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Abstract. Collision detection optimization algorithms in an event-driven
simulation of a multi-particle system is one of crucial tasks, determining
efficiency of simulation. We employ dynamic computational geometry
data structures as a tool for collision detection optimization. The data
structures under consideration are the dynamic generalized Voronoi dia-
gram, the regular spatial subdivision, the regular spatial tree and the set
of segment trees. Methods are studies in a framework of a granular-type
materials system. Guidelines for selecting the most appropriate collision
detection optimization technique summarize the paper.

1 Introduction

A particle system consists of physical objects (particles), whose movement and
interaction are defined by physical laws. Studies conducted in the fields of robotics,
computational geometry, molecular dynamics, computer graphics and computer
simulation describe various approaches that can be applied to represent dynam-
ics of particle systems [9, 8]. Disks or spheres are commonly used as a simple
and effective model to represent particles in such systems (ice, grain, atomic
structures, biological systems). Granular-type material system is an example of
a particle system. When a dynamic granular-material system is simulated, one
of the most important and a time consuming tasks is predicting and scheduling
collisions among particles.

Traditionally, the cell method was the most popular method employed for
collision detection in molecular dynamics and granular mechanics [8]. Other
advanced kinetic data structures, commonly employed in computational geom-
etry for solving a variety of problems (such as point location, motion planning,
nearest-neighbor searches [7, 11, 1]), were seldom considered in applied materials
studies.

Among all hierarchical planar subdivisions, binary space partitions (BSP)
are most often used in dynamic settings. Applications of binary space partitions
for collision detection between two polygonal objects were considered in [1, 4, 6].
Range search trees, interval trees and OBB-trees were also proposed for CDO
[6, 3].

This paper presents an application of the weighted generalized dynamic
Voronoi diagram method to solve the collision optimization problem. The idea of
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employing the generalized dynamic Voronoi diagram for collision detection opti-
mization was first proposed in [2]. The method is studied in general d-dimensional
space and is compared against the regular spatial subdivision, the regular spa-
tial tree and the set of segment trees methods. Results are summarized in a
form of guidelenes on the selection of the most appropriate collision detection
optimization method.

2 Dynamic event-driven simulation algorithm

As of today, most of the research on collision detection in particle systems is
limited to consideration of a relatively simple simulation model. The idea is to
discretize time into short intervals of fixed duration. At the end of each time
interval, the new positions of the moving particles are computed. The state of
the system is assumed to be invariant during the time interval between two
consecutive time steps. The common problem with such methods is related to
choosing the length of the interval. If the duration is too short, unnecessary
computations take place while no topological changes occurred. If the duration
is too large, some important for analysis of the model events can be omitted. A
much more effective approach, the dynamic event-driven simulation of a particle
system, relies on discrete events that can happen at any moment of time rather
then during fixed time steps. This can be accommodated by introducing an event
queue. We employ this scheme and suggest the following classification of events:
collision events, predict trajectory events and topological events.

A set of n moving particles in Rd is given. The particles are approximated
by spheres (disks in the plane). Collision event occurs when two particles come
into contact with each other or with a boundary. A predict trajectory event
occurs when the trajectory and the velocity of a particle is updated due to the
recalculation of the system state. Between two consecutive predict trajectory
events a particle travels along a trajectory defined by a function of time.

Collision detection algorithms optimize the task of detecting collisions by
maintaining a set of neighbors for every particle in the set and only checking for
collisions between neighboring particles. The algorithm is said to be correct if at
the moment of collision the two colliding particles are neighbors of each other
(i.e. the collision is not missed). The computational overhead associated with a
CDO algorithm is related to the data structure maintenance.

The Event-Driven Simulation Algorithm

1. (Initialization) Construct the topological data structure; set the simulation
clock to time t0 = 0; schedule predict trajectory events for all particles and
place them in the queue.

