D be GenEve

This is an author manuscript post-peer-reviewing (accepted version) of the original publication. The layout of
the published version may differ .

A Formal Development and Validation Methodology Applied to Agent-
Based Systems

Di Marzo Serugendo, Giovanna

How to cite

DI MARZO SERUGENDO, Giovanna. A Formal Development and Validation Methodology Applied to

Agent-Based Systems. In: International Workshop on Infrastructure for Scalable Multi-Agent Systems:
Infrastructure for Agents, Multi-Agent Systems, and Scalable Multi-Agent Systems. Barcelona (Spain).
Berlin : Springer, 2001. p. 214-225. (Lecture Notes in Computer Science) doi: 10.1007/3-540-47772-

122

This publication URL: https://archive-ouverte.unige.ch//unige:48375
Publication DOI: 10.1007/3-540-47772-1_22

© This document is protected by copyright. Please refer to copyright holder(s) for terms of use.

https://archive-ouverte.unige.ch
https://archive-ouverte.unige.ch//unige:48375
https://doi.org/10.1007/3-540-47772-1_22

A Formal Development and Validation
Methodology Applied to Agent-Based Systems *

Giovanna Di Marzo Serugendo

CERN/IT Division
CH-1211 Geneva 23, Switzerland
Giovanna.Di.Marzo@cern.ch
http://wuw.cern.ch/Giovanna.Di.Marzo

Abstract. This paper presents first a formal development methodol-
ogy that enables a specifier to add complexity progressively into the
system design, and to formally validate each step wrt client’s require-
ments. Second, the paper describes the application of this methodology
to agent-based systems, as well as development guidelines that help the
specifier during the development of such systems. The methodology and
the development guidelines are presented through an agent market place
example.

1 Introduction

Multi-agent systems need, as any other system, to be supported by a proper de-
velopment methodology. The need for such a methodology is more crucial in the
case of agent-based systems, since the composition of independently developed
agents may lead to unexpected emergent behaviour. In addition, agent-based
systems are complex, and it is difficult for a specifier or a programmer to put
every details immediately into his design.

This paper presents a formal development methodology that enables the de-
signer to add complexity progressively into the system: problems are solved one
after the other, and design decisions are formally validated at each step. The
methodology follows the two languages framework, i.e., it advocates the joint
use of a model-oriented specifications language for expressing the system’s be-
haviour, and a property-oriented specifications language (logical language) for
expressing properties. The proposed methodology is general enough and can be
applied to any model-oriented formal specifications language. A particular ap-
plication has been realised for a special kind of synchronized Petri nets, called
CO-OPN/2 [1].

This paper describes as well development guidelines for agent-based systems
within the proposed methodology. Agent decomposition, interactions between
agents (composition, coordination, message passing, blackboard), as well as im-
plementation constraints (e.g., actual communication using RMI, CORBA, etc.)
are progressively added during the development process.

* Part of this work has been performed while the author was working at the University
of Geneva and at the Swiss Federal Institute of Technology in Lausanne (EPFL).

The structure of this paper is as follows. Section 2 describes the formal de-
velopment methodology, and presents the formal specifications language CO-
OPN/2. Section 3 provides the development guidelines for agent-based systems.
Section 4 illustrates the methodology and guidelines through a simple agent
market place example. Section 5 presents related works.

2 Development Methodology

The proposed methodology addresses the three classical phases of the develop-
ment process of distributed applications: the analysis phase, the design phase,
and the implementation phase. This section presents the design phase, explains
the necessity of development guidelines, and briefly describes CO-OPN/2.

2.1 Design by Contracts

The analysis phase produces informal requirements that the system has to meet.
The design phase consists of the stepwise refinement of model-oriented speci-
fications. Such specifications explicitly define the behaviour of a system, and
implicitly define a set of properties (corresponding to the behaviour defined by
the specification). During a refinement step it is not always necessary, desir-
able or possible, to preserve the whole behaviour proposed by the specification.
Therefore, essential properties expected by the system are explicitly expressed
by means of a set of logical formulae, called contract. A contract does not re-
flect the whole behaviour of the system, it reflects only the behaviour part that
must be preserved during all subsequent refinement steps. A refinement is then
defined as the replacement of an abstract specification by a more concrete one,
which respects the contract of the abstract specification, and takes into account
additional requirements.

