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Abstract. There is an increasing demand for designers and developers
to construct ever larger multi-agent systems. Such systems will be com-
posed of hundreds or even thousands of autonomous agents. Moreover,
in open and dynamic environments, the number of agents in the sys-
tem at any one time will fluctuate significantly. To cope with these twin
issues of scalability and variable numbers, we hypothesize that multi-
agent systems need to be both self-building (able to determine the most
appropriate organizational structure for the system by themselves at run-
time) and adaptive (able to change this structure as their environment
changes). To evaluate this hypothesis we have implemented such a multi-
agent system and have applied it to the domain of automated trading.
Preliminary results supporting the first part of this hypothesis are pre-
sented: adaption and self-organization do indeed make the system better
able to cope with large numbers of agents.

1 Introduction

When designing or building a multi-agent system (MAS), a designer has to
ensure that the agents and overall collective provide the facilities prescribed by
users. However in multi-agent systems that consist of large numbers of agents,
current design methodologies are often unable to ensure such provision. This
is not because these methodologies have inherent limitations, but because the
practice and the theory on which they are based contain very few studies directly
concerned with the scalability of MASs. Yet, MASs for use in open systems
(e.g. the Internet and corporate intranets) are not only likely to require large
numbers of agents, but also present designers with the problem of dynamic agent
numbers too. Even worse, if the expertise to design large MASs was indeed
developed, it may still prove impossible to redesign and upgrade software before
its environment, and thereby the demands on it, evolve. Thus, the current state
of the art is challenged by MASs that are large or where the magnitude or speed
of agent population variability confounds one overall design. To tackle both these
problems we hypothesize that MASs should be self-building (able to determine
the most appropriate organizational structure for the system by themselves at
run-time) and adaptive (able to change this structure as their environment
changes).

The majority of MAS work deals with systems in which agents are peers
of each other. However, it seems unlikely that such structures are the most



appropriate when hundreds or thousands of agents are required. For this rea-
son, MAS designers are increasingly using metaphors from human social and
economic organizations (e.g. [8])—where we are used to dealing with large num-
bers of (human) agents—to help structure their systems. Human organizations
operate by enforcing avenues of communication and control between individu-
als in order for the overall grouping to achieve its goals. Of rough equivalence
to organizational structure, MASs use acquaintance topologies to perform the
same function of defining and constraining interaction. These topologies may be
mesh, fully connected, star, hierarchic, etc., or hybrids, and the inter-agent rela-
tionships between them may be master, slave or peer, or anything else deemed
suitable. Although it is tempting to mirror human socio-economic organizational
structures or the roles therein, it is not known if this is the most appropriate
way to achieve the goals of MASs. A further disparity between organizational
theory and practice for humans and agents arises because the emphasis in MASs
may not be on the whole ‘organization’ achieving its goals at the expense of
the goals of individuals if necessary (as in human organizations). In MASs, the
achievement of the goals of its users, and thereby their agents, is the prime
focus of attention, not the overall emergent behavior. Thus, MASs that have
imposed organizational structure, or have the ability to dynamically construct
their own, should not be forced to limit (or inherit) their techniques, rationale
and structures to those of anthropic organizational theory and practice.

Against this background, the primary focus of this paper is in presenting
how a MAS can adapt its structure for various population sizes.! In so doing,
it is suggested that herein lies a method for: 1) the creation of MASs that
can better deal with variable numbers of agents, and 2) compensating for the
difficulties of building large-scale MASs by building at a sufficiently manageable
small size with reliance upon increased scale tolerance for later scaling to the
required size. This work advances the state of the art in the following ways. First,
presentation of empiric evidence to support the case for dynamic organizational
structure. Second, an implemented method for allowing agents to dynamically
change organizational structure. Lastly, evidence to support the proposition that
MASs that have fixed organizational structures are less scalable than those that
can adapt to population size. (For a discussion of fixed versus flexible form in
the context of human organization theory see [11]).