2. (Processing) While the event queue is not empty do:
(a) Extract the next event ei from the event queue, determine the type of

the event (topological event, predict trajectory event or collision event);
(b) Advance the simulation clock to the time of this event te
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(c) Process event ei and update the event queue:
i. if the event is a topological event:

- modify the topology of the data structure;
- schedule new topological events;
- check for collisions between new neighbors and schedule collision
events (if any);

ii. if the event is a collision event:
- update the states of the particles participating in a collision;
- delete all events involving these particles from the event queue;
- schedule new predict trajectory events at current time for both
particles;

iii. if the event is a predict trajectory event:
- compute the trajectory of the particle for the next time interval
(te, te +∆t];
- schedule the next predict trajectory event for the particle at time
te +∆t;
- schedule new topological and collision events for the updated par-
ticle

Note, that new topological or collision events are never scheduled past the
time of the next predict trajectory event of all particles involved.

The following criteria can be introduced to estimate the efficiency of a CDO
algorithm: the total number of pairs of closest neighbors; the number of neighbors
of a single particle; the number of topological events that can take place between
two consecutive collision events (or predict trajectory events); computational
cost of a topological event (scheduling and processing); computational cost of
the data structure initialization; and space requirements.

3 Dynamic Computation Geometry Data Structures

Consider a problem of optimizing the collision detection for a set of moving
particles in the context given above. In a straightforward approach each pair
of particles is considered to be neighbors, i.e. there are 1

2n (n− 1) neighbor
pairs. For a large system the application of this method is very computationally
expensive. Thus, our goal is to reduce the number of neighbors to be considered
on each step.

3.1 The Dynamic Generalized Voronoi diagram for CDO

The dynamic generalized Voronoi diagram in Laguerre geometry is the first data
structure applied for collision detection optimization.

Definition 1. A generalized Voronoi diagram (VD) for a set of spheres S in
Rd is a set of Voronoi regionsGV or (P ) = {x| d (x, P ) 6 d (x, Q) , ∀Q ∈ S − {P}},
where d (x, P ) is the distance function between point x ∈ Rd and particle P ∈ S.
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Fig. 1. The generalized Delaunay triangulation (left) and the Voronoi diagram (right)
for 1000 particles in Laguerre geometry.

In Laguerre geometry, the distance between a point and a sphere is defined as
d(x, P ) = d(x,p)2 − r2P , where d (x, p) is the Euclidean distance between x and
p [10]. The generalized Voronoi diagram stores the topological information for a
set of particles. Each Voronoi region represents the locus of points that are closer
to the particle than to any other particle from set S. The dual to the Voronoi
diagram, the Delaunay tessellation, contains the proximity information for the
set of particles (see Fig. 1).

The following approach is implemented. The Delaunay tessellation (DT) is
constructed in Laguerre geometry. The computation of topological events is in-
corporated in the Event-Driven Simulation Algorithm. To ensure the algorithms
correctness, the following property should be satisfied: if two particles are in con-
tact with each other, then there must be an edge in the Delaunay tessellation
incident to these particles. Due to the fact that the nearest-neighbor property in
DT in Laguerre geometry is satisfied, the dynamic generalized DT can be used
for collision detection optimization.

According to [2], a topological event in the dynamic generalized VD occurs
when the topological structure of the VD is modified and the proximity rela-
tionships between particles are altered. Handling of a topological event requires
flipping a diagonal edge (or a facet) in a quadrilateral of the Delaunay tessella-
tion and scheduling future topological events for the newly created quadrilaterals
(a swap operation). A topological event occurs when the Delaunay tessellation
sites comprising a quadrilateral become co-spherical.

Let Pi = {(xi = xi(t), yi = yi(t)) , ri}, i = 1..d + 2 be a set of spheres with
centers (xi (t) , yi (t)) and radii ri. The computation of the time of a topological
event requires solving equation: F (P1 (t) , P2 (t) , ..., Pd+2 (t)) = 0.