The implementation phase is treated in a similar way as the design phase. At
the end of the design phase, a concrete model-oriented specification is reached,
it is implemented, and the obtained program is considered to be a correct im-
plementation if it preserves the contract of the most concrete specification.

Figure 1 shows the three phases. On the basis of the informal requirements,
an abstract specification Spec, is devised. Its contract Contractg formally ex-
presses the requirements. During the design phase, several refinement steps are
performed, leading to a concrete specification Spec,, and its contract Contract,,.
The implementation phase then provides the program Program and its contract
Contract. A refinement step is correct if the concrete contract contains the ab-
stract contract.

This methodology is founded on a general theory defined in [4]. The partic-
ularity of this methodology wrt traditional ones using the two languages frame-
work is that it goes a step further, since the contracts explicitly point out the
essential properties to be verified. Indeed, the specifier can freely refine the for-
mal specifications, without being obliged to keep all the behaviour.

pryis ot oyt

Design Speco 3 Comracto
Refinement Based on Contracts ¢ ' $ Contraclo C Conlract1 —= Correct

Spec1 i Contract 1

v v Contract | T Contract —~ —> Correct

|
1 Contract

vl
|

Implementation j
I Contract T Contract — Correct
Implementation Based on Contracts| ~ Program ' Contract n =

Fig. 1. Development Methodology

This methodology is well-suited for agent-based systems, since complexity
is introduced progressively, and emergent behaviour can be controlled by the
means of contract.

2.2 Development Guidelines

The theory of refinement and implementation based on contracts provides the
basis to formally prove that a refinement step and the implementation phase are
correct. However, the theory cannot help the specifier in establishing a contract,
and in choosing a more concrete specification. Therefore, we suggest the use
of development guidelines, i.e., a sequence of refinement steps that a specifier
should follow when developing an application. Development guidelines depend
on the kind of application being developed. They should be seen as refinement
patterns, since, after having identified the system to develop, the specifier applies
a dedicated series of design steps.

Development guidelines have already been defined for client/server applica-
tions [3], as well as for dependable applications [5].

2.3 CO-OPN/2 and HML

The above general theory has been applied to a high-level class of Petri nets,
called CO-OPN/2, using the Hennessy-Milner logic (HML) as logical language.
Examples of this paper will be illustrated using CO-OPN/2 and HML.
CO-OPN/2 [1] is an object-oriented formal specifications language. An object
is defined as an encapsulated algebraic net in which places compose the internal
state and transitions model the concurrent events of the object. Transitions are
either methods (callable from other objects), or internal transitions (describing
the internal behaviour of an object). Objects can be dynamically created. Each
object has an identity that can be used as a reference. When an object requires

a service, it asks to be synchronised with the method of the object provider
(with). The synchronisation policy is expressed by means of a synchronisation
expression, which can involve many partners joined by three synchronisation
operators (simultaneity (//), sequence (. .), and alternative (+)).

An HML formula, expressed on CO-OPN/2 specifications is a sequence (or
a conjunction (A), or an alternative (+)) of observable events (firing of a single
method or parallel firing of several methods). An HML formula is satisfied by
the model of a CO-OPN/2 specification if the sequence of events defined by
the formula corresponds to a possible sequence of events of the model of the
specification.

3 Agent-Based Systems

There is currently no general consensus on the definition of an agent. There-
fore, this section first presents some preliminary definitions of what we think
are an agent, and an agent-based system. Second, it describes the development
guidelines identified for these systems.

3.1 Definitions

From a software engineering point of view, we consider an agent-based system
in the following manner:

— the system performs some functionality to some final user (another software
system, human being, etc.);

— the system is made of one or more collections of agents, together with rela-
tionships among collections (negotiation techniques, cooperation protocols,
coordination models). Agents engage in collections, that can change at run-
time (joint intentions, teams);

— agents in a collection interact together to solve a certain goal (message pass-
ing, blackboard, etc). They may have some social knowledge about their
dependencies (peers, competitors);

— an agent is a problem-solving entity. It performs a given algorithm to reach
its goal.

