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Abstract. In the present work we propose some interpretation of the
results of the direct simulation of quantum chaos.

1 Introduction

At the early stage of quantum mechanics development, Albert Einstein has writ-
ten a work in which the question, which has become a focus of physicians atten-
tion several decades later, was touched upon. The question was: what will the
classic chaotic system become in terms of quantum mechanics. He has particu-
larly set apart the three-body system.

In an effort to realize the problem and get closer to its chaos solution in es-
sential quantum area, M. Gutzwiller, a well known physician, have conditionally
subdivided all the existing knowledge in physics into three areas [1]:

1) elementary classical mechanics, which only allows for simple regular system
behaviour (regular classical area R);

2) classical chaotic dynamic systems of Poincare systems (P area);
3) regular quantum mechanics, which interpretations are being considered

during last 80 years (Q area).
The above areas are connected by a separate bounds. Thus, Bor’s correspon-

dence principal works between R and Q areas, transferring quantum mechanics
into classical Newton’s mechanics within the limit h̄ → 0. Q and P areas are
connected by Kolmogorov’s - Arnold’s - Mozer’s theorem (KAM). Let’s note that
KAM theorem allows to determine the excitations , which cause the chaotic be-
haviour of regular systems. Inspite of well known work by Wu and Parisi [2],
which allows to describe Q-systems with the help of P -systems in thermody-
namic limit under certain circumstances, the general principle connecting P and
Q is not yet determined. Assuming the existence of the fourth area - quantum
chaos area Qch, M. Gutzwiller adds that it rather serves for the puzzle descrip-
tion than for a good problem formulation. It is evident that the task formulated
correctly in Qch area is a most general one and must transfer to the abovemen-
tioned areas in its limits.

The problem of quantum chaos was studied as the example of quantum mul-
tichannel scattering in collinear three-body system [3,4]. It was shown than this
task can be transformed into a problem of unharmonic oscillator with non-trivial
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time (internal time). Let’s note, that in a model considered internal time is deter-
mined by a system of two non-linear differential equations of the second order.
In [5] this problem was studied on the example of chemical reaction and in
[6] it was applied to surface scattering. The ab initio computation even of the
simple three-body systems is a challenge for some generation of computational
physicists, so some new approach was proposed in [7] and beautiful example of
distributed computation was demonstrated in [8].

In the present work we propose some interpretation of the results, obtained
in [7,8], and thus give our view of quantum chaos origination.

2 Formulation of the problem

The quantum multichannel scattering in the framework of collinear model is
realized accordingly to follow scheme:

A + (BC)n →




A + (BC)m
(AB)m + C
A + B + C

(ABC)
∗ →




A + (BC)m
(AB)m + C
A + B + C

(1)

with m and n being the vibrational quantum numbers correspondingly in
(in) and (out) scattering channels. As it was shown elsewhere [3,4] the problem
of quantum evolution (1) can be strictly formulated as a motion of image point
with a reduced mass µ0 over the manyfold M , that is stratificated Lagrange
surface Sp, in the moving over Sp local coordinate system. In our case there is
standard definition of the surface Sp

Sp =
{
x1, x2; 2µ0

(
E − V

(
x1, x2

))
> 0
}
,

µ0 =

{
mAmBmC

mA + mB + mC

}1/2

,

(2)

where mA, mB, mC being the masses of corresponding particles, E and
V
(
x1, x2

)
being correspondingly the total energy and interaction potential of the

system. The metric on the surface Sp in our case is introduced in the following
way

gik = P 2
0

(
x1, x2

)
δik,

P 2
0

(
x1, x2

)
= 2µ0

(
E − V

(
x1, x2

))
.

(3)

As to the motion of the local coordinate system, it is determined by the pro-
jection of the image point motion over the extremal ray �ext of the Lagrange
manyfold Sp. Note, that for scattering problem (1) there are two extremal rays on
a surface Sp: one is connecting the (in) channel with the (out) channel of particle

1177Deterministic Computation towards Indeterminism



rearrangement and the other is connecting the (in) channel with the (out) chan-
nel, where all three particles are free. ¿From now on we shall study only the case
of rearrangement final channel. Let us introduce curvilinear coordinates

(
x1, x2

)
in Euclidean space R2 along the projection of the rearrangement extremal ray
�̄ext in a such way, that x1 is changing along �̄ext and x2 is changing in orthog-
onal direction. In such a case the trajectory of image point is determined by the
following system of the second order differential equations:

xk
;ss + {}kij xi

;sx
j
;s = 0 (i, j, k = 1, 2) (4)

where {}kij = (1/2)gkl (glj;i + gil;j − gij;l), gij;k = ∂xkgij .

As to the law of local coordinate system motion, it is given by the solu-
tion x1 (s). Based on this solution the quantum evolution of the system on the
manyfold M is determined by the equation (see [4])

{
h̄2∆(x1(s),x2) + P 2

0

(
x1 (s) , x2

)}
Ψ = 0, (5)

with the operator ∆(x1(s),x2) of the form

∆(x1(s),x2) = γ− 1
2

{
∂x1(s)

[
γijγ

1
2 ∂x1(s)

]
+ ∂x2

[
γijγ

1
2 ∂x2

]}
. (6)

As to the metric tensor of the manyfold M , it has the following form [4]:

γ11 =

(
1 +

λ
(
x1 (s)

)
ρ1 (x1 (s))

)2

, γ12 = γ21 = 0,

γ22 =

(
1 +

x2

ρ2 (x1 (s))

)2

, γ = γ11γ22 > 0,

(7)

with λ being de Broglie wave length on �ext and ρ1, ρ2 being the principle
curvatures of the surface Sp in the point x1 ∈ � in the directions of coordinates
x1, x2 changes

ρ1 =
P0

(
x1 (s) , 0

)
P0;x1 (x1 (s) , 0)

, ρ2 =
P0

(
x1 (s) , 0

)
P0;x2 (x1 (s) , 0)

,

λ =
h̄

P0 (x1 (s) , 0)
, P0;xi =

dP
(
x1 (s) , x2

)
dxi

.

(8)

Note, that the main difference of (5) from Schrödinger equation comes from
the fact, that one of the independent coordinates x1 (s) is the solution of nonlin-
ear difference equations system and so is not a natural parameter of our system
and can in certain situations be a chaotic function.

1178 A.V. Bogdanov et al.



3 Reduction of the scattering problem to the problem of
quantum harmonic oscillator with internal time

Let us make a coordinate transformations in Eq.(5):

τ =
(
Ei

k

)−1
x1(s)∫
0

P
(
x1, 0

)√
γdx1,

z =
(
h̄Ei

k

)− 1
2 P
(
x1, 0

)
x2,

(9)

with Ei
k being the kinetic energy of particle A in the (in) channel, the function

P
(
x1, x2

)
=
√

2µ0

[
Ei

k − V (x1, x2)
]

and with image point on the curve �ext it

is just the momentum of image point.
By expanding of P

(
x1, x2

)
over the coordinate x2 up to the second order

we can reduce the scattering equation (5) to the problem of quantum harmonic
oscillator with variable frequency in the external field, depending on internal
time τ

(
x1, x2

)
. E.g. in the case of zero external field the exact wave function of

the system without some constant phase, unimportant for the expression of the
scattering matrix, is of the form

Ψ+ (n; τ) =

[
(Ωin/π)

1/2

2nn! |ξ|

] 1
2

×

exp


Ei

kτ

h̄
−
(
n +

1

2

)
Ωin

τ∫
−∞

dτ ′

|ξ|2 +

+
1

2
ξ̇ξ−1z2 − 1

2
ṗp−1z2

}
Hn

(√
Ωin

|ξ| z

)
, (10)

ξ̇ = dτ ξ, ṗ = dτp, p
(
x1 (s)

)
= P

(
x1 (s) , 0

)
,

with the function ξ (τ) being the solution of the classical oscillator equation

ξ̈ + Ω2 (τ) ξ = 0,

Ω2 (τ) = −
(
Ei

k

p

)2

 1

ρ2
2

+
2∑

k=1


p;kk

p
+

(
p;k

p

)2



 , (11)

p;k =
dp

dxk

with asymptotic conditions
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ξ(τ)
∼−−−−−→

τ→−∞ exp (iΩinτ) ,

ξ(τ)
∼−−−−−→

τ→+∞ C1 exp (iΩinτ) − C2 exp (iΩoutτ) .

(12)

Note, that internal time τ is directly determined by the solution of x1 (s) and
therefore includes all peculiarities if x1 behaviour.

The transition probability for that case is of the form [3,4]:

Wmn =
(n<)!

(n>)!

√
1 −
∣∣∣∣C2

C1

∣∣∣∣
2
∣∣∣∣∣P (n>−n<)/2

(n>+n<)/2

(
1 −
∣∣∣∣C2

C1

∣∣∣∣
2
)∣∣∣∣∣

2

, (13)

where n< = min (m,n), n> = max (m,n) and Pn
m being the Legandre poly-

nomial.

4 The study of the internal time dependence versus
natural parameter of the problem - standard time

Now we are able to turn to the prove of the possibility of the quantum chaos
initiation in the wave function (10) and as a result in the probability (13). It is
enough to show, that the solution x1 (s) with certain initial conditions behaves
unstable or chaotically. With that purpose on the example of elementary reaction
Li + (FH) → (LiFH)

∗ → (LiF ) + H we studied carefully the behaviour of the
image point trajectories on Lagrange surface Sp. It was shown that with collision
energy Ei

k = 1.4eV and for fixed transversal vibrations energy Ev = 1.02eV the
image point trajectory is stable. The whole region of kinetic energies is splited
to regular subregions, and dependingly from which subregion trajectory starts
it goes either to (out) channel (Fig.1(a)) or reflects back in the (in) channel
(Fig.1(b)).

With a further change of kinetic energy the image point trajectory in the
interaction region starts orbiting, that corresponds to the creation of the res-
onance complex (LiFH)

∗
, and after that leave the interaction region either to

(out) (Fig.1(c)) or return to (in) channel. In such a case the image point trajec-
tories diverge and this divergence is exponential, as can be seen from the study
of the Lyapunov parameters. That is for those initial conditions the evolution
in the correspondent classical problem is chaotic and so the motion of the local
coordinate system is chaotic too. It is easy to see that in such situation the be-
haviour of x1 (s) is also chaotic and the same is true for internal time, that is
the natural parameter of quantum evolution problem.

It can be shown, that chaotic behaviour of the internal time is followed by
the stochastic behaviour of the model equation solution ξ (τ (s)) and the same
is true for the wave function (10) and transition probability (13). In such a
way the possibility of violation of quantum determinism and quantum chaos
organization was shown on the example of the wave function of the simple model
of multichannel scattering.

1180 A.V. Bogdanov et al.



Fig. 1. Dependence of Lyapunov exponent over time parameter s for the case of rear-
rangement reaction going through resonance state.

Those results may seem strange if we take into account, that original prob-
lem (i.e. Schrödinger equation with asymptotic scattering conditions) was quite
deterministic (i.e. was good candidate for possessing unique solution), outside of
standard interpretation of quantum mechanical quantities. At the same time if
one looks carefully at the final version of the scattering probabilities it is clear,
that difference between stochastic and regular regimes are not of principal im-
portance, actually the ansatz of solution in our approach for two cases is the
same. The only difference comes from the fact, that when orbiting in interaction
region starts, the initial conditions for outcoming bunch of trajectories become
undetermined, that can be regarded in terms of fluctuations of the initial stratifi-
cated Lagrange surface Sp,just as in the case of vacuum fluctuations in quantum
field theory [5].

5 Conclusion

In this work it was shown that the representation developed by the authors
includes not only Plank’s constant h̄, but new energetic parameter as well. Thus,
when the energy of the particles collision exceeds certain critical value (which is
different for the different systems), solution for internal time τ coincides with an
ordinary time - natural t parameter. In this case, the movement equation for the
system of bodies transforms to common nonstationary Schrödinger’s equation.
The scattering process is in fact a direct process for this case.

But everything is quite different when the collision occurs below the critical
energy specified. As it is shown, in such a case the solution for internal time τ in
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a definite range of t has an oscillational character. Moreover, for all the extreme
points the derivative of τ by t has a jump of the first kind, while the phase por-
trait of reactive (parametric) oscillator has bifurcations. Let’s note that these are
the collision modes with the strong interference effects, i.e. the problem becomes
essentially multichannel and includes the phase of resonant state formation. At
a small decrease of collisions energy, a number of internal time oscillations grows
dramatically. In this case the system loses all the information about its initial
state completely. Chaos arises in a wave function, which then self-organizes into
a new order within the limit τ → ∞. Mathematically it becomes possible as a
result of common wave equation irreversibility by time.

Let’s stress that the above result supports the transitional complex theory,
developed by Eyring and Polanyi on the basis of evristic considerations, the
essence of which is statistical description of chemical reactions. The amplitude
of regrouping transition in three-body system is investigated in the work on
example of Li+(FH)n → (LiF )m+H reaction and it is shown, that in the area
where the number of internal time peculiarities is high, it has an accidental value.
It is also shown that the representation developed satisfies the limit transitions
in the areas specified, including transition from Qch area into P area. The latter
occurs under h̄ → 0 and at Ei

k < Ec, where Ec is critical energy and Ei
k is a

collision energy. It is possible to give very simple interpretation of the above
results in terms of initial Lagrange surface fluctuations in strong interaction
region.
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