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Abstract. Wave pac ket dynamics oncoupled potentials is considered
on the basis of an associated Spin-Boson Hamiltonian. A large number
of eigenstates of this Hamiltonian is obtained by numerical diagonaliza-
tion. Eigenstates display a mixing of adiabatic branc hesas is evident
from their Husimi (quantum density) projections. From the eigenstates
time dependent Husimi projections are constructed and packet dynamics
is investigated. Complex packet dynamics is observed with packet prop-
agation along classical trajectories and an increasing number of pac kets
due to splitting events in the region of avoided crossings of these tra-
jectories. Splitting events and their spin dependencies are systematically
studied. In particular splitting ratios relating the intensities of packets
after a splitting event are derived from the numerical data of pac ket
propagation. A new projection technique applied to the state vector is
proposed by which the presence of particular packets in the evolution of
the system can be established and made accessible to analysis.

1 Introduction and Model

Wave packet dynamics is one of the central topics in quantum evolution with a
wide range of applications ranging from from atomic and molecular physics to
ph ysical c hemistry (see e.g. [1] and references therein). We present a numerical
investigation of the dynamics of wave packets in a many-potential system, when
phase space orbits associated with di�erent adiabatic potentials are coupled.
Basic to our investigation is the ev olution of quantum states described by the
Spin-Boson Hamiltonian
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In (1) a quantum particle residing in tw o states is coupled to a vibrational
en vironment speci�ed by the coordinate Q. The tw ostate quantum system is
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represented by the standard Pauli Spin Matrices �̂i (i = x; z), r is the dimen-
sionless vibrational frequency of the oscillator potential and p is the coupling
constant between the dynamics of the particle and the vibrational environment.
We note that (1) is a generalized Spin-Boson Hamiltonian containing the pa-
rameter �

�

, which destroys the parity symmetry of the eigenstates of the more
conventional Spin-Boson Hamiltonian in which such a term is absent.

A Hamiltonians like (1) can be obtained from di�erent physical situations,
the particle being e.g. an electron, exciton or any other quasiparticle. To be
de�nite we will use a \molecular" language and consider the situation when
the Hamiltonian (1) is derived from a molecular physics model. We consider a
molecular dimer, in which the transfer of an excitation between two monomers
constituting the dimer and coupled to a molecular vibration is investigated.
Then �

�

is the di�erence between the energies of the excitation at the two non-
equivalent monomers constituting the dimer ( �+ in (1) is the mean excitation
energy, in what follows we omit this term thereby shifting the origin of the
energy scale to �+ ). For the details of the derivation of (1) from a molecular
dimer Hamiltonian and in particular the connection between the dimensionless
parameters of (1) with a dimer model we refer to [2] and references therein.
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Fig. 1. Adiabtic potentials for the parameter set used. The line of constant energy
E = 15 and its crossing points with the potentials (turning points) are shown. The
turning points are labeled according to the location of the point (l for "left" and r

for "right") and monomer (spin) indicies 0 and 1 correspond to the upper and lower
monomer, respectively

Applying a Born - Oppenheimer stepwise quantization to (1) one obtains the
Hamiltonians of the adiabatic reference systems

H�(Q) =
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with the adiabatic potentials
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In Fig. 1 the adiabatic potentials for a given parameter set are shown. Fixing
an energy E phase space orbits can be derived from (2) for each of the adiabatic
potentials. Phase space trajectories of isolated monomers at a given energy E

can be derived in an analogous way by neglecting the quantum transfer in (1)
(discarding �̂x). In what follows we denote the upper and lower monomer of
the dimer con�guration by the indices (0) and (1), respectively. In spin repre-
sentation projections of the state vector on such monomer states correspond to
projections on the spin up state (upper monomer) and spin down state (lower
monomer), respectively. We note that in the semiclassical case adiabatic trajec-
tories can be represented as built from pieces of monomer trajectories. In the
analysis of packet propagation derived from the state vector it will be convenient
to use projections on such monomer states below.

A quantum density in phase space is constructed by using Husimi projections
extended by spin variables. For a given state vector j	i such densities are derived
by projecting j	i on a combined basis of standard coherent oscillator states
j�(Q;P )i, which scan the phase space plane Q;P , multiplied by spin states jsi,
jsi = c" j"i+ c# j#i via

h	 (�(Q;P ); s) = jh	 j �(Q;P ); sij2: (4)

Husimi densities are equivalent to Gaussian smoothed Wigner distributions, pos-
itive de�nite and useful in phase space analysis of quantum states [3]. Here we
will use Husimi densities to analyze wave packet dynamics.

2 Numerical procedure and phase space density

A large number of eigenstates and eigenvalues of (1) was obtained by a direct
matrix diagonalization method for di�erent parameters p, r and �� using the
ARPACK package [4]. For the matrix diagonalization a basis of the harmonic
oscillator eigenstates extended by the spin variable was used. Here we report
results for the particular parameter set p = 20, r = 0:1 and �� = 10, for
which a diagonalization of a matrix of dimension N = 4000 was applied. From
this diagonalization the �rst 1100 eigenvalues and eigenvectors were used in
constructing the statevectors.

The Husimi density of a representative eigenstate computed from an eigen-
vector using (4) is shown in the Fig. 2, where the classical phase space orbits
corresponding to the adiabatic potentials at the energy of the eigenvalue of the
selected eigenstate are included. From Fig. 2 it is seen that the eigenstate density
is located on both of the adiabatic branches, i.e. adiabatic branches are mixed
in the eigenstates of (1).
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Fig. 2. Husimi distribution of the eigenstate number 184. The quantum phase space

density is located on both of the adiabatic branches, the corresponding classical phase

space orbits of which are shown as lines

A detailed analysis of sequences of such eigenstates [2], shows that the com-
ponents of this density, located on a given adiabatic branch change from one
eigenstate to another in a rather irregular fashion. This mixing of adiabatic
branches in the spectrum of (1), which can be shown by di�erent methods, such
as e.g. Bloch projections [5], can be viewed as appearance of spectral randomness
and is well known as incipience of quantum chaos [6], when the random features
of the spectrum just appear, but regular parts of the spectrum are still intact.
Quantum and classical consequences of this behaviour of the Spin-Boson Model
have been intensively investigated over the last years [7], [8], [9].

Here we address the dynamical consequences of the mixing of adiabatic
branches of the spectrum of (1) for the particular phenomenon of wave packet
splitting. As a result of this mixing splitting events of wave packets initially pre-
pared on one adiabatic branch will occur and packets propagating on di�erent
branches appear. This can be observed by using Husimi projections constructed
from a time dependent state vector j	(t)i in (4).

3 Splitting analysis of packet propagation

We investigated packet dynamics by propagating numerically test wave packets,
which can be constructed initially at the arbitrary positions (Q0; P0) in phase
space as coherent states multiplied by the initial spin j (0)i = j�(P0; Q0)ijs0i.
Then time propagation of the state vector j	(t)i corresponding to the initial con-
dition was performed by using the numerically obtained eigenstates and eigen-
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values. Packet propagation was analyzed in detail by means of Husimi projec-
tions (4). In the Fig. 3 a snapshot of such a packet propagation for an initial
packet placed at the left turning point of the upper monomer potential with an
energy E = 12 is shown. The snapshot is taken at the moment t = 1:1(2�=r),
i. e. for t = 70, below the time unit 2�=r (free oscillator period) is everywhere
indicated.
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Fig. 3. Snapshot of wave packet propagation at a time t = 1:1(2�=r) for an initial
wave packet placed at the left turning point of the left monomer (0), energy E=12. For
comparison the adiabatic phase space trajectories at the same energy are shown. In
the left lower part a splitting event is observed. In the Husimi density the projection
spin is equal on both monomers

We observed splitting phenomena of propagated wave packets at each of the
crossing points of the monomer phase space trajectories. The region of such
crossing points of monomer phase space trajectories is equivalent to the avoided
crossings of the adiabatic trajectories shown in the Fig. 3 (in what follows for
shortness we will refer to this phase space region simply as monomer crossings).
In the Fig. 3 a splitting event is visible in the left lower part of the phase space
near such a crossing. The intensity of the propagated and split wave packets
was considered in dependence both on the energy E and the spin projection.
Packets with spin projections corresponding to the phase space trajectory of the
monomer on which propagation occurs turned out to be much more intensive
than packets with opposite spin projections (for the parameter set used the
intensity ratio was approximately three orders of magnitude). We call the much
more intensive packets, for which spin projection corresponds to the monomer
phase space trajectory, main packets and the other packets "shadow" packets.
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When a main packet reaches a crossing point it splits into two main packets,
one main packet propagating on the same monomer phase space trajectory as
before, and the other main packet appearing on the trajectory of the other
monomer. Both packets then propagate each on their own monomer trajectory
with approximately constant Husimi intensities until they reach the next crossing
point. Then the packets split again, etc. The result of several splittings of this
kind is seen from Fig. 3.

Splitting events can be classi�ed as primary, secondary and so on in depen-
dence of their time order. For a selected initial condition splitting events can be
correspondingly ordered and classi�ed into a splitting graph. We present such a
splitting graph in the Fig. 6(a), where as a starting point the left turning point
of the lower monomer potential and the energy E = 15 were used.

In order to minimize the amount of data to be analyzed for packet propa-
gation and splitting events we developed a turnpoint analysis and a numerical
program. This program monitors the Husimi intensities of all of the packets
resulting from splitting events, when they cross any of the turning points in
dependence on their spin projections. The initial packet was also placed at a
turning point of a monomer phase space trajectory.

