
Real-Time Performance Estimation for Dynamic,
Distributed Real-Time Systems

Eui-Nam Huh1, Lonnie R. Welch2, and Y. Mun3

1 Sahmyook University, Department of Computer Science
Chongyang, P.O.Box 118, Seoul, Korea

huh@syu.ac.kr
2 Ohio University, School of Electrical Engineering & Computer Science

Athens, Ohio, USA
welch@ohiou.edu

3 Soongsil University, School of Computer Science
Seoul, Korea

mun@computing.ssu.ac.kr

Abstract. The main contribution of this paper is accurate analysis of real-time
performance for dynamic real-time applications. A wrong system performance
analysis can lead to a catastrophe in a dynamic real-time system. In addition,
real-time performance guarantee combined with efficient resource utilization is
observed by experiments, while the previous worst-case approaches primarily
focused on performance guarantee but resulted in typically poor utilization. The
subsequent contribution is schedulability analysis for a feasible allocation of
resource management on the Solaris operating system. This is accomplished
with a mathematical model and by accurate response time prediction for a
periodic, dynamic distributed real-time application.

1 Introduction

The rac-25 radiation machine killed cancer patients because of a software bug.
Imagine that you have a car accident. After you have already been thrown into the
windshield, the airbag inflates. This paper addresses the problem of certifying that
software will respond to real-world events in a timely manner.

Use of real-time systems is being spread rapidly to many areas. Real-time services
need to react to dynamic user requests. A dynamic real-time system used to offer
services to the dynamic user requests should consider variable execution times and/or
arrival rates of tasks during run-time.

One of the management problems of dynamic real-time systems that must be
solved is to provide the quality of service (QoS) for a time-constrained task. The task
commonly appears in systems such as air traffic control, robotics, automotive safety,
mission control, and air defense. An example of this task is software that detects radar
data, evaluates it and launches missiles if a hostile missile is detected. All of these
dynamic real-time systems require consideration of variable execution times and/or
arrival rates of tasks, as opposed to deterministic and stochastic real-time systems
which have a priori known, fixed task execution times and arrival rates.

P.M.A. Sloot et al. (Eds.): ICCS 2002, LNCS 2331, pp. 1071−1079, 2002.
 Springer-Verlag Berlin Heidelberg 2002

Resource allocation, mapping software (S/W) to hardware (H/W), for those
systems is an essential component and needs to consider real-time constraints of the
task and should analyze feasible resources. Thus, the feasible allocation of the
available resources has to be carried out according to time-constrained requirements,
failure of which might cause a catastrophe in hard real-time systems. To maintain the
feasible allocation, shedulability analysis of the task is required. Prediction of the
response time of the task compared to the time-constrained requirement is one of the
schedulability analysis approaches. Furthermore, computing resources for those
dynamic systems should be utilized efficiently. The distributed system is employed to
provide scalable resources to the dynamic S/W systems that have various and
unbounded execution times.

Generally, the real-time system is designed to analyze that a task can meet its time
constraint before it is executed. The Rate Monotonic Analysis (RMA) introduced by
Liu and Layland in [1] is used primarily to determine schedulability of an application
by using a priori Worst-Case Execution Time (WCET) and the priority of the
application. The priority of the application to be applied to RMA is dependent upon
arrival patterns and rates. The application, which has a higher arrival rate of task or
needs to be executed more frequently, has a higher priority level than any other
applications.

However, as has been noted in [2], [3], [4], [5], and [6], resources are poorly
utilized if the average case is significantly less than the worst case. Another drawback
of RMA is that it cannot efficiently accommodate high-priority jobs that have
relatively low rates. It must, however, be noted that RMA can be made to work in
such cases, by transforming low-rate, high-priority jobs into high-rate jobs -- but this
can be extremely wasteful in terms of resources.

It is stated in [6], [7] and [13] that accurately measuring the WCET is often
difficult, and is sometimes impossible. Puschner and Burns in [8] consider WCET
analysis to be hardware dependent, making it an expensive operation on distributed
heterogeneous clusters.