Lemma 1. The time of the topological event in a Delaunay d-dimensional quadri-
lateral of d + 2 spheres Pi = {(xi = xi(t), yi = yi(t)) , ri}, can be found in La-
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guerre geometry as the minimum real root t0 of the equation

F (P1, P2, ..., Pd+2) =

∣
∣
∣
∣∣
∣
∣
∣
∣
∣

x11 x12 ... x1d w1 1
x21 x22 ... x2d w2 1
... ... ... ... ... ...

xd+1,1 xd+1,2 ... xd+1,d wd+1 1
xd+2,1 xd+2,2 ... xd+2,d wd+2 1

∣
∣
∣
∣∣
∣
∣
∣
∣
∣

(1)
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> 0. (2)

Performance Analysis
The detailed performance analysis for the CDO algorithm employing dy-

namic DT in Laguerre geometry follows. Some of the estimates apply to all
CDO employing different data structures, while some are specific for the Delau-
nay triangulation based approach.

First, consider the planar Delaunay triangulation. During the preprocessing
stage the DT is constructed in O(n logn) using the sweep-plane technique. The
space required to store the data structure is O(n). Placing the initial events into
the event queue takes O(n) (since they all occur at time t = 0).

The upper bound on the number of predict trajectory events at any moment
of time in the queue is O(n), since only one predict trajectory event is scheduled
for each particle. The upper bound on the number of collision events at any
moment of time in the queue is O(n2), since a possible collision can be scheduled
for each pair of particles. It is independent of the CDO data structure. The upper
bound on the number of topological events stored in the queue is O(n) at any
moment of time, since only one topological event is scheduled for every Delaunay
triangulation edge.

The algorithm efficiency also depends on the number of collision checks that
need to be performed in order to determine if a collision event needs to be sched-
uled. The number of collision checks that need to be performed after a predict
trajectory event is the number of neighbors of the particle. This number is O(n)
in the worst case. However, for planar DT, the average number of neighbors of a
particle is a constant. The maximum number of collision checks per topological
event is equal to the number of new neighbors of a particle after the topological
event occurs. For the dynamic DT, this number is exactly one (since one new
edge appears in the DT due to a topological event).

Processing a topological event requires scheduling up to five new topological
events (one for the new edge and one for each of the four neighboring quadrilat-
erals). It also requires performing one collision check and scheduling one possible
collision event. Thus, the overall complexity of this step is O(logn).
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The most time consuming step in processing of a collision event in the worst
case is deleting up to O(n) previously scheduled events. If every particle contains
a list of references to all events involving this particle, then they can be deleted
in O(n) time. Thus, the overall complexity of this step is O(n).

Processing a predict trajectory event requires performing collision checks
and scheduling new collision events (which is O(n) in the worst-case). It also
requires scheduling new topological events for the particle, which can result in
scheduling new topological events for all edges of DT adjacent to this particle
(O(n) in total). Thus, the overall complexity of this step is O(n logn).

The total number of collisions between particles during the simulation cannot
be bounded since the simulation time is unlimited. Hence, the overhead asso-
ciated with the use of a particular CDO algorithm is usually estimated by the
maximum number of topological events that can occur between two consecutive
collisions. For a planar Delaunay triangulation, the number can be as large as
O

(
n2λs(n)

)
, where λs(n) is the maximum length of an (n, s)-Davenport-Schinzel

sequence, or as low as O(1) for densely packed systems. The above discussion is
summarized in Table 1, Section 3.5.

In higher dimensions, only a few estimates differ. The worst-case number
of topological events that can happen between two consecutive collisions is
O

(
ndλs(n)

)
, the initialization step takes O

(
n!d+1/2") (using an incremental

construction technique), the space required is O
(
n!d/2"

)
.

3.2 The Regular Spatial Subdivision

The regular spatial subdivision is a data structure that is traditionally used
for collision detection optimization. The performance of the method strongly
depends on the ratio between the maximum size of the particle and the diameter
of the cell. Our contribution is in establishing the condition under which the
number of the particles in the cell is a constant, thus guaranteeing a successful
application of this method for CDO.

The space is subdivided into axis-parallel hypercubes in Rd. These are gener-
ically called cells in the sequel. A particle is said to reside in a cell if its center
belongs to the cell. Each cell contains a list of particles that currently reside
in it. The set of neighbors of a particle comprises all particles residing in the
same or any of the 3d1 neighboring cells. To ensure correctness, the size of a cell
must be greater or equal to the diameter of the largest particle. Then, if two
particles are in contact, they are guaranteed to reside in the same or in the two
neighboring cells. Each particle Pi = (pi, ri) is represented by a pair consisting
of the coordinates of its center pi = pi (t) and the radius ri. Assume that the
size of the simulation domain is such that there are k cells in each direction.
Consider a d-dimensional box with a diameter l as a simulation domain. The
size of a cell must exceed the diameter of the largest particle. Thus, k is defined
as the diameter of the simulation domain divided by the diameter of a largest
particle M = max

Pi∈S
(2ri), i.e. k = !l/M". The diameter of the smallest particle is
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denoted by m = min
Pi∈S

(2ri).

Assumption 1. The ratio γ = M/m between the maximum and the mini-
mum diameter is invariant of n.

Lemma 2. Under Assumption 1, the maximum number nc of particles within
each cell is bounded by a constant.

A topological event in the regular spatial subdivision occurs when the center of
a particle moves from one cell to another. The time of a topological event can
be determined exactly by computing the time when the center of the particle
passes the boundary of a cell.

Performance analysis
The space required to store the data structure is O

(
kd + n

)
. The regular

spatial subdivision can be constructed by first allocating kd cells and then placing
each of the particles into the appropriate cell based on their coordinates at the
moment t = 0. The cells are stored in a multi-dimensional array and are accessed
directly in O(1).

For each particle only one topological event can be scheduled at any particular
moment of time. Therefore, the upper bound on a number of topological events
stored in the queue is O(n) at any moment of time. Upper bounds on collision
and predict trajectory event are invariant of the data structure used.

Collision checks after topological event are performed between particles that
reside in neighboring cells. Since the topological event occurs when a particle
moves into one of these neighboring cells, collision checks with particles from
some of these cells were computed previously. Thus, only particles in 3d−1 new
neighboring cells must be checked for collisions. The total number of collision
checks after topological event is the number of new neighbors of a particle and
is O(1) under Assumption 1. Therefore, the total number of collision checks per
predict trajectory event is also a constant.

Processing a topological event requires scheduling one new topological event
(move to a new cell). It also requires performing O(1) collision checks with
new neighbors and scheduling the detected collision events. Thus, the overall
complexity of this step is O(logn).

Processing a predict trajectory event requires performing collision checks and
scheduling new collision events. Since each cell contains only a constant number
of particles (according to Lemma 1), only a constant number of collision events
will be scheduled. It also requires scheduling one new topological event. Thus,
the overall complexity of this step is O(logn). Following the same arguments as
for the dynamic DT, processing of the collision event takes O(n).

Finally, since a particle can cross maximum k cells before it collides with the
boundary, the number of topological events between two collisions is O(nk).

Note 2. The efficiency of this method strongly depends on the distribution
of particle diameters. For the algorithm to perform well, the maximum number
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nc of particles that can fit into a cell must be smaller than the total number of
particles n.

3.3 The Regular Spatial Tree

This approach is a modification of the regular spatial subdivision method that
reduces the memory overhead at the expense of increased access time. We pro-
pose the following approach. The non-empty cells are stored in an AVL tree
according to the lexicographical ordering on their coordinates. Each node of the
tree is associated with a cell in the d-dimensional Euclidean space and implicitly
with a non-empty set of particles {Pi1 , Pi2 , ..., Pil}, whose centers belong to the
cell.

The method reduces the storage to O(n), since the number of occupied cells
cannot exceed the total number of particles in the system. On the other hand,
each cell access now requires O(logn) time. All the complexity estimates ob-
tained for the regular spatial subdivision method hold with the following ex-
ception. Any operation involving modifications of the data structure (such as
moving a particle from one cell into another) will now require O(logn) time.
Hence, each topological event requires O(logn) operations. The initial construc-
tion of the data structure takes O(n logn) time, independent of the dimension.

3.4 The Set of Segment Trees

This is an original method proposed for collision detection optimization. We
maintain a set of trees of intersecting segments, obtained by projecting the
bounding boxes of particles onto the coordinate axes. The particles are said
to be neighbors if their bounding boxes intersect. The algorithm is correct since
if two particles are in contact, then their bounding boxes intersect.

A segment tree, represented as an AVL tree, is maintained for each of the
coordinate axis. The size of each tree is fixed, since the total number of particles
does not change over time. For every particle, associated list of its neighbors is
dynamically updated. A topological event occurs when two segment endpoints
on one of the axes meet. This indicates that the bounding boxes of the two
corresponding particles should be tested for intersection. Positive test identifies
that the particles became neighbors, thus their neighbor lists are updated and
collision check is performed.

As the particles move, it is necessary to maintain the sequence of segment
endpoints in sorted order for each of the coordinate axes. When two neighboring
endpoints collide, they are exchanged in the tree. Note that we do not rebalance
the tree, but exchange references to segment endpoints.

Performance analysis
The segment tree is constructed initially by sorting the segment endpoints

in O(n logn) time. The space required is O(n).
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The upper bound on the number of topological events stored in the event
queue is O(n) at any moment of time, since every segment endpoint can only
collide with either of the neighboring endpoints of another segment, and there are
2d endpoints for every particle. Upper bounds on collision and predict trajectory
event are the same as in Section 3.1.

At most one collision check is performed per topological event. Note that a
half of the collisions between segment endpoints, when two segments start to
intersect, might result in collision checks between particles. The other half cor-
respond to topological events, when two segments stop intersecting (no collision
checks are required for these events, though the neighbor lists are updated). The
number of collision checks per predict trajectory event is estimated as follows.

Lemma 3. Under Assumption 1, the total number of collision checks per predict
trajectory event is O(1).

Processing a topological event requires scheduling up to two new topologi-
cal event (one for each new neighboring segment endpoint). Thus, the overall
complexity of this step is O(logn). Processing a predict trajectory event requires
scheduling up to 4d new topological events (two for every segment endpoint).
Only a constant number of collision events will be scheduled. Thus, the com-
plexity of this step is O(logn). The overall complexity of processing a collision
event is O(n).

Lemma 4. If the particles move along the straight-line trajectories, then the
upper bound on the number of topological events that can take place between two
consecutive collisions is O(n2).

3.5 Summary of Performance Analysis

The complexities of the presented algorithms for the planar case are now sum-
marized. The following notations are used:
A the upper bound on the number of neighbors of a particle
B maximum number of neighbors appearing due to a topological event
C time per topological event (excluding collision checks)
D time per predict trajectory event
E maximum number of topological events between two collisions
F initialization
G space

4 Conclusion

The analysis of algorithm performance is summarized as follows.

1. The worst-case number of topological events that can happen between two
collisions is the largest for the Delaunay tessellation method. This method
should only be used in particle systems with high collision rate.
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Algorithm A B C D E F G

Dynamic DT O(n) 1 O(log n) O(log n) O(n2λs(n)) O
ÿ
n!d+1/2"

þ
O
ÿ
n!d/2"

þ

Subdivision O(1) O(1) O(log n) O(log n) O(nk) O(n+ kd) O(n+ kd)

Spatial tree O(1) O(1) O(log n) O(log n) O(nk) O(n log n) O(n)

Segment tree O(1) 0 or 1 O(log n) O(n) O(n2) O(n log n) O(n)

Table 1. Algorithms performance in d-dimensions

2. The regular spatial subdivision is the most space consuming method and
should not be used if the memory resources are limited.

3. The regular spatial subdivision and the regular spatial tree methods perform
worst for densely packed granular systems.

4. The Delaunay tessellation based method is the only method which perfor-
mance is independent of the distribution of radii of the particles and their
packing density.

5. In order to implement the regular subdivision method the size of the sim-
ulation space and the size of the largest particle in the system should be
known in advance. This information is not required for other data structures
considered.
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