We believe that a MAS that can both operate with different population sizes
and deal with dynamic changes to population during operation, is more scalable.
To disambiguate scalable (noting that the term has several different meanings
in computer science), the facets we are concerned with are those that refer to the
relationship between the collective computational resource needs of the agents
and the population size. However, in order to say that a particular system is
scalable, or compare scalability as a property, a measure must be determined. In
this case we use a measure of the processing requirements for agents (collectively)
which roughly equates to the number of machine instructions they incur when
achieving their goals. Despite using a metric to compare several methods of

! Space limitations prevent us from reporting on the self-building hypothesis.



agent operation, we avoid the pitfalls of defining absolute requirements for a
MAS to be termed scalable, and instead concentrate on the reduction of growth
in computational resource demands whilst maintaining utility. (If a definition
of a scalable MAS is to be forced, we would loosely define it as the ability
of a MAS operating with given computational resource availability limits to
achieve required minimum levels of utility to users for target ranges of population
size. Thus, higher scale tolerance implies that larger population sizes may be
successfully dealt with.)

The remainder of the paper is structured as follows: section 2 introduces
the e-commerce application we have developed for investigating the issues of
scalability. Section 3 presents data obtained for a MAS in various organizational
forms. Section 4 discusses organizational adaptability. Section 5 covers related
research. Finally, section 6 presents our initial conclusions and discusses future
work.

2 A Trading Agents Scenario

Electronic commerce is a natural domain for testing hypotheses about scalability.
It involves large numbers of end-users and online businesses and it constitutes
a highly dynamic environment—both in terms of interactions and in terms of
membership. Our particular scenario involves agents that encapsulate the basic
needs of the end-user (e.g. automated product location and purchase) and sup-
plier agents (automated query processing and order placement facilities). (See
[7] for other goals of the scenario.)

End-users’ goals to purchase commodities are presented to the customer
agents according to a probability distribution over a specifiable period of simulated-
time. The specifics of a request include a commodity identifier, the required vol-
ume, and a deadline. Generation of these requests is achieved through probability
distributions for each request parameter.? Customer agents are also capable of
dynamically building preferences for suppliers on a per commodity and general
basis and propagating information about suppliers and their preferences to other
customers (i.e. they can make recommendations), forming co-operative groups
to make collective bulk (discounted) purchases, and finally, forming and main-
taining models of suppliers’ wares and prices.

In contrast to customer agents, suppliers are currently limited in terms of
dynamics. Their character within the market is defined in terms of the products
they sell and the prices they charge. Although their product ranges do not vary
periodically, each supplier has the ability to model and generalize customer com-
modity requirements, and offer ‘good’ customers discounts and/or bulk deals.
They also monitor the requests they receive and analyze their responses over
time. Reaction to such data may be to start selling often requested commodities
or drop prices slightly to improve the number of sales of given items.

2 The probability distributions referred to in this paragraph can either be uniform or
Poisson. However, the results presented herein were generated with uniform proba-
bility distributions for query generation and query parameters.



Both types of agent in this scenario are implemented so that, effectively, they
do not have computational or storage resource bounds. That is, the behavior of
and interaction between agents are not affected by hardware concerns—neither
absolute or relative computational speeds, nor memory requirements (disk space
being plentiful). Furthermore, each agent processes each of its goals, its internal
models and the messages it receives until no further processing can occur without
communication to the other agents. When all the agents have reached this state
all messages are exchanged. The agents resume processing once all messages
have been delivered. These two steps are referred to as a system tick, and their
repetition provides continuous operation. Note that ticks do not constitute a
fixed amount of time, but they do represent the passage of time.

The agents operate in this manner because it means that any variance in
the behavior of the individuals, and ultimately the whole MAS (due to the
non-deterministic order in which agents are executed or receive and transmit
communications) can be eliminated. A further advantage is that since no agent
receives information before any other, none can be said to have an advantage
over the others. For example, in a MAS where there are too few resources, faster
acting agents may gain an unfair advantage over others. We have also found this
method of operation provides reproducible MAS behavior.