0 10 20 30 40 50
 E

0

0.5

1

1.5

2

 C
s

Fig. 4. Splitting coe�cient Cs measured as the ratio of the Husimi projections of the
packets passing the corresponding turning points after splitting (see text)

First of all we investigated the Husimi intensity for the primary splittings
by considering the four turning points as initial conditions for such splitting
processes. According to our turnpoint analysis procedure these primary splittings
can be classi�ed as follows:
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fl0; ug ) fr1; dg, fr0; ug
fr0; ug ) fl1; dg, fl0; ug
fl1; dg ) fr0; ug, fr1; dg
fr1; dg ) fl0; ug, fl1; dg

Here on the left sides of the arrows the positions of the initial packets and on
the right sides of the two �nal packets at their turning points are indicated
as 0 for the upper and 1 for the lower monomer, respectively. The letters l, r
denote the left, right turning points (see Fig. 1), and spin indices u, d the up
and down projections. For shortness here the main packets are considered, when
all the projection spins correspond to the turning points of "their" monomer
trajectory. In the turnpoint analysis the energy was changed over a broad interval
in which well de�ned packets are present and the Husimi intensities measured.
The analysis of the obtained data showed that the ratio Cs of the intensity of
the packet that appears on the other monomer trajectory to the intensity of
the packet that remains on the initial monomer trajectory after a splitting is
constant for all primary splitting con�gurations and is a function of the initial
packet energy only (Fig. 4).

All the packets observed in the propagation are due to complex interference
inside the state vector 	(t) of the system. In order to investigate this complex
behaviour we introduced special projection states with which it is possible to
analyze the process of appearance of packets. Such projection states can be
introduced by an arti�cially constructed state vector

jM(t)i =
X

i

aij�(Qi(t); Pi(t))ijsii; (5)

which is a superposition of coherent states modelling all packets at a given
time t. The packets are indexed by i and contribute to jM(t)i with their coe�-
cients ai and spin jsii that corresponds to the monomer trajectory the packet is
propagating on. The coe�cients ai can be derived from the splitting data of the
turnpoint analysis. The phase space positions (Qi(t); Pi(t)) are chosen according
to the semiclassical motion of the packet centers. We note that this construction
provides only the amplitudes ai (all ai are assumed to be real), because infor-
mation about the phases cannot be extracted from the Husimi densities. For an
initial packet in jM(t)i chosen to be the same as for the exact quantum prop-
agation, it is possible to investigate the correspondence between the reference
states jM(t)i and the exact state vector j	(t)i.

A comparison of the correlation functions h	(0)j	(t)i and hM(0)jM(t)i shows
very similar reccurence features (Fig. 5). The intensities of the reccurence peaks
for the exact and model wavefunctions are in good agreement at the early stage
of propagation. The reccurence times are in agreement even for longer propaga-
tion times, when a lot of packets already exist in the splitting model based on
(5) (1584 packets for t = 5(2�=r) in Fig. 5).
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Fig. 5. The correlation functions for the initial packet located at the turning point l1
with initial spin j #i and E = 15: (a) { from numerical propagation and (b) { from the
splitting model. Time is measured in periods of the osillator associated with monomers

0 1 2
t, 2π/r 

0

0.5

1

|Ca(t)|

0

0.5

1

P(t)

(a)

(b)

(c)

Fig. 6. The splitting dynamics of the state initially located at the turning point l1 with
initial spin j #i and E = 15. (a) Splitting event graph. The branchings correspond to
splittings of the packets, the packets which change and do not change the monomer
trajectory are displayed by the lines going down and up, respectively. (b) Correlation
of the numerically propagated wavefunction and the normalized splitting model wave-
function. (c) Correlation of the numerically propagated wavefunction and the packet,
classically moving along the lower adiabatic potential
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For direct comparison of jM(t)i and j	(t)i we use the sum of projections of
all packets existing in jM(t)i on j	(t)i:

P (t) =
X

i

aijh	(t)j�(Qi(t); Pi(t))ijsiij: (6)

From the Fig. 6(b), where P (t) is presented it is seen that jM(t)i is a good ap-
proximation to the state vector j	(t)i. This shows that this projection technique
o�ers a possibility to analyze the exact state vector.

The projection of an individual reference packet moving classically along
some phase space trajectory, for example the trajectory of an adiabatic potential,
on j	(t)i can be used to �nd out to what extent this packet is contained in the
time evolution. The projection of this type, Ca(t) = hMa(t)j	(t)i, where jMa(t)i
is the model wavefunction constructed from a packet of constant intensity moving
along the lower adiabatic potential without splittings, is shown in Fig. 6(c). The
initial state for both the exact state vector and the reference state jMa(t)i is
the same and located in the turning point l0. The absolute value of Ca(t) decays
stepwise as the splittings in j	(t)i occur.

We conclude that the construction of reference states jM(t)i captures es-
sential features of wave packet propagation and splitting displayed by the ex-
act state vector 	(t) and therefore can be used for wave packet modelling and
projection techniques. Following this idea we can make the birth process of
packets in the splitting region accessible to direct investigation by projecting
the exact state vector on such reference states. Using particular spin states for
j�(Qi(t); Pi(t))ijsii in projections, it should be possible to project out the birth
processes of packets in the state vector j	(t)i in the splitting region.
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