3.2 Development Guidelines

The development steps identified in the case of agent-based applications are the
following:

1. Informal Requirements: a set of informal application’s requirements includ-
ing validation objectives is defined;

2. Initial contractual specification: System’s functionality.
Based on the informal requirements, the initial specification provides an
abstract view of the system where the problem is not agent based. The
contract reflects the functionality of the application;

3. First refinement step: System’s collections. This step leads to a view of the
system made of several collections of agents, together with the relationship
among the collections (e.g. joint intentions, teams, etc.). The contract is
extended to the functionality of each collection, and to the properties of
their composition;

4. Second refinement step: Collections design. Each collection is specified as a
set of agents together with their interactions (message passing, blackboard,
dependencies). The contract describes the functionality of each agent in the
collection, as well as the desired properties of the agents interactions;

5. Third refinement step: Agent design. The internal behaviour of each agent
is fully described (algorithm used for solving its goal, action decision upon
knowledge processing, etc.). The contract is extended to the properties ex-
pected by the internal behaviour of each agent;

6. Fourth refinement step: Actual communications means. The previous steps
define the high-level communication means employed by the agents. This
step integrates the low-level communications means upon which high-level
communications can be realised (RMI, CORBA, etc.). The contract contains
the characteristics of the chosen communication;

7. Implementation. Step 6 is implemented using the chosen programming lan-
guage. The contract of step 6 is expressed on the program.

These guidelines enable the macro-level part (identification of collections of
agents) to be followed by a micro-level part (design of collections, design of
agents). In addition, the micro-level part can be done independently for every
collection (steps 4. to 7.).

4 Market Place Example

We consider a simple market place example based on [2]. This section describes
the development of this system according to the guidelines given above.

4.1 Informal Requirements

This step corresponds to guideline 1. The market place application offers some
operations to buyers and sellers that have to respect the following requirements:

— A new buyer can register itself at any moment to the market place system;

— A new seller can register itself at any moment to the market place system;

— A registered buyer can propose a price for a given item that he wants to buy,
and specifies the highest price that he is ready to pay for the item;

— A registered seller can make an offer for a given item that he wants to sell,
and specifies the lowest price at which he is ready to sell the item;

— Buyers and sellers can consult the system to know if they have been involved
in a transaction. The price reached during the transaction must be less or
equal to the highest price specified by the buyer, and greater or equal to the
lowest price specified by the seller.

4.2 Initial Specification: Functional View

The initial specification corresponds to development guideline 2. It is given by
CO-OPN/2 specification made of MarketPlace class of Fig. 2

Class MarketPlace

toBuy: toSell:
Goods Goods

<b,g,p,low> —>| «— <s,g,p,high>
buy(b,g,p,high) sell(s,g,p,low)
<b,g,p,high> <s,g,p’,Jlow>
p > low A
<s,b,g,p> p’ < high =
transaction
b >)

buyers: sold: sellers:
Buyers SoldGoods °% S8 Sellers

e s

new_buyer(b) new_seller(s)

sold_goods(sg)

Fig. 2. Market Place System

This class offers five methods, corresponding to the five system operations
identified in the previous design step (Section 4.1):

— the new_buyer(b) method is used by a buyer whose identity is b for regis-
tering itself to the system. The system simply enters identity b into place
buyers;

— the new_seller (s) method is used by a seller, called s, for registration. The
system simply enters identity s into place sellers;

— the buy(b,g,p,high) method enables an already registered buyer b to in-
form the system that he wants to buy an item g at a desired price p. The
highest price he is ready to pay for the item is high. The system then enters
this information into place toBuy;

— the sell(s,g,p,low) method enables an already registered seller s to pro-
pose the item g, with a starting price p, and a minimum price low. The offer
is entered in place toSell.

As soon as there is a request for buying item g and an offer concerning the
same item g, with a buying price compatible with the lowest selling price,
and a selling price compatible with the highest buying price, the transaction
occurs. The request for buying and the offer are removed from the system
by transition transaction, and the transaction is entered into place sold;

— the sold_goods (sg) method enables a buyer (or seller) to consult the system

for occurred transactions.

Contract. In order to remain concise, we present a contract ¢r, expressed on
this initial specification, made of only two HML formulae: ¢1, and ¢r,. It is ob-
vious that a larger contract is necessary to ensure all the informal requirements.

Assuming variables such that [< pl < h, p2 <[and p3 > h:

¢1, = <MP.create><M P. new_buyer(b)><M P. new_seller(s)>

<MP.buy(b, g, p, h)><MP.sell(s, 9,0, l)><M P. sold_goods(s, b, g, p1)>
¢1, = <M P. create><M P. new_buyer(b)><M P. new_seller(s)>

<MP.buy(b, g, p, h)><MP.sell(s, g,p’,1)>

(= <MP. sold_goods(s, b, g, p2)> N— <M P. sold_goods(s, b, g, p3)>) .

