Schinzel sequence.

4 'Well-behaved intersections — The role of parity

If we try to further weaken the condition in Theorem 2.2, assuming only that
the boundaries of any two members of C cross at most four times, then the
situation completely deteriorates. Consider a collection of n pairwise crossing
line segments, no three of which pass through the same point, and enclose each
of them in a very narrow triangle whose width is at most € > 0. If ¢ is small
enough, then every pair of triangles intersect in precisely four points, and all
4(3) intersection points belong to the boundary of their union (Fig. 4).
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Figure 4: n pairwise crossing triangles with (2(n?) intersections
on the boundary of their union.

As Whitesides and Zhao [45] discovered, if we exclude certain types of cross-
ings between the members of C, it is possible to give a linear upper bound on
the complexity of UC, even if two members of C may intersect in more than
two points. A family C of simply connected regions bounded by simple closed
curves in general position in the plane is called k-admissible, if any two members
C1,C5 € C have at most k boundary points in common and C; \ Cs is connected
(see Fig. 5). Clearly, we can restrict our attention to the case when k is even,



because the members of C are in general position, i.e., their boundary curves
cannot touch each other, so any two of them intersect in an even number of
points.

Theorem 4.1. ([45]) Let C = {C1,Cs,...,Cr} be a k-admissible family of n > 3
simply connected regions in general position in the plane.

Then the boundary of U, C; consists of at most k(3n — 6) elementary arcs,
and this bound cannot be improved.

(a) (b)

Figure 5: A pair of regions belonging to some
(a) 4-admissible, (b) non-admissible family.

In case k = 2 Theorem 4.1 reduces to Theorem 2.2.
It was pointed out in [35] that Theorem 4.1 can be easily deduced from the
following remarkable result of Chojnacki (alias Hanani) [9] (see also [44, 28]).

Lemma 4.2. ([9]) Suppose that a graph G can be drawn in the plane so that any
two of its edges not incident to the same vertex cross an even number of times.
Then G is planar.

This result can be regarded as a far-reaching generalization of the elementary
fact that if two points of the plane can be connected by an arc crossing a fixed
simple closed curve 7y an even number of times, then they can also be connected
by an arc which does not cross v at all.

To see that Lemma 4.2 implies Theorem 4.1, it is enough to bound the
number of points on Bd(UC), which belong to the boundary of more than one
member of C. For every C; which contributes at least one arc to Bd(UC), fix a
point p; in the interior of such an arc. For any pair C;,C; € C which has an
intersection point ¢ € Bd(UC), draw an edge (but only one!) between p; and p;,
as follows. Starting from p;, follow Bd(C;) to ¢ in clockwise direction, and from
there follow Bd(Cj) to p; in counter-clockwise direction. It is not hard to verify
that any two edges of this graph not incident to the same vertex cross an even
number of times. Thus, the graph has at most 3n — 6 edges. That is, there are
at most 3n — 6 pairs {C;, C;} contributing intersection points to Bd(UC), and
each of them can contribute at most k points.



5 Counting special intersections

Theorem 2.2 can be regarded as an upper bound on the number all intersection
points between the curves Bd(C;), which lie on the boundary of U, C;. Another
way to generalize this result is to drop the condition that any pair of boundary
curves intersect in at most two points, but to count only those intersections on
Bd(U?_, C;), which belong to such pairs.

If two members of C have precisely two boundary points in common, then
these points are called regular intersection points. All other intersection points
between boundary curves are called irregular.

Theorem 5.1 ([35]) Given a family C of n > 3 convez regions in general position
in the plane, let R and I denote the number of regular and irregular intersection
points of their boundaries, resp., which belong to BA(UC).

Then we have R < 21 4+ 6n — 12.

The last result is sharper than Theorem 2.2 in the sense that to obtain a 6n —
12 upper bound on the number of elementary arcs (the number of intersection
points) on Bd(UC), we do not have to exclude all irregular intersections. It is
sufficient to assume that no such intersection occurs on Bd(UC). However, for
some technical reasons, we have been unable to establish Theorem 5.1 without
the additional assumption that all members of C are convex. We conjecture that
this assumption can be dropped.

It is not hard to show that the coefficient of I in Theorem 5.1 cannot be
replaced by any constant smaller than 2.

If we want to get a non-trivial (i.e., subquadratic) upper bound on R, we
have to limit the number of times two boundary curves are allowed to cross
each other. But even under such an assumption we cannot expect a linear upper
bound. There is a family of n disks and rectangles in general position in the
plane satisfying R = 2(n*/3). The best positive result in this direction is the
following.