Moreover, this scheme also fulfills a subtle requirement of these experiments:
that the aim is not to develop agents whose primary concern is goal prioritiza-
tion (or any other issues generally dealt with by resource-bounded research), but
achievement of the desirable properties of a MAS whilst reducing as far as possi-
ble the resource needs. In other words, the experiments do not seek to determine
the goal achievement levels possible in a resource bounded environment, but to
predict the minimal resource requirements needed to attain a given level of goal
achievement. The most important property of this MAS is that of maintaining
agents’ utility to their users. The agents therefore undertake whatever actions
are necessary to ensure that their responsibilities to users are met. (For exam-
ple, searching all the suppliers for a cheaper deal even when they have already
located an acceptable price, or co-operating with other customers to get bulk
discount). This is done, however, in a manner which tries to minimize the total
computational resource needs of the MAS.

The agents are implemented as interpreted rules with mental and (speech
act based) message-content based guards on their firing (similar to agent0 [18]).
Upon firing, each rule calls one or more action handlers which are Prolog predi-
cates.

2.1 Performance Measures

The specific metrics used herein to compare scalability are: 1) the number of
ticks (process/ communication cycles) that have passed, t, 2) the total number
of agents in the system, n, and 3) the sum of the number of (Prologs’) logical



inferences® required for each tick, for all agents (¥ LI;). (The ratio of the number
of customer agents to supplier agents is ten to one, the minimum number of
suppliers being five.) Also, as new agents are added to the system, so too are the
goals that they receive from their users. Thus, the total of simulated user goals
remains at a fixed ratio to the number of agents and therefore there is no need
to introduce MAS throughput into the comparisons.

3 Organizational Forms and Agent Interactions

In this section we present several organizational forms of MAS for our trading
scenario. These forms can be distinguished by the constraints within which the
agents interact with each other. For example, whether they can share informa-
tion, form co-operative groups or take action to combat inefficiency. The purpose
of examining these various forms are firstly to show that different organizational
forms place different resource requirements on agents, and secondly, to deter-
mine what the relationship between the resource requirements of a given form
and the number of constituent agents is.

] Supplier
v Intermediary

Fig. 1. Acquaintance topology forms

In the first (and most simple) organization form (figure 1a), each customer
agent can reason about and communicate with each supplier (and vice versa).
However, customers are unaware of other customers and suppliers are unaware of
other suppliers. Consequently, agents cannot form groups, share information, or

3 The number of logical inferences can be equated to a measure of the number of
machine instructions the agents execute. More precisely, it is in fact the total number
of passes through the Prolog call and redo ports.



undertake co-operative behavior. This form represents a trading scenario where
there are multiple intelligent agents— but they do not exhibit properties ex-
pected of MAS agents since the organizational form forces the agents to be
asocial in this respect.

The second form (figure 1b) additionally allows customers to be aware of
other customers (and suppliers, other suppliers). Therefore, customer agents
are able to form groups with other relevant customer agents, allowing them
to co-operate by sharing tasks that are commonly undertaken. For example,
sharing information about product availability of suppliers and formation of
purchasing groups. Suppliers are similarly enabled. Topologically, this form is a
fully connected mesh and represents a standard fully connected peer MAS.

The third form is identical to the second, with the exception that an interme-
diary agent that undertakes collective tasks is present. For example, centraliza-
tion of the formation of a supplier-to-product catalogue and modeling and dis-
semination of user-preferences. This form represents and facilitates intermediary
functions (brokerage, matchmaking, recruitment, facilitation, etc [14]). Rather
than allowing agents to (s)elect one of their number to take on these tasks (for
which its utility to its user may suffer greatly), an extra agent is introduced.
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Fig. 2. Logical Inferences versus number of ticks versus number of agents for Form 1
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3.1 Resource requirements for form 1

Figure 2 shows the relationship between Y LI;, t and n.* Regardless of the num-
ber of agents, the amount of processing resources required can be split into two
separate stages. Initially, the agents do not have models of each other so they
require higher amounts of processing resources to achieve their goals. This is
because they need to locate commodities and services and undertake model for-
mation. As ¢ increases, the completeness of the customers’ models of the suppliers
increase and they are able to more efficiently achieve their goals. Eventually the
initial extra resource requirements needed whilst forming the models lessens suf-
ficiently for the agents to assume a more stable resource requirement. We refer
to this first (initial model formation) stage as the convergence phase. In the sec-
ond stage—which we refer to as the converged phase— agents require resources
to maintain the accuracy of these models (since users may change their buying
habits and suppliers may alter product ranges or prices). (In figure 2 the conver-
gence phase ends (and the converged phase begins) at approximately tick 400.)
Models are maintained with the aim of preventing (or lessening) agents propa-
gating incorrect information to the other agents (e.g. for recommendations), or
wasting time approaching inappropriate acquaintances for group formation.