Formula ¢, states that once the market place M P has been created, a buyer
b, and a seller s can register themselves to the system. They can respectively
make a request to buy item g, and an offer to sell item g. Then, the transaction
occurs for prices pl compatible with the lowest selling price, and with the highest
buying price, i.e., such that [< pl < h.

Formula ¢1, is similar to ¢1,, but it states that for prices p2 such that p2 <
and prices p3 such that p3 > h, then the transaction does not occur.

Contract ¢p is actually satisfied by the model of the initial specification.
Indeed, transition transaction is guarded by condition p > low A p’ < high.
This condition prevents the firing of this transition whenever it does not evaluate
to true.

4.3 Refinement R1: Agent Decomposition and Interactions

This step corresponds to development guideline 4. (In this example, step 3. is
skipped, because the system contains only one collection of agents.)
The specification is made of three classes: the MarketPlace class, given by
Fig. 3, the BuyerAgents class of Fig. 4, and the SellerAgents class of Fig. 5.
The MarketPlace class stands for the homonymous class of the initial spec-
ification. It offers the same interface as before to the actual buyers and sellers,
enriched with some more methods:

— the new_buyer(b) and new_seller(s) methods enable a new buyer b, or a
new seller s to enter the system. A dedicated agent b_agent, respectively
s_agent is created. The system stores pairs, made of a buyer’s identity and
the identity of its dedicated agent, into place buyers; and pairs of seller’s
identity and agent’s identity into place sellers;

— the buy(b,g,p,high) and sell(s,g,p,low) methods are used by buyer b,
respectively seller s, to enter a request to buy an item, respectively an offer to
sell an item into the system. The market place forwards this information to
the agent that works on behalf of the buyer or the seller. It retrieves the iden-
tity of the corresponding agent, and calls the method new_good(g,p,high),
respectively new_good(g,p,low);

— the sold_goods (sg) method enables buyers and sellers to consult the list of
transactions;

— the get_buyers (1) and get_sellers(1l) methods return the list of all buyer
agents, and seller agents respectively. Method get_buyers(1l) is used by
seller agents to know the identities of buyer agents, in order to ask them

Class MarketPlace

~

1 buyserslist:
~— List0fBuyersAgents

get_buyers(l) x

N buyers:
< Buyer,BuyerAgents >
<b,b_agent>
<b,b.agent> ﬁ»Qi
<b,b-_agent>

sellers:
<Seller,SellerAgents >

>I
<s,s- agent>
<s,s_agent> —>
<s,s_agent>

new_buyer(b)
with
b_agent.create

buy(b,g,p,high) with
b_agent.new_good(g,p,high)

new_seller(s) sell(s,g,p,low) with
with s-agent.new_good(g,p,low)
s-_agent.create sellerslist: sold:

<s-agent, b agent,g,p>

—

register_transaction(s-agent,b-agent,g,p)

ListOfSellerAgents SoldGoods
1 —_— sg i
sg
get-sellers(1) sold_goods(sg)

Fig. 3. Refinement R1: Market Place System

some services. Similarly, method get_sellers(1) is used by buyer agents to
know identities of seller agents;

— the register_transaction(s_agent,b_agent,g,p) method is used by seller
or buyer agents to inform the system about the transactions that have oc-
curred.

The BuyerAgents class, given by Fig. 4, specifies buyer agents, while the
SellerAgents class, given by Fig. 5, specifies seller agents. These classes are
very similar, and behave almost in the same manner.

— the create constructor of the BuyerAgents class enables to create new in-
stances of buyer agents;

— the new_good(g,p,high) method is called by the market place whenever
the buyer (for whom the agent is working) enters a request to buy an item
into the system. The agent stores the request into place toBuy. As soon as
the request is stored in this place, transition makeOffers first contacts the
market place in order to obtain the current list of sellers (this list changes
when the system evolves, since new sellers can enter the system at any mo-
ment). Second, the transition informs every seller of this list (broadcast) that
there is a new request for buying item g, by calling method send0ffer of
each seller agent. If after some time, no transaction concerning this request
has occurred, transition timeout increases the price from one unit (provided
that the highest price condition is not violated);

— the sendOffer(s_agent,g,p) method is used by a seller agent, whose iden-
tity is s_agent, to inform the buyer agents that it sells item g at price p. As
soon as the there is an offer for item g at a price p, which is the same as the