Theorem 5.2. ([3]) Let C be a family of n simply connected regions in the plane.
Suppose that they are bounded by simple closed curves in general position, any
two of which intersect in at most s points, where s is a constant.

Then there exists 6 = 6(s) > 0 such that the number R of regular intersection
points on BA(UC) satisfies

(i) R = 0(n*"°);

(ii) R = O(n'>*+¢) for any ¢ > 0, provided that every member of C is conver.

6 The union of fat triangles — Counting holes

The construction at the beginning of Section 4, showing that the union of n
triangles may have quadratic complexity, uses extremely narrow triangles. It was
proved in [30] that if we restrict how narrow the triangles can be, we can still
establish a nearly linear upper bound on the complexity of their union. For any
0 > 0, a triangle is said to be J-fat if each of its angles is at least §.



Theorem 6.1. ([30]) For any fized § > 0, the boundary of the union of n §-fat
triangles in the plane consists of at most O(nloglogn) elementary arcs.

By a slight modification of the construction of Wiernik and Sharir [46] cited
after Theorem 3.2, one can easily give an example of n equilateral (7/3-fat) tri-
angles, whose union has a slightly superlinear boundary complexity (£2(na(n))).

Given a family C of simply connected regions in the plane, a connected com-
ponent of the complement of UC is called a hole determined by C. The proof of
Theorem 6.1 is based on the fact that every family of n d-fat triangles in the
plane determines at most a linear number of holes. The strongest known bound
of this type is the following.

Theorem 6.2. ([36]) Any family of n d-fat triangles in the plane determines
O (%1og2) holes. This bound is tight up to the logarithmic factor.

This result can be used to establish a more general upper bound for the
number of holes determined by a family of triangles with given angles.

Theorem 6.3. ([36]) Let C = {C1,Cs,...,Ch} be a family of n > 1 triangles in
the plane, and let «; denote the smallest angle of C; (1 < i < n). Suppose 0 <
a1 <ag <--- < ay, and let k < n be the largest integer satisfying Zle a; <.

Then C determines O(nklogk) holes. Furthermore, there exists a family C' =
{C],C4,...,CL}, where C} is isomorphic to C; and C' determines £2(nk) holes.

If we consider infinite wedges (i.e., convex cones) rather than triangles, then
the same bound holds not only for the number of holes, but also for the complexity
of the boundary of the union. The following result strengthens some earlier
bounds in [14].

Theorem 6.4. ([36]) Let C be a family of n wedges in the plane with angles
0<ag <ay <--- < a, <m. Let k < n be the largest integer satisfying

Zle o; <.
If k > 2, then the boundary complexity of UC is O(nklogk). Furthermore,
there ezists a family of n wedges with angles ay,as,. .., ay,, which determines

2 ((m — an)nk) holes.

The concept of d-fatness, as well as Theorem 6.2, has been extended to ar-
bitrary polygons by van Kreveld [26]. For other extensions and generalizations,
see [38],[37],[15], [13], and [12].

7 Fat objects in space

Many of the theorems in previous sections have natural generalizations to higher
dimensions. In this section, we mention only a few 3-dimensional results. Given a
family C of 3-dimensional bodies, an edge of their union is defined as a maximal
connected arc on Bd(UC), which belongs to two distinct members of C. A point
of Bd(UC), belonging to three distinct members of C is called a vertez. A maximal
connected 2-dimensional piece of Bd(UC), which belongs to a single member of
C, is a face. The complezity of the boundary of UC is defined as the total number



of vertices, edges, and faces of the boundary. These numbers are related to one
another via Euler’s Formula.

Let C be a collection of topological balls in IR® such that the intersection of
any two of their surfaces is either empty or is a simple closed curve, and the
intersection of any three surfaces consists of at most two points. Then C is called
a family of pseudo-balls. Taking the intersection of the surface of each member
of C with all the other members, and applying Theorem 2.2 to the resulting
2-dimensional arrangements, we obtain

Corollary 7.1. ([24]) The complezity of the boundary of the union of n pseudo-
balls in RR® is O(n?). This bound is asymptotically tight.

Another generalization of Theorem 2.2 provides an upper bound on the com-
plexity of the space of free placements of a convex polyhedral robot which is
allowed to translate amidst polyhedral obstacles in 3-space.

Theorem 7.2. ([4]) Let {C1,Cs,...,Cr} be a family of pairwise disjoint convex
polyhedral “obstacles” in IR® with a total of N faces, and let R be a convex
polyhedral “robot,” whose number of faces is a constant.