The statistical RMA by Atlas and Bestavros in [9] considers tasks that have
variable execution times and allocate resources to handle the expected case. The
benefit of this approach is the efficient utilization of resources. However, there are
shortcomings. Firstly, applications which have a wide variance in resource
requirements cannot be characterized accurately by a time-invariant statistical
distribution; and secondly, deadline violations occur when the expected case is less
than the actual case. Similarly, real-time queuing theory by Lehoczky in [5] uses
probabilistic event and data arrival rates for performing resource allocation analysis.
On the average, this approach provides good utilization of resources. It must be noted,
however, that applications which have a wide variance of resource requirements
cannot be characterized accurately by a time-invariant statistical distribution. Called
the dynamic real-time system by Welch and Masters in [10], there is a need for a new
approach to the dynamic real-time system which would be more efficient than RMA
and statistical RMA in assurance of the real-time QoS.

1072 E.-N. Huh, L.R. Welch, and Y. Mun

2 Problem Statement

This section uses mathematical notation to describe the problem of certifying that a
real-time application meets (or does not meet) its real-time requirement on a host that
is running other applications. The notation will be used in subsequent sections to
concisely define certification methods. For convenience, the Data Flow Diagram
(DFD) is used for description of problems.

Fig. 1. Level 0 DFD of “Schedulabilty Analyzer System”

As shown in Fig.1, the Schedulability Analyzer certifies (or says that it cannot
certify) that the application (‘A’) will meet its real-time requirement on the host (H).
The application ‘A’ is represented as period, priority, execution time, segment and
real-time requirement. The host ‘H’ is represented as its name, time quanta, and a list
of applications. SA-result is returned to indicate the certification result, which consists
of a boolean value and a predicted response time.

Fig. 2. Level 1 DFD of “Schedulability Analyzer”

λreq

λpred

A, H

 1
Predict
Response

 Time

2
 Check

Schedulability

SA-result

Resource
Manager

Resource
Allocator

Schedulability
Analyzer

 H, A

SA-result

1073Real-Time Performance Estimation for Dynamic

The Schedulability Analyzer from Fig. 1 is depicted in Fig. 2. This paper presents a
novel approach to schedulability analysis, which predicts response time (λpred) of ‘A’
and checks schedulability to certify that ‘A’ will meet its real-time requirement (λreq)
on H before allocation. ‘Predict Response Time’ reads application list (‘A*’) on H
and computes λpred of ‘A’. ‘Check Schedulability’ compares λpred with λreq and
returns ‘true’ if λpred < λreq and returns ‘false’ otherwise; the predicted response time;
λpred, is also returned. ‘A’, H and the elements of A* are defined as tuples below.

Definition 2.1: An application tuple A = (T, p, C, U, S, λλλλreq)
where

T is period of A ,
p is priority of A,
C is execution time of A,
U is utilization of A ,
S is the number of time quanta used by A per period.
(it is computed as C/TQ .)
λreq is the requirement of A. (note: we assume that λreq ≤ T)

Definition 2.2: A host tuple H=(name, TQ, A*)
where

name is name of a host,
TQ is a vector defining the time quantum for each priority
on a host
A* is a list of the applications:<a1, a2,,, an> that are currently allocated to H.

Definition 2.3: Each element of A* is an application, represented as a tuple =
(T, p, C, U, S):

where
T is period of A ,
p is priority of A,
C is execution time of A,
U is utilization of A , and
S is the number of time quanta used by A per period.

The convention used in this paper to denote an element ‘E’ of tuple ‘T’ is E(T).
Thus, for example, the execution time of an application ‘A’ is denoted as C(A).

The novel approach to schedulability analysis, prediction of response time, from
Fig. 2 is described in Fig. 3 in detail. The prediction of response time technique
considers estimation of queuing delay of ‘A’ due to contention with other applications
(‘A*’) on H. An important consideration of prediction of response time is estimation
of queuing delay due to the same priority (p) applications (Dpred1) as shown at 1.1
bubble in Fig.3. Queuing delay due to higher priority (p) applications (Dpred2) as
shown as bubble 1.2 in Fig. 3 is also estimated as higher priority tasks always hold
resources of H. Finally, Calculate response time of the application as shown as bubble

1074 E.-N. Huh, L.R. Welch, and Y. Mun

1.3 in Fig. 3 computes the estimated response time of ‘A’: λpred =C + Dpred1 + Dpred2,
where Dpred1: delay experienced by a due to waiting for ai ∈ ‘A*’ such that
p(ai)=p(A), and Dpred2: delay experienced by waiting for aj ∈ ‘A*’ such that p(aj) >
p(A).

Fig. 3. Level 2 DFD of “Predict Response Time”

3 Real-Time Performance Analysis

This section presents approaches for performing estimation of real-time performance
of dynamic real-time applications introduced as bubbles, 1.1, 1.2, and 1.3 as shown in
Fig. 3. These approaches based on probabilistic techniques are extended to be
applicable to time-sharing round-robin scheduler, which considers queuing delay due
to the same priority tasks. As mentioned in section 1, the worst-case response time
analysis approaches, [11] and stochastic approaches, [5] and [9] are not appropriate
for response time analysis in dynamic real-time systems.

3.1 A Execution Rate (ER) Technique

This approach calculates queuing delay of ‘A’ due to the same priority tasks, and
considers applications’ periods to find total contention among them. Least Common
Multiple (LCM) of periods of ‘A’ and ‘A*’ on H is used in this approach. To extend

1.2
Calculate
queuing

delay: higher
priority

1.1
Calculate
queuing

delay: same
priority

1.3
Calculate

Response time
of the application

Dpred1

A,
H

Dpred2

λpred

1075Real-Time Performance Estimation for Dynamic

this approach to round-robin scheduler, the execution of ‘A’ is analyzed in the unit of
time quantum (TQ) and segment (S). Following steps show how it is processed to
compute Dpred1(A) due to the same priority tasks.

Step 1. Compute the resource requirement of ‘A’ during the interval, [0,LCM].
Step 2. Compute the resource requirement of the other tasks A* during the interval,

[0,LCM].
Step 3. Compute executive rate at which requests of ‘A’ are serviced.
Step 4. Compute queuing delay Dpred1(A).

3.2 A Probabilistic Rate (PR) Technique for Same Priority Tasks

An improved approach called PR calculates queuing delay of ‘A’ due to the same
priority tasks for the bubble 1.1 as shown in Fig. 3 by considering the probability of
the target task (‘A’) being blocked by any other tasks (‘A*’).

The basic concept is the same as ER introduced in section 3.1. The improved
probabilistic rate, pr(A), considers all possible probability that the target task could
be executed including computation of progress rate within contention with other tasks
as follows: (1) the probability of being with no usage of the resource, (2) the chance
that only ‘A’ uses the resource, and (3) the chance that there is progress rate of ‘A’
within contention. This approach also implemented like the ER approach.

3.3 Response Time Prediction

This section simply combines C(A), Dpred1(A), and Dpred2(A) to compute the predicted
response time of the task, λpred(A) as shown as the bubble 1.3 in Fig. 3. That is,
λpred(A) = C(A) + Dpred1(A) + Dpred2(A).

4. Experiments and Summary

This section shows how the approaches accurately predict response time of an
application using DynBench, path based s/w systems, introduced by Welch and
Shirazi (see [12]).

The ‘filter1’ application (which filters noise from sensed data) in the first sensing
path (denoted as “path 1”) as the task is examined on the variable size of workload
scenario. Thirty samples of the response time of ‘filter1’ are collected and averaged,
when workloads of the path 2 are changed dynamically and monotonically. The
workload of sensing path 3 is fixed by 800, and that of sensing path 2 is suddenly
increased to 1300 by adding 800 workloads at 1 minute 20 seconds; it drops by 600 at
2 minutes 40 seconds; it adds 700 again at 4 minutes, and drops 500 at 5 minutes 20
seconds. See Fig. 4.

1076 E.-N. Huh, L.R. Welch, and Y. Mun

Fig. 4. Dynamically changed workload scenario

The response time, λpred=Dpred1+Dpred2+C(filter1), depicted in Fig. 5, is measured
using the same approach for each contention case by ER and PR. And the worst-case
analysis (denoted as WC) by Audsley in [11] is employed as well to see how the new
technique is accurate.

Fig. 5. Predicted Response time comparison

Dynamically Changed Experiment File

0
200
400
600
800

1000
1200
1400
1600

1 25 49 73 97 12
1

14
5

16
9

19
3

21
7

24
1

26
5

28
9

31
3

33
7

36
1

38
5

time

w
o

rk
lo

ad
 (

tl
)

Response Time Prediction of 'Filter1' on Dynamic Scenario

0

0.1

0.2

0.3

0.4

0.5

500 1300 700 1400 900

workload

se
co

n
d

resp. time

WC

ER

PR

1077Real-Time Performance Estimation for Dynamic

Table 1. Error comparison by each technique

workload WC ER PR

500 0.081 0.066 0.011

1300 0.241 0.133 0.005
700 0.117 0.086 0.004

1400 0.277 0.146 0.018
900 0.147 0.091 0.004

Table 1 shows the errors can be evaluated to find which technique is significant.
The PR technique is significant. Overall error in terms of resource utilization is as
follows: 17.3 percenatge for the worst-case (WC) , 10.4 percentage for ER, and 0.08
percentage for PR are observed.

From the thirty times experiments, there is no measurement error observed under
the 95% confidence interval. The PR, probabilistic contention analysis technique, can
accurately predict response time of an application on a host, while the worst-case
analysis poorly predicts response times. Therefore, these experiments for the
dynamic real-time systems give strong analysis that the worst-case analysis poorly
utilizes computational resources, and new approaches can predict response time
accurately with the dynamic environment constraints using current utilization. The
probabilistic response time prediction method for dynamic real-time systems rather
than the worst-case is very useful in terms of resource utilization and certification of
real-time performance.

5. Future Study

This research opens the possibility for yet future interesting research. First, there is
the topic of certification for an event-driven real-time application which is periodic as
well as aperiodic. Second, a new research area derived from this study is the
determination of confidence levels of certification, which will be analyzed by
mathematical methods with an upper bound, or error.

Acknowledgements

This work is supported in part by the Ministry of Information Communication of
Korea, under the "Support Project of University Information Technology Research
Center(ITRC)" supervised by KIPA".

1078 E.-N. Huh, L.R. Welch, and Y. Mun

References

1. Liu, C. L., and Layland , J.W.: Scheduling algorithms for multi-programming in a hard-real-
time environment. Journal of the ACM, Vol. 20. (1973) 46-61

2. Ramamritham, J.A. Stankovic and Zhao, W.: Distributed scheduling of tasks with deadlines
and resource requirements. IEEE Transactions on Computers, Vol. 38. (1989) 110-123

3. Haban, D. and Shin, K. G.: Applications of real-time monitoring for scheduling tasks with
random execution times. IEEE Transactions on Software Engineering, Vol. 16. (1990)
1374-1389

4. Tia, T. S., Deng, Z., Shankar, M., Storch, M.,Sun, J., Wu, L.C., Liu, J.W.S.: Probabilistic
performance guarantee for real-time tasks with varying computation times. Proceedings of
the 1st IEEE Real-Time Technology and Applications Symposium. IEEE Computer Society
Press (1995) 164-173

5. Lehoczky, J.P.: Real-Time Queueing Theory. Proceedings of IEEE Real-Time Systems
Symposium. IEEE Computer Society Press (1996) 186-195

6. Abeni, L. and Buttazzo, G.: Integrating multimedia applications in hard real-time systems.
Proceedings of the 19th IEEE Real-Time Systems Symposium. IEEE Computer Society
Press (1998) 3-13

7. Stewart, D.B. and Khosla, P.K.: Mechanisms for detecting and handling timing errors.
Communications of the ACM, Vol. 40. (1997) 87-93

8. Puschner, P., Burns, A.: A Review of Worst-Case Analysis. The International Journal of
Time-Critical Computing Systems, Vol. 18. (2000) 115–128

9. Atlas, A., and Bestavros, A.: Statistical rate monotonic scheduling. Proceedings of the 19th

IEEE Real-Time Systems Symposium. IEEE Computer Society Press (1998) 123-132
10. Welch, L.R and Masters, M.W.: Toward a Taxonomy for Real-Time Mission-Critical

systems. Proceedings of the First International Workshop on Real-Time Mission-Critical
Systems (1999)

11. Audsley, Neil C.: Deadline Monotonic Scheduling. Report YCS-90-146. Department of
Computer Science, York University (1990)

12. Welch, L. R., Shirazi, B.: A Dynamic Real-Time Benchmark for Assessment of QoS and
Resource Management Technology. IEEE Real-Time Application System (1999)

13. Burns, F., Koelmans, A., Yakovlev, A.: WCET Analysis of Superscalar Processors Using
Simulation With Coloured Petrinets. The International Journal of Time-Critical Computing
Systems, Vol. 18. (2000) 275–288

1079Real-Time Performance Estimation for Dynamic

	Introduction
	Problem Statement
	Real-Time Performance Analysis
	A Execution Rate (ER) Technique
	A Probabilistic Rate (PR) Technique for Same Priority Tasks
	Response Time Prediction

	Experiments and Summary
	Future Study
	Acknowledgements
	References