Class BuyerAgents

new.good(g,p,high) create

/ p+1 < high = \
bish timeout
<g,p;high> proposedOffers:
. Goods
<g,?+l’h‘g <&p, h1g1‘>
<. f h>

&
toBuy: yp’h’gh>
Goods
makeOffers with
MP.get_sellers(l) .
sl_agent. sendOffer(self,g,p) o
s2_agent.send Offer(self,g,p) .. «@
[o
agreement with
s-agent.acceptOffer(self,g,p) ..
MP.register(s_agent,self,g,p) <g,p,high>

Q

receivedOffers: > toremove:
Offers ge“'c,g'? g item
p4-to

5.0 ~__
CF D e
¥ <s_agent,g,p> N 2
<s-agent,g,p> g
\ remove ; /

sendOffer(s-agent,g,p) acceptOffer(s-agent,g,p)

Fig. 4. Refinement R1: Buyer Agent

current price offered by the buyer agent, the transaction occurs. Transition
agreement fires: it calls method acceptOffer of the corresponding seller
agent (s_agent), and informs the market place. Due to the CO-OPN/2 se-
mantics, transition agreement can fire only if method acceptOffer of the
corresponding seller agent can fire. In that manner, only one agreement can
be reached for a given offer (the seller does not sell two times the same item).
Indeed, if the seller agent has already reached an agreement with another
buyer, then its method accept0ffer cannot fire, and consequently transition
agreement of the current buyer cannot fire;

— the acceptOffer(s_agent,g,p) method is called by a seller agent, whose
identity is s_agent, when an agreement is reached with the buyer agent.

The SellerAgents class is similar to the BuyerAgents class, except that
these agents decrease their prices when there is no corresponding buyer.

Contract. The contract for refinement R1 is made of three formulae. Consid-
ering, as before, variables such that: [< pl < h, p2 <[and p3 > h, the contract
is made of the three formulae below:

PR1; = P1y; PR1, = PI,
$r1; = <M P. create><s_agent. create><bl_agent. create><b2_agent. create>
<s_agent. sendOffer(bl_agent, g, p)><s_agent. sendOffer(b2_agent, g, p)>
<bl_agent.sendOffer(s_agent, g, p)><b2_agent. sendOffer(s_agent, g, p)>
((<bl_agent. acceptOffer(s_agent, g, p)> + <b2_agent. acceptOffer(s_agent, g,p)>) A
- (<bl_agent. acceptOffer(s_agent, g, p)><b2_agent. acceptOffer(s_agent, g, p)>) A
- (<bl_agent. acceptOffer(s_agent, g, p)> // <b2_agent. acceptOffer(s_agent, g,p)>)) .

Formulae ¢r1,, and ¢r1, are the same as ¢r, and ¢r,. Formula ¢r1, states
that once the market place has been created, it is possible to create a seller agent

s-agent, and two buyer agents bl_agent and b2_agent. The seller agent offers item
g at price p, and the two buyer agents are ready to pay the same price p for g.
The formula then states that either buyer agent bl_agent or b2_agent accepts
the offer (+), but not both (neither in sequence, nor simultaneously (//)).

The three formulae of the contract are satisfied by the specification. Indeed,
formulae ¢r1, and ¢r1, are true, because of the guarded transition timeout.
There is no request (nor offer) that violates the condition p + 1 < high (respec-
tively p — 1 > low).

Formula ¢Rr1, is true because transition agreement can fire only once per
transaction: either transition agreement of the buyer agent fires, or that of the
seller agent fires, but not both. The firing of transition agreement requires the
firing of the method acceptOffer of the other agent involved in the trans-
action. The firing of these methods causes the removal of token <g,p,high>
from place proposedOffers of the buyer agent, and <g,p,low> from place
proposed0ffers of the seller agent. In that manner, transition agreement and
method acceptOffer cannot fire more than once for each offer.

Although the internal behaviour of the initial specification and the first re-
finement are different (the agreement is reached on a different basis), the spec-
ification of the first refinement is actually a correct refinement of the initial
specification. Indeed, the contract of the initial specification is preserved by the
refinement R1.