When using this organizational form, both customer and supplier agent
groups have more or less the same functionality and are invariably trying to sat-
isfy goals which are largely common (e.g. forming the same models of each other
or buying the same commodities). However, because the acquaintance topology
limits them, they cannot co-ordinate their activity, nor share information that
could benefit one another.

When viewed from a system’s level perspective this is a ridiculous position.
There are massive amounts of replicated functionality, data and redundant com-
putation and agents’ experiences and discoveries do not benefit others. To this
end, it is clear that sharing information and co-operating are necessary to in-
crease efficiency and decrease resource requirements. Therefore, form 2 allows
full acquaintance.

3.2 Resource requirements for form two

Figure 3 shows the situation where agents are able to detect and interact with all
other agents. Hence, they can and do share information and co-operate for com-
mon goals. In comparison to the previous graph, we see that the graph is both
quantitatively and qualitatively different. In addition to the resource require-
ments being very much higher, both its growth factor (against agent numbers)
and shape differs.

The higher levels of logical inferences required reflect the fact that the agents
with the same purpose (purchase/supply) model each other and reason with

4 The graphs in this paper have been smoothed to show their general form. Specifically,
they were smoothed with a compound windowed running maximum and windowed
running average (in that order). To clarify the relationship between n and the shape
of individual MAS runs, we show selected values of n rather than a surface.
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Fig. 3. Logical Inferences versus tick versus number of agents for Form 2 MAS

these models to form groups. Formation, operation within and disbanding of
joint activities is a relatively costly behavior to incorporate, compared to the act
of modeling between customers and suppliers for purchasing purposes. However,
the number of processing/message delivery cycles that are taken to reach the
converged phase is very much reduced (convergence at approximately tick 100
- versus tick 400 for form 1) since the agents do share tasks and information.
This is manifest by the shape of resource requirements for the convergence phase
being roughly parabolic rather than asymptotic. The relationship between X' LI,
and n remains of the same order of complexity (cubic). Any benefits that the
agents derive because they co-operate are lost to the overheads of co-operation.
(The agents in these tests perform relatively few tasks specific to the scenario
compared to those necessary for MAS operation— i.e. most of the complexity
and resource needs of the agents resides in general MAS interaction.)

The application scenario also illustrates an important point which can eas-
ily be overlooked when using order notation: that its information value is very
limited. On paper, the difference between form 1 and form 2 is not great. Equa-
tions capturing the maximum of total resource requirements (during the con-
vergence and converged phases) for a range of agent populations (valid only for
5 <n < 120) are given in Table 1. °

As implemented systems, however, these minor differences may be crucial.
Given a particular computational resource availability limit, form one may func-
tion perfectly well, whereas form two may not. Conversely, given a system where
information changes rapidly, form two may be better (to ensure higher temporal

% These equations have been numerically derived to reproduce the maxima measured
experimentally (correlation co-efficient not less than 0.9999).



Table 1. Growth Functions for Organizational Forms 1 and 2

Max for Convergence Phase
Form 1 =4 x10°n —5000n> + 60n° — 1 x 10°
Form 2 =~ 5 x 10°n — 1 x 10°n? +1000n® — 3 x 107

Max for Converged Phase
Form 1 =2 x 10°n + 3000n? + 25n> — 1 x 10°
Form 2 = 7 x 10%n + 10000n2 + 133n® — 2 x 10°

accuracy of the models). It is for this reason that we believe that scalability
studies for MASs should be based on practical observation and measurement.

3.3 Resource requirements for form three
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Fig. 4. Logical Inferences versus tick versus number of agents for Form 3 MAS

Figure 4 shows the resource requirements of agents in the MAS where com-
mon tasks are centralized. As an example of a task that can be centralized, and
to illustrate the irregular shape of these resource profiles, consider a common
goal of customer agents: to keep each other updated with supplier commodity
availability and prices. When customers obtain a new piece of information about
a supplier (as a result of buying or failing to buy a commodity), this information
is forwarded to other customer agents for whom it is judged relevant information.
A simple way of determining which other customers will find this information



relevant is to retain statistics on the number of times each other customer at-
tempts to form a collective purchasing group for this item, or alternatively, sent
an update (cf [12]). In form one, this behavior was impossible. In form two, each
customer maintained a model for every other and reasoned with new pieces of
information against these models, finally sending appropriate messages. Since
every customer agent undertakes this task, delegating the modeling and reason-
ing to a single agent will require lower overall resources— instead of n models
of n other agents, the intermediary needs only maintain n models. Clearly, the
number of messages that need to be sent remains the same (n agents send a
message to a maximum of n — 1 others, which gives a collective total of n? —n,
conversely, n agents send one message to the intermediary agent who sends a
maximum of n — 1 in response to each— also resulting in a total of n? — n).
Therefore, the benefit of centralizing this task is a lower total of models (and
processing overheads) and customer agents spend more time on other goals. The
cost of centralization is that the information update arrives one tick later. This
is reflected by the fact that the convergence/converged phase boundary occurs
at approximately tick 170 for n=110.%

Hence, compared to form 2, collective centralized delegation results in lower
overall resource needs, but increased latency in information sharing for those
tasks. Therefore form 3 has a higher convergence time than form 2. The number
of ticks required to reach convergence remains lower than form 1, but higher
than form 2, and the total resource needs of all agents are lower than form 2 but
higher than form 1.

4 Achieving adaptable organization

A gross characterization of the relative forms studied to date is shown in Table 2.
Based on these generalizations, it would seem natural to select whichever form
was pertinent to a given environment. For example, in a domain where the
information that is modeled is stable for longer periods of time than is needed to
reach the converged state, the form which has the lowest impact on users’ agents
should be used (form 3). Alternatively, it may be appropriate to select form 2
initially (to converge as quickly as possible) and then revert to a less demanding
form (form 3), and so on.

Although the forms shown constrain all the interactions of the agents, it is
intuitive that any given form may be inappropriate for a particular shared goal.
Therefore agents need to be able to select individual forms for individual shared
goals (cf Galbraith’s contingency theory [9]). For example, keeping track of the
existence of agents (if they have transient membership of the MAS) may be
based on detecting a relatively infrequent event, so form 1 may be appropriate.
Conversely, modeling suppliers’ commodity availability may demand fast (and
frequent) updates, so form 2 may be chosen.

6 Unlike form 1, the point at which convergence occurs for forms 2 and 3 (which are
co-operative) is a function of the number of co-operating agents. This is most readily
seen in form 3 (figure 4).



Table 2. Relative comparison of organizational form attributes

LISt| Ticks for | Relative Load
Convergence|on (User) Agents

Form 1| Low High Mid
Form 2|High Low High
Form 3| Mid Mid Low

Being able to distinguish these three basic forms sets the foundation for creat-
ing self-building and adaptive MASs. With appropriate definitions of acceptable
performance specified by designers (such as maximum resources available to in-
dividual agents or the collection, or minima for model accuracy), agents can
begin to change their organization to meet these demands.

In order to allow agents to dynamically change between organizational forms
they have been augmented with several extra abilities: 1) the ability to remove
(and add) knowledge of the existence of particular acquaintances to global or
specific task data structures, 2) the ability to create intermediaries or destroy
them, and 3) the ability to transfer model information and delegate tasks to
other agents (and, in turn, become delegatees).

Since changing organization form has repercussions for the collective, it is
necessarily a collective choice. For example, a sufficient number need to agree to
create an intermediary. Agents therefore need a distributed method for triggering
re-organization. In this scenario, triggers for re-organization are related to utility
measures and relative resource requirements of tasks per tick. The parameters of
agent operation that are appropriate for triggers (and their relative importance)
should be dictated by the domain characteristics and application scenario. In
this scenario, for example, achieving low purchase costs for commodities (cf
utility) has a higher ranking than reducing processing resource requirements (cf
efficiency).

As a worked example, consider a group of ten customer agents modeling
each other (form 2), and further assume that agents’ own models of their users’
commodity preferences change rapidly. An agent may find that it has used most
of its resources modeling and updating other agents but has benefitted little
from doing so. For example, it has spent 8 x 10® logical inferences in the past
100 ticks on this task, but has utilized the resultant models less than 5 times
during the same period. The agent therefore notes that this task has a low payoff
and increments a counter to reflect the fact. (There being a similar decrease
when utility improves.) Each agent has two counters: one being a tally of utility
for its own operation, and a second representing the same information from
acquaintances. Agents are therefore able to distinguish their own desire for re-
organization from that of their acquaintances.” The agent then updates the
modeled agents with this value. On receipt of this message, each agent updates

T The private and social counters and their trigger activation functions are used to
decide whether to join groups undertaking re-organization.



its ‘social’ counter (which may trigger the signal to re-organize). If either the
social or private trigger reaches its activation level, the agent transmits another
message to its acquaintances upon receipt of which they take similar action if
they also reach this point. If re-organization trigger updates continue to increase
or a sufficient number of agents have passed their threshold for reorganization,
a cascade of updates occurs between the agents and they enter a group task to
reorganize. (Note that not all agents have to agree to re-organize— currently the
minimum is at least 50%.)

When re-organization has been triggered and a group has formed for this task,
the agents may take several actions based on the identified problem and their
current organizational form. Identifiable problems for customers (i.e. they each
have separate triggers) include ‘supplier model errors high’ (agent approaches
supplier for commodity it does not sell), ‘supplier model low coverage’ (agent
has to broadcast purchase requests to all suppliers and incurs a high amount of
resources tracking requests and resultant model updates), and ‘ratio of resources
for modeling acquaintances to payoff low’ (as above example).

In such situations, the actions that the agents can take are a) centralize a task,
b) de-centralize a task/create a commitment to share common information/task,
or ¢) end a commitment to share common information/task. Option ¢ moves
the agents into form 3, b moves the agents into form 2, and option ¢, into form
1. The choice of which form to adopt is based on the identified problem (i.e. the
trigger that fired), the relative advantages and disadvantages of each form (as
in the previous table) and the current form.

CENTRALIZATION OF A TASK

The agents vote to select an intermediary agent or an agent is randomly chosen
to create one. (If no intermediary exists, or those that do refuse to take on new
tasks, one is created.) When an intermediary agrees to take on another delegated
task, the agents take the following actions independently: 1) all agents extract
the rules relevant to the task from their Prolog database®, un-instantiate them,
and send them to the intermediary. 2) on receipt of a message to proceed from
the intermediary, the agents send all the relevant data from their databases to
the intermediary. The intermediary then responds confirming receipt of the rules
and data. During this process, the intermediary checks that all the agents have
sent the same rules (i.e. verifies that all the agents about to delegate a task to it
are going to stop performing the same task), after the success of which, the signal
to proceed is sent to each agent in the group. When the intermediary has received
all the data from the agents, it removes a guard on the processing of the relevant
rules and sends a message to each agent informing them to remove the relevant
rules and replace them with another that represents a commitment to undertake
that task for them. Additional rules may be sent which cause the agents to
forward runtime data to the intermediary. (All the rules the intermediary receives
and/or sends back are part of the package of rules that the agents send it.)

8 Additional meta-information is included in the agents which described the rules
relevant to particular tasks.



ENDING COMMITMENTS TO SHARED TASKS
A rule for a shared (information) task contains a query to the agents’ belief
database from which it retrieves the agents to whom it has a commitment to
consider forwarding information. Such rules are modified by removing commit-
ment facts from the appropriate belief structures.

ENTERING A COMMITMENT TO A SHARE TASK
Same as for ending commitments, except that commitments are added.

4.1 Resource requirements for form four

Figure 5 shows the resource requirements of agents when utilizing organizational
adaption (form 4) as compared to forms one to three. Despite the qualitative
difference from the other forms, form 4 initially requires less resources than form
2, but more than forms 1 and 3. Eventuallv. it requires less resources than form
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Fig. 5. Total Logical Inferences of Forms 1 to 4. n = 110 for forms 1 to 3, n = 111 for
form 4 (+1 intermediary)

Although form 4 also shows a gradual decline in resource usage (on average),
it does have two unique features. First, it undergoes major perturbations, and
second, it does not appear to reach a stable resource level (i.e. show signs of
being in the converged phase).

The reason that this form does not show the smoothness of forms 1 to 3
is because individual agents do not utilize the same form for all tasks, and
not all agents are identical. That is, since the graph is a summation of many



agents employing forms 1 to 3 on a per task basis, it is necessarily irregular. The
perturbations in the graph and the apparent lack of evidence for convergence
show an emergent feature of form 4— that it is periodic. Finally, forms 1 to 3
are isomorphic with regard to n >10. That is, that any two graphs of resource
requirements for any number of agents, n > 10, can be linearly scaled to fit each
other. Form 4 does not have this property. For example, the distance between the
perturbation maxima varies with n. Unfortunately this means that accurately
projecting the resource requirement curves for higher (untested) numbers of
agents is impossible for form 4.

Finally, the figure shows form 4 being a suitable amalgam of forms 1 to 3 in
terms of resource requirements. The maximum resources required falls some-way
below that of form 2, and it also (eventually) falls below that of form 3. We do
not consider the agents of form 1 to constitute a multi-agent system since they
are asocial, therefore of the MAS forms presented here, we suggest that form 4
(which is organizationally adaptive) is more scalable than form 2 (because the
maxima remain lower) and also form 3 (because the converged phase maxima
are lower).

5 Related Research

Publications dealing with scalability and multi-agent systems are relatively few
(but gaining in number). In order to place this work in the context of others,
we broadly partition MAS scalability research into categories thus: 1) formal
and experimental scalability analyses of particular co-operation and resource
distribution protocols (e.g. [5] [6]); 2) creation of scalable protocols (e.g. [17]); 3)
tools for (pre-implementation) predication of performance and design evaluation
(e.g. [16]); 4) clarification of scalability issues (e.g. [15]); 5) scalable architectures
and applications (mostly residing in the information retrieval arena); and 6)
algorithms and techniques for increasing scalability through change of the MAS
environment.

We view this paper as relevant to the last category. Insofar as the research
deals with dynamic changes to the structure of the problem solver environment—
rather than the protocols they employ. That is, techniques that indirectly af-
fect agents and MASs by altering the agents (but not their mechanisms) or
the environment in which they reside. Examples, of this are [1] (“a framework
for Dynamic Reorganization”), [13] (“An Organizational Approach to Adaptive
Production Systems”), and [10] (“Self-Adaption and Scalability in Multi-Agent
Societies”).

The creation and destruction of intermediaries as extra (parallel) processing
capability is indirectly based on [13]— where not only do Ishida et al introduce
organization self-design (OSD), but also allow two or more agents to ‘compose’
(combine with each other) and ‘decompose’ when organizational load is heavy
or light respectively. Furthermore, a mechanism is given whereby composition
and decomposition can occur at runtime without affecting the operation of the
‘agents’. Explicitly included in their scheme is an organization self-designer in



each agent (cf [3]). Our approach differs in that lightly loaded agents do not
automatically take on extra tasks (since they must maintain a minimal utility
for their owners). Also, whereas their agents effectively cease to exist after a
composition into a hybrid, our (customer and supplier) agents can not. The
equivalent of reduction in total system load occurs because of the centralization/
decentralization of a task, or delimitation (through disbanding and reforming)
of a social group which places too large a load on its members.

In [1], André et al refer to dynamic reorganization (DR) through which their
centralized MAS (viewed as a hierarchic graph of service decomposition) can
swap to alternative decompositions. The new decomposition is retained if the
alternative performs worse than the original. The scenario we presented does
not allow the agents to form compound services by the combination of exist-
ing facilities. In as much as our agents can disband and reform groups, and
centralize/de-centralize tasks, no explicit representation of the previous state is
retained.