Then the complexity of the union of the “expanded obstacles” Cy ® (—R),
Cy®(—R),..., Cr, ®(—R) is O(nNlogn). In the worst case this bound cannot
be improved, apart from the logarithmic factor.

For the case, when the robot is a ball, we have a similar result.

Theorem 7.3. ([2]) Let {C1,C>,...} be a family of pairwise disjoint convex
polyhedral “obstacles” in R® with a total of N faces, and let R be a ball-shaped
“robot.”

Then the complexity of the union of the “expanded obstacles” C1 & (—R),
Co®(=R),..., C,, ® (—R) is O(N?*¢) for every e > 0.

In particular, the last result shows that the complexity of the union of n
congruent infinite cylinders in IR? is only at most slightly superquadratic. No
non-trivial (subcubic) upper bound is known for infinite cylinders with arbitrary
radii.

Theorem 3.2 has the following analogue.

Theorem 7.4. ([34]) The complexity of the upper envelope of n non-vertical
triangles in R® is O(n?a(n)). This bound is asymptotically tight.

A somewhat weaker form of the last result is true in a much more general
setting: the complexity of the upper envelope of n (d — 1)-dimensional algebraic
surface patches in R?, satisfying some natural conditions, is O(n?=11¢) for every
e > 0 (see [19, 42]).

It seems likely that the results of Section 6 also generalize to higher dimen-
sions. The intersection of two (three) half-spaces in general position in 3-space
is called a dihedral (resp., trihedral) wedge. A wedge (tetrahedron) is called §-fat
if its dihedral angle (resp., each of its solid angles) is at least §.

We conjecture that the complexity of the union of any family of §-fat tetra-
hedra in R? is at most slightly superquadratic in n. To prove this conjecture



for congruent tetrahedra, it would be sufficient to show that the same statement
holds for é-fat trihedral wedges. We can prove only a weaker result.

Theorem 7.5. ([33]) The complexity of the boundary of the union of n §-fat
dihedral wedges in IR® is O(n*1¢) for every e > 0.

We do not know the answer to the following simple question: is it true that
the complexity of the union of n cubes in IR? is o(n3)? In fact, we do not even
know whether n cubes in R?® always determine at most o(n3) holes.

It is not hard to show that the complexity of the union of azis-parallel cubes
is O(n?) and that this bound is asymptotically tight. In the case of congruent
axis-parallel cubes, this bound can be improved to linear [8]. For congruent, but
not necessarily axis-parallel cubes, we have the following recent result.

Theorem 7.6. ([33]) The complezity of the boundary of the union of n congruent
cubes in R® is O(n’+*) for every e > 0.

8 Fat wedges — Extremal hypergraph theory

It was shown by Katona and Kovalev [21, 23] that for any family C of convex sets
in R?, the number of holes, i.e., connected components of R? \ UC, is at most
>4, (7), with equality only if C consists of hyperplanes or parallel strips in
general position. In fact, if any d members of C have only a bounded number, s,
of boundary points in common, then the complezity of UC is also O(n?), because
each vertex p of the union is determined by d members, whose boundaries pass
through p.

The aim of this section is to sketch a proof of the following weak (but non-
trivial) version of Theorem 7.5.

Proposition 8.1. There is an € > 0 such that the complexity of the boundary
of the union of n d-fat wedges in R® is O(n3—¢).

Let K®) (m) denote a complete 3-uniform hypergraph with 3 disjoint m-
element vertex classes, consisting of all triples containing exactly one element
from each class. As in [34], our basic tool is Erdds’s result from extremal hyper-
graph theory.

Lemma 8.2. ([16]) Let H be a 3-uniform hypergraph on n vertices containing
no subhypergraph isomorphic to K®)(m). Then H has at most n®~1/™" triples.

Three [-membered families of half-spaces, H1, Ha2, Hs C R?® are said to meet
regularly if their arrangement, restricted to the convex hull of the points

{Bd(h1) N Bd(hz) N Bd(hs) | h1 € H1,ha € Ha,hs € H3},
is combinatorially isomorphic to the arrangement
H={{(z,y,2) ER* o <} [1<i <},

HY) = {{(z,y,2) eR®:y < j} 1<) <1},



Hy = {{(z,9,2) e R*: 2 <k}, |1 <k <1},
restricted to the cube [1,1]3. (See Fig. 6.)
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Figure 6: The boundary planes of three 3-membered families of
regularly meeting half-spaces.

Lemma 8.3. ([34]) For any l, there exists L = L(l) such that any three L-

membered families of half-spaces in IR® contain three I-membered subfamilies
which meet regularly.

