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Abstract. The talk reports neural network modelling and its application to the
prediction of short-term financial dynamics in three sectors of financial mar-
ket: currency, monetary and capital. The methods of nonlinear dynamics, mul-
tifractal analysis and wavelets have been used for preprocessing of data in or-
der to optimise the learning procedure and architecture of the neural network.
The results presented here show that in all sectors of market mentioned above
the useful prediