
K-Order Neighbor: the Efficient Implementation
Strategy for Restricting Cascaded Update in Realm1

Y ong zhangl, Lizhu zhoul, Jun chen2, RenLiang Zhao2

Department of Computer Science and Technology, Tsinghua University
Beijing, P.R.China, 100084

zhangy97@mails. tsinghuaedu. cn
National Geomatics Center of China

Beijing, P.R.China, 100044
chenjun@nsdi.g0v.cn

Abstract. A realm is a planar graph over a finite resolution grid that has been
proposed as a means of overcoming problems of numerical robustness and
topological correctness in spatial database. One of the main problems of realm
is cascaded update. Furthermore, cascaded update causes heavy storage and
complex management of transaction. Virtual realm partially resolves the
problem of space overhead by computing the portion of realm dynamically. K-
order neighbor is a concept commonly used in Delaunary triangulation network.
We use K-order neighbor in the Voronoi diagram of realm objects to restrict
cascaded update. Two main update operations - point insertion and segment
insertion are discussed. In point insertion, the distortion caused by cascaded
update is restricted to 1-order neighbor of the point. In segment insertion, two
end points of the segment are treated specially. This strategy can be used in
both stored realm and virtual realm.

1 Introduction

A realm [3] [4] is a planar graph over a finite resolution grid that has been
proposed as a means of overcoming problems of numerical robustness and topological
correctness in spatial database. These problems arise from the finite accuracy of
number in computer. In realm based spatial database, the intersections between spatial
objects are explicitly represented in insertionlupdate, can be modified slightly if
necessary.

One of the main problems of realm is cascaded update [6] [7], that is, the update of
some spatial object can modifjr the value of spatial objects previously stored.
Furthermore, cascaded update causes heavy storage and complex transactions.

ROSE algebra [4] [5] is a collection of spatial data types (such as points, lines and
regions) and operations. It supports a wide range of operations on spatial data type,

This paper is supported by Natural Science Foundation of China (NSFC) under the grant
number 69833010.

P.M.A. Sloot et al. (Eds.): ICCS 2002, LNCS 2331, pp. 994−1003, 2002.
 Springer-Verlag Berlin Heidelberg 2002

and has been designed in the way that all these operations are closed. In this paper, we
call the value of spatial data type as spatial object.

In the implementation in [3] [4], realm is stored explicitly (called as stored realm).
Stored realm is organized as a separated layer and has spatial index. Virtual realm [8]
stored realm objects within spatial objects. It partially resolves the heavy storage
problem. However, both approaches do not resolve the problem of cascaded update.

K-order neighbor [9] is a concept commonly used in Delaunary triangulation
network. We use K-order neighbor in Voronoi diagram of realm objects to restrict
cascaded update. Two main update operations - point insertion and segment insertion
are discussed. In point insertion, the distortion caused by cascaded update is restricted
to l-order neighbor of the point. In segment insertion, two end points of the segment
are treated specially. This strategy can be used in both stored realm and virtual realm.

This paper is organized as follows: in section 2, we describe redrawing in data
update, and concepts of stored realm and virtual realm; in section 3, K-order neighbor
is described; in section 4, we apply K-order neighbor into realm; section 5 gives a
comparison; and the last section is conclusion.

0 0 n 0 m o m o 1 ~ ~ 0
D

Fig. 1. The example of realm Fig. 2. Spatial objects built from realm

2 Basic Concepts in Realm

Fig. 1 shows an example of realm that is a set of points and non-intersecting segments
in the finite resolution grid. (Here we call the point in realm as point, and the segment
in realm as segment.) In applications, all spatial objects take these points and
segments as elements. Fig. 2 shows a regions object A, a lines object B and a points
object C, all these objects can be constructed from the points and segments in Fig. 1.

One of the main problems of realm is cascaded update. A point or segment inserted
can modiQ the points and segments in database (to guarantee numerical robustness
and topological correctness), that is, data update is cascaded. During this procedure,
many segments have to be redrawn. So many segments are generated. At the same
time, too many segments needed redrawing make the strategy of locking very
complex; therefore it is difficult to manage the transactions.

995K-Order Neighbor

In the following, we explain redrawing in data update, and the basic concepts of
stored realm and virtual realm.

2.1 Redrawing in Data Update

Redrawing [l] of segment is the source of cascaded update. After redrawing, one
segment is divided into several segments. The idea is to define for a segment s an
envelope E(s) roughly as the collection of points that are immediately above, below,
or on s. An intersection point between s and other segment may lead to a requirement
that s should pass through some point P on its envelope. This requirement is then
hlfilled by redrawing s by some polygonal line within the envelope rather than by
simply connecting P with the start and end points of s. Fig. 3 shows that P lies on the
envelope of AB; after redrawing segment AB is divided into AQ, QP and PB rather
than AP and PB.

Fig. 3. Redrawing of segment AB passing through point P (Modified from [3])

This approach guarantees that the polygonal line describing a segment always
remains within the envelope of the original segment. In realm it then means that a
segment cannot move to the other side of a point. [3] extended envelope to "proper
envelope" that is the subset of envelope points that are not end points of segments
(denoted as E(s) for segment s). [3] also added an integrity rule for points and
segments that are very close to each other:

No @-)point lies on the proper envelope of any @-)segment.
In the worst case, the number of redrawn segments of one segment is logarithmic in

the size of the grid. At the same time, if a point or segment is inserted into an area
with a high concentration of points and segments, there may be many segments needed
redrawing. Therefore, we must decrease the segments needed redrawing as few as
possible.

2.2 Stored Realm and Virtual Realm

In stored realm [3] [5] , there exist bi-links between spatial objects and realm objects.
The realm objects compose a single layer and have spatial index; the spatial objects
compose another layer and also have spatial index. The bi-links between realm objects

996 Y. Zhang et al.

and spatial objects are redundancy, because we can use the pointers in one direction to
get the pointers in the contrary direction by traveling.

The links from realm objects to spatial objects are only needed in data update. In
stored realm, we firstly operate on the realm layer, and then propagate the changed
realm objects to the corresponding spatial objects. There is another implementation
approach - virtual realm [8]. In this approach, the realm objects are stored within
spatial objects. During data update, we firstly find the spatial objects influenced, and
then operate on the set of the realm objects corresponding to these spatial objects.
Both approaches can get the same result, but they do not resolve the problem of
cascaded update.

3 K-Order Neighbor

K-order neighbor [9] is a concept commonly used in Delaunary triangulation network.
Here we define K-order neighbor using Voronoi diagram. Voronoi diagram is the
partition of the space based on the neighbor relation.

Spatial neighbor is the degree of the distance between two spatial objects; it is a
fUzzy spatial relation. Voronoi diagram provide a clear definition of spatial neighbor
[2]: If the Voronoi regions of two objects have the common boundary, then they are
defined as spatial neighbor (Fig. 4(a)).

common boundary no common boundary 1-order neighbor 2iorder neighbor

Fig. 4. Spatial neighbor and K-order neighbor

This definition only describes the relation between two objects whose Voronoi
regions have common boundary, but does not consider two objects that do not have
common Voronoi boundary. K-order neighbor is the extension of spatial neighbor. It
is can be used to describe the relation between two objects whose Voronoi regions do
not have common boundary. We give the definition using Voronoi diagram (Fig.4(b)):

(1) If the Voronoi regions of P and Q have common boundary, then P is 1-order
neighbor of Q, and Q is 1 -order neighbor of P.

(2) If the Voronoi region of P has the common boundary with the Voronoi region of
one of the 1-order neighbors of Q, and P is not 1-order neighbor of Q, then P is
2-order neighbor of Q.

997K-Order Neighbor

(k) If the Voronoi region of P has the common boundary with the Voronoi region
of one of the (k-1)-order neighbors of Q, and P is not (k-1)-order neighbor of Q,
then P is k-order neighbor of Q.

4 Application of K-Order Neighbor in Realm

As Fig. 5 Shows, a point is inserted into a realm with a high concentration of
segments; point p lies on the proper envelopes of sl , s2, s3 and s4. Using algorithms
in [3] and [8], sl-s4 are all needed redrawing. After redrawing, four segments are
divided into 10 segments. Moreover, all these segments intersect at the same point,

o n 0 0 0 0 q

Fig. 5. Insert a point into a realm with a high concentration of segments

Fig. 6 shows the Voronoi diagram of p being inserted into realm. (Notice we use
more precision here.) From Fig. 6 we can find that point p is 1-order neighbor of s2
and s3, and 2-order neighbor of sl and s4. We want to restrict the influence of point p
to the scope of its 1-order neighbor, that is, although sl and s4 are also in its envelope,
they are not the "nearest", so we do not need to redraw them.

Let us analyze the point insertion in Fig. 5 step by step. Because point p lies on the
proper envelope of s2, we firstly redraw s2, and then s2 is divided into two segments
s21 and s22 (As Fig.7 shows). Then we can find that point p has become the end point
of s21 and s22, and the proper envelopes of sl , s3 and s4 have also been changed, so
point p does not lie on the proper envelopes of them. Hence we do not need to redraw
s ly s3 and s4. Therefore, the distortion is restricted to the scope of 1-order neighbor of
point p. In practice, we do it as follows: firstly computing the local Voronoi diagram

998 Y. Zhang et al.

containing point p, and then redrawing the 1-order neighbor segment of p firstly
found.

There are three kinds of approaches to get the Voronoi diagram: (1) generate the
Voronoi diagram dynamically; (2) store the Voronoi diagram in database; (3) select
some not easily changed spatial objects, and store the Voronoi diagram of them in
database, and then generate detail Voronoi diagram dynamically. The generating of
Voronoi diagram is very slow, and the boundaries generated is in the size of the actual
objects, so the first and second approaches are not practical, here we use the third
approach.

In the above, what we considered is only the insertion of isolated point. In the
algorithms of segment insertion in [3] [8], two end points are firstly inserted into
realm as isolated points, and then the segment is inserted. In fact, the insertions of the
end points of a segment are different from the insertion of isolated point greatly. As in
Fig. 5, if point p is one of end point of a segment to be inserted, then it does not lie on
any proper envelope of the segments. Here we must ensure that the insertions of two
end points of a segment and the insertion itself are included in a transaction. If the end
points of the segment are inserted, but the insertion of the segment fails, then we have
to remove the end points from realm and recover realm to the state before insertion.

Overall, using our approach, there are two cases to decrease the segments needed
redrawing:

(a) The inserted point lies on the proper envelopes of many envelops, but only
one segment needs to be redrawn;

(b) The inserted point is one of the end points of a segment to be inserted, then
no segment needs to be redrawn or only one segment needs to be redrawn.

Our approach can be used in both stored realm and virtual realm. In the following,
we use stored realm to explain the algorithms in our approach.

4.1 Algorithm of Point Insertion

The algorithm presented in Fig. 8 for inserting a point into a realm is similar to that
given in [3]. In point insertion, we have to deal with four cases:

(1) The point is in the realm (line 13).
(2) The point is new, and does not lie on any envelope (line 15).
(3) The point is in some segment; then we separate the segment into two new
segments (line 17).
(4) The point lies on one or more proper envelopes (but not in any segment). Here
are two conditions:

(a) The point is an end point of a segment to be inserted, and then we do
nothing (line 19).

(b) The point is an isolated point, and then we select the segment firstly found
in 1-order neighbor of the point to be redrawn (line 20-23).

00 Algorithm: InsertPoint(R, p, flag, R', r, SP)

999K-Order Neighbor

Input: R: realm, and R = P u S, P is the point set, and S is the segment set
p: point
flag: the type of point, 0: isolated point, 1 : the end point of some segment

Output: R' : modified realm
r: realm object identifier corresponding to p
SP: the set of identifiers of influenced spatial objects

Step i : Initialization

SP:=0;

Step2: Find the segment to be redrawn

If 3 q ~ P: p=q; (one such point at most)

Then r:=roid(q); R' := R; return;

Else if VSE S: pe E(s) (not exists, and not lie on any proper envelope)

Then r:=roid(p); R'=Ru{(p,r,0)} ; return;

Else if 3 se S: p in S
Then Insert a hook h=<p,p> on s;
Else if flag = 1

Then r :=roid(p); R'=Ru{(p,r,0)); return;

Else r:=roid(p);
Generate the Voronoi diagram near p;
Search the I-order neighbor of p in the Voronoi diagram, s

is first segment found;
Insert a hook h = <base(p,s),p> on s;

Step3: Redraw the segment with hook
Redraw segment s according to [I];
Let { s ~ , ..., s,} is the set of segments after redrawing, such that ~ ~ = (q ~ - ~ , q ~) ,
i~ {I , ..., n);

Step 4: Update realm
R' := R\{s, roid(s), scids(s));
(Insert the end points and segments in the set of segments of the redrawings, if
they do not already exist in the realm)

for each i in O..n do

if not ExistsPoint(qi) then R' := R' u {(qi, roid(qi), 0)) ;

for each i in 1. .n do

1000 Y. Zhang et al.

35 if not ExistsSegment(sJ then R':= R' u {(si, roid(si), 0));
36 SP := {(sc, {(s, roid(si))li€ { 1,. . .,n))) I sc E scids(s));

37
38 End Insertpoint

Fig. 8. Algorithm of point insertion

4.2 Algorithm of Segment Insertion

Begin Transaction
InsertPoint(R, p, 1, R', r, SP);
InsertPoint(R, q, 1, R', r, SP);
InsertSegment(R, s, R', RD, SP) (see [3] for detail, we omit parameter "ok");

Commit Transaction

Fig. 9. The algorithm of segment insertion

Our algorithm of segment insertion is similar to those in stored realm and virtual
realm. The process of inserting a segment s = (p, q) requires three steps: (1) insert p
into realm; (2) insert q into realm; (3) insert s into realm. Because in point insertion,
we distinguish if a point is an end point of a segment to be inserted, these three steps
must be completed in one transaction (Fig. 9). Otherwise, the integrity rule of proper
envelope will be violated.

5 Performance Analysis

Taking stored realm as an example, this section presents an informal comparison of
the performance of point insertions using K-order neighbor and not using it.

If the distribution of spatial objects is dense, the advantage of our approach is very
clear: the segments needed redrawing decrease greatly. Therefore, fewer segments are
generated after redrawings. At the same time, the restriction of distortion provides a
good foundation for the simplicity of transaction management.

Table 1 summarizes that tasks while inserting a point using K-order neighbor and
not, The column of difference indicates whether K-order neighbor increase (+) or
decrease (-) the cost of performing input-output (110) or processing (CPU) tasks.

Table 1. The influence of using K-order neighbor on point insertion in stored realm (modified
from 181)

Stored realm

Retrieve required nodes of
spatial index (many entries)

Stored realm using K-order
neighbor
Retrieve required nodes of
spatial index (many entries)

Difference

-110, -CPU

1001K-Order Neighbor

Retrieve segments and points

Write new segments into disk
Compute changes to spatial

1 Retrieve the spatial objects
related to the changed segments
Replace the changed segments in

I spatial objects
Write changed spatial objects to I disk

I Compute the modification of 1 +CPU I

Retrieve segments and points
from MBR of inserted segment
(possible many)
Retrieve the corresponding part
of basic Voronoi diagram
Compute the local detail Voronoi

I Voronoi diagram I I

-110

+I10

+CPU

I Use Voronoi diagram to search
the neicrhbors I +Cpu I
Compute changes in the realm
Delete changed segments fiom
disk

-CPU
- I10

Write new segments into disk
Compute changes to spatial
index

- I10
-CPU

Write changed index to disk
Write changed basic Voronoi

I Delete the local detail Voronoi
diagram I +CPu I

- VO
+I10

diagram to disk (maybe not
necessary)
Retrieve the spatial objects
related to the changed segments
Replace the changed segments in
spatial objects
Write changed spatial objects to
disk

The results presented in the table can be summarized with respect to the effect on
I10 costs and CPU time:

110: (a) There are two factors to increase VO activities, the reason is that we store a
basic Voronoi diagram in database; (b) There are eight factors to decrease I10
activities, the reason is that the total nwnber of points and segments in database
is fewer.

CPU: (a) There are four factors to increase CPU time, the reason is that the
processes related Voronoi diagram are added; (b) There are three factors to
decrease CPU time, the reason is that the total number of points and segments
in database is fewer.

Overall, there are two main reasons that influence I/O costs and CPU time: Voronoi
diagram and the realm objects in database. It is hard to say that because of using K-
order neighbor, I10 costs and CPU time are saved. The saving of 110 costs and CPU
times depends on the distribution of spatial objects (i.e., the applications). However,
we can conclude that using K-order neighbor decreases the realm objects and

- VO

- I/O

- I/O

1002 Y. Zhang et al.

simplifies the transaction management. Furthermore, the stored Voronoi diagram can
speed many ROSE algebra operations such as inside, intersection, closest and so on.

6 Conclusion

This work is being carried out in the context of a project of 3D spatial database based
on realm. We find that in some applications (especially the distribution of segments is
dense), in spite of using stored realm or virtual realm [3] [8], point insertions and
segment insertions bring out boring cascaded update. In these conditions, many
segments have to be redrawn, which result many segments to occupy large storage
space and make the management of transactions very complex. So we want to find an
approach to restrict cascaded update.

K-order neighbor [9] is a concept commonly used in Delaunary triangulation
network. We use Voronoi diagram to describe this concept. K-order neighbor restricts
cascaded update efficiently. Presently we have implemented the algorithm of K-order
neighbor and used it in the data update of realm.

References

1. Greene, D., Yao, F.: Finite-Resolution Computational Geometry. Proc. 27th IEEE Symp. on
Foundations of Computer Science (1986) 143- 152

2. Gold, C.M.: The Meaning of Weighbow". In Frank, A. U., Campari, I. And formentini, U.
(Eds) Theories of Spatial -Temporal Reasoning in Geographic Space. Lecture Notes in
Computer Science 639, Berlin: Springer-Verlag (1 992) 220-23 5

3. Guting, R.H., Schneider, M.: Realms: A Foundation for Spatial Data Type in Database
Systems. In D. Abel and B.C. Ooi, editors, Proc. 3rd Int. Conf. on Large Spatial Databases
(SSD), Lecture Notes in Computer Science, Springer Verlag, (1993) 14-35

4. Guting, R.H., Ridder, T., Schneider, M.: Implementation of the ROSE Algebra: Eficient
Algorithms for Realm-Based Spatial Data Type. 4th Int. Syrnp. on Advances in Spatial
Databases (SSD), LNCS9 5 1, Springer Verlag (1 995) 2 16-239

5. Guting, R.H., Schneider, M.: Realm-Based Spatial Data Types: The Rose Algebra VLDB
Journal, Vo1.4 (1995) 100- 143

6. Cotelo Lema, J. A., Guting, R.H.: Dual Grid: A New Approach for Robust Spatial Algebra
Implementation. Fernuniversity Hagen, Informatik-Report 268 (2000)

7. Cotelo kma, J. A,: An Analysis of Consistency Properties in Existing Spatial and
Spatiotemporal Data Models. Advances in Databases and Information Systems, 5" East -
European Conference ADBIS ' 200 1, Research Communications, A. Caplinskas, J. Eder
(Eds.): Vol. 1 (2001)

8. Muller, V., Paton, N.W., Fernandesyy, A.A.A., Dinn, A., Williams, M.H.: Virtual Realms:
An Efficient Implementation Strategy for Finite Resolution Spatial Data Types, In 7th
International Symposium on Spatial Data Handling - SDH'96, Amsterdam (1996)

9. Zhang, C.P., Murayama, Y. J. : Testing local spatial autocorrelation using k-order neighbours.
Int. J. Geographical Information Science, Vol. 14, No.7, (2000) 68 1-692

1003K-Order Neighbor

	Introduction
	Basic Concepts in Realm
	Redrawing in Data Update
	Stored Realm and Virtual Realm

	K-Order Neighbor
	Application of K-Order Neighbor in Realm
	Algorithm of Point Insertion
	Algorithm of Segment Insertion

	Performance Analysis
	Conclusion
	References