Obviously, it is sufficient to prove Proposition 8.1 in the special case when
the angle of every wedge is precisely §, because every wedge can be obtained
as the union of at most [7/d] such wedges. Color the wedges with a constant
number of colors so that the directions of the (infinite) edges and the directions
of the corresponding faces of any two wedges of the same color differ from each
other by less than 1 degree.

Assume, in order to obtain a contradiction, that there is a family W of n
dihedral wedges whose union has at least n>~¢ vertices on its boundary, for
some £ > 0. Combine the last two lemmas. We obtain that if ¢ = £(I) > 0
is small enough, there exist three pairwise disjoint /-membered monochromatic
subfamilies Wi, Wa, W3 C W such that, expressing every wyg € W, as the
intersection of two half-spaces, hgy N AL, (1 <s<3,1<t<1), the families of
half-spaces

Hl :{h1,|1SZSl},

Hai={hg; [ 1< <1},
H3={h3k|1§k5l}
meet regularly, and every point of the set

belongs to the boundary of UW. Note that any two half-spaces belonging to the
same family H are almost parallel. We can also assume without loss of generality



that the isomorphism between Hy,Hs, Hs and H?, HI, HI takes each half-space
hlz' (resp., h2j7 hSk) to {(x,y,z) € ]R'3 T S Z} (resp., {(:U,y,z) € R3 Yy S .7}7
{(z,y,2) € R®: z < k}).

It follows from the fact that any two wedges belonging to the same W
have the same color, that their edges are almost parallel. Therefore, we can
choose a plane P such that the angle between P and the edge of every wedge
w € Wi U W, U Ws is larger than, say, 30 degrees. This implies, for example,
that wN P is §/2-fat (in the plane). Translating P parallel to itself, if necessary,
we can assume without loss of generality that it does not pass through any
vertex of Bd(UW), and that P cuts the set S into two parts as equally as
possible. Let R (and B) denote the set of elements of S on one side of P (on the
other, resp.). Color any point (i,5,k) € [1,1]* red or blue according to whether
Bd(hy;) N Bd(h2;) N Bd(hsk) belongs to R or B, and denote the sets of red and
blue points by R’ and B’', resp.

A set X of points with integer coordinates is called convez in a given direction
if, for every segment xy parallel to this direction, both of whose endpoints belong
to X, all other integer points of zy also belong to X. We obviously have

Claim 8.4. R’ and B' are convex in the directions of all three coordinate axes.

Connect a point (i, 4, k) € R' to (i',j', k') € B' by a directed edge, whenever
their distance is 1, i.e., when they differ only in one of their coordinates, and
in this coordinate their difference is 1. Using the fact that |R'|,|B'| > [I®/2], it
follows by standard isoperimetric inequalities that the number of directed edges
is at least 12/2. We can assume, by symmetry, that at least [2/12 of them are
parallel to the z-axis and are pointed upwards. Let D denote the orthogonal
projection of these edges to the (x,y)-plane, i.e.,

D := {(i,j) € [1,1]* | Fk such that (i,7,k) € R and (4,5,k + 1) € B'}.
In view of Claim 8.4, we have

Claim 8.5. The set D C [1,1]? is convex in the directions of both coordinate
azes, and |D| > [?/12.

The last claim easily implies that D contains all integer points within an
axis-parallel square, whose side length is at least [/50.

Switching back to the original picture, this means that there are two subfam-
ilies Hy C Hi1, M5y C Ha, each of size I' := [1/50], whose cross-sections on the
plane P “meet regularly,” i.e., are combinatorially isomorphic to the arrange-

ment

{my) eR*:z<i}[1<i<IY,

{{my) eR* 1y <j}|1<j <1},
restricted to [1,1']2. Consider now the I"-membered families of wedges, W| C W,
and W) C W, corresponding to the members of Hj and H}, resp.

It follows from the definitions that, for every h; € Hj, ho € Hb, the point
Bd(h1) N Bd(hy) N P belongs to the boundary of

P ((Uw))u(uwy)).



Consequently, the complexity of the union of all planar wedges w N P (w €
(UW)) U (UWS)) is at least (I")2.

Recall that, by the choice of the direction of P, the intersection of every
element of WjUW), with P is (6/2)-fat planar wedge. Thus, according to Theorem
6.1, the complexity of their union cannot exceed O(I' log!'). This contradicts the
conclusion of the last paragraph, provided that I' = [1/50] is sufficiently large
(and € = £(I) > 0 is sufficiently small). This completes the proof of Proposition

8.1.
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