Class SellerAgents

new.-good(g,p,low) create

/ p-1 > low = \
. timeout
<g,p,low> proposedOffers:
o Goods
W <.
2g b0 &P.low s
< VoW 7
»D, P
\[k <o

makeOffers with

MP.get_buyers(l) ..
bl_agent.sendOffer(self,g,p) .. $4
b2_agent.sendOffer(self,g,p) .. Q>O

)

agreement with
b-agent.acceptOffer(self,g,p) ..
MP.register(self,b_agent,g,p) <g,p,low>

B

receivedOffers:
i3 08?7
ers oot

Pt
Qi <b_agent,g,p>
3
<b-agent,g,p> g
N\ remove

sendOffer(b_agent,g,p) acceptOffer(b_agent,g,p)

toremove:
item

Fig. 5. Refinement R1: Seller Agent

4.4 Refinement R2: Actual Communications

This step corresponds to development guideline 6. (Step 5 is skipped, since, in
this example, we do not want a more sophisticated agent algorithm).

In the case of an electronic market place, communications among agents occur
through the Internet. Therefore, mechanisms such as RMI, CORBA, sockets, etc.
have to be considered, and chosen.

In the case of our example, an RMI mechanism (based on TCP/IP) has been
considered. The market place acts as a server: it provides some RMI object to the
agents so that they access the market place through this object as if it was local.
Agents are specified as RMI objects, thus remote invocation may occur from
the market place to the agents and between agents. The specification is made
of 5 classes: the market place (acting as a server); an RMI class for accessing
the market place; two RMI classes for the buyer agents, and the seller agents
respectively; and an additional class representing the RMI registry.

Contract. The contract of section 4.3 is extended to take into account RMI
features.

4.5 Implementation

This step corresponds to development guideline 7. A Java program is derived
from the previous step. Each CO-OPN/2 class is implemented in Java.

Contract. The contract contains the same formulae as the contract of the
previous step, but expressed on the Java program, instead of the CO-OPN/2
specification, e.g., the creation of the system is represented by the call to the
main method of the program (Java Class MarketPlace). Description of such
translation is given in [4].

5 Related Works

Agent-oriented software engineering is currently a subject of increasing research.
Jennings [6] describes agent-based systems under a software engineering point of
view: agents, high-level interactions, and organisational relationships. Gaia [8]
is a methodology defined for agent-oriented analysis and design. It enables to
develop a system increasingly. The specifier describes the system using several
models: requirements, roles models, interactions models (for the analysis); and
agent model, services model, acquaintance model (for the design).

The verification that a program is correct wrt system specifications is a prob-
lem similar to the one of verifying that system specifications are correct wrt the
requirement specifications. Meyer [7] advocates that, in order to face the prob-
lem of correctness, every program operation (instruction or routine body) should
be systematically accompanied by a pre- and a post-condition.

6 Summary

This paper presents a methodology for developing agent-based systems that
enables progressive system design and formal validation of each step. The paper

presents as well development guidelines, that help the specifier to introduce
complexity into the design. A small agent market place system is described:
starting from informal requirements a Java implementation is reached, and every
step is formally proved.

References

1. O. Biberstein, D. Buchs, and N. Guelfi. CO-OPN/2: A concurrent object-oriented
formalism. In Proc. Second IFIP Conf. on Formal Methods for Open Object-Based
Distributed Systems (FMOODS). Chapman and Hall, 1997.

2. A. Chavez and P. Maes. Kasbah: An agent marketplace for buying and selling
goods. In Proceedings of the First International Conference on the Practical Ap-
plication of Intelligent Agents and Multi-Agent Technology, 1996.

3. G. Di Marzo Serugendo. A formal development and validation methodology for
system design. In 5th International Conference on Information Systems Analysis
and Synthesis (ISAS’99), 1999.

4. G. Di Marzo Serugendo. Stepwise Refinement of Formal Specifications Based on
Logical Formulae: from CO-OPN/2 Specifications to Java Programs. PhD thesis,
Swiss Federal Institute of Technology in Lausanne, 1999.

5. G. Di Marzo Serugendo, N. Guelfi, A. Romanovsky, and A. F. Zorzo. Formal
development and validation of Java dependable distributed systems. In Fifth
IEEE International Conference on Engineering of Complex Computer Systems
(ICECCS’99). IEEE Computer Society Press, 1999.

6. N. Jennings. On agent-based software engineering. Artificial Intelligence,
117(2000):277 296, 2000.

7. B. Meyer. Object-Oriented Software Construction. Prentice Hall, 1997.

8. M. Wooldridge, N. Jennings, and D. Kinny. The Gaia methodology for agent-
oriented analysis and design. Journal of Autonomous Agents and Multi-Agent
Systems, 3(2000), 2000.