Lastly, in [10], the main thrust of the argument is that the problems of scal-
ability can be managed by changing the relative amounts of processing time and
other resources to the various aspects that operate within agents. For example,
increasing the amount of time in manipulating knowledge representations. The
configuration of the agents is represented as a search space so that when the
agents’ ability to perform drops below an acceptable level it will move within
the search space. The first move in this search space is random. Locally, agents
perform hill climbing to achieve local optima of parameters. However, a central-
ized agent constructs a picture of this search space using the information local
to agents (i.e. local agents provide fragments of the picture). The centralized
agent uses this information to prevent the agents from settling on local max-
ima when better solutions are ‘nearby’. Viz., the centralized ‘monitor’ agent is
able to direct the agents in their search (e.g. beyond their own fragment of the
search space). However, it can not be certain that the search space is smooth and
therefore the hill climbing search methods used by the agents and central moni-
tor agent may not be appropriate in all domains. (His approach is presented as a
general framework.) Critically, the monitor (as a permanent centralized entity)
may constitute a bottle-neck itself and prevent scalability.

Furthermore, Gerber uses the term Holon and the notion of abstract re-
sources. Abstract resources are roughly equivalent to the compound services of
[1], and holons are essentially, collections of agents (which may be considered
as a group or as a single agent) with partially limited autonomy (see [10] for
the full extent of his hypothesis). Taken as a whole, Gerber’s framework and
mechanisms for adaption are both microscopic and macroscopic in nature. De-
spite having been tested in several application scenarios, none are represented
in a form where population size is paramount (so no direct comparison can be
made). We suspect that Gerber’s framework is better able to fine tune response
to small changes in scale than our approach, which we believe may be coarser in
comparison. However, we note that our approach is less invasive (since it only



requires the ability to change acquaintance topologies and group commitments
rather than interfere with internal operation of agents).

Combining our work with that of other researchers, we summarize the ap-
proaches that have successfully been employed to achieve organizational adap-
tion thus: a) agent/process de/composition and creation/destruction, b) alter-
native decomposition/ recomposition of compound abstract resources and de-
pendencies, ¢) centralization/ decentralization of common goals and alteration
of acquaintance (and thus group) topology, and finally d) re-allocation of rel-
ative processing power of agents internal processes. Clearly, all these methods
could be combined. Moreover, in addition to agents having access to knowledge
of their performance and limitations, they could benefit greatly from being able
to form and reason with (formal) models of their dynamic organization [4] and

[2].

6 Conclusions and Future work

Allowing agents to build and maintain their own organizational structure re-
quires that they are able to decide for themselves what tasks should be shared,
delegated, or individually pursued, and which acquaintances are of little benefit.
This means they must be aware and be able to meta-reason about their own in-
ternal efficiency/efficacy and goals, infer or question that of their acquaintances,
and the goals of the system as a whole. It also entails that agents are able to cre-
ate and annihilate other agents, delegate and surrender tasks and information,
modify their own operation and influence that of others (because organizational
changes are taken by the collective, not the individual). The algorithm sketched
above does show that organizational flexibility has advantages. In summary, al-
though we believe that large scale multi-agent systems should be self-building
and self-organizing to allow for a higher degree of scale tolerance, we believe
that much greater testing is required in several domains of application. One lim-
itation of the scenario implementation is that the market dynamics is relatively
stable. How re-organization copes with fluctuations in user’s demands remains
unclear, and so too a complete analysis of the influx (and exodus) of population.
Secondary in importance to this omission are the effects of the trigger levels
for re-organization, and the similarity metrics used by the (customer) agents to
decide on group formation. The values to which these are set may have a major
effect of the benefit of re-organization. Indeed, determining these values remains
a matter of experimentation. Also, relaxation of the synchronized method of
operation of agent execution needs to be undertaken since MASs are almost
exclusively asynchronous. Answering the questions raised by these issues, con-
stitutes our future work. Finally, we note that creating an algorithm to increase
the scalability of a MAS is not the same (and does not imply) that the algorithm
is itself scalable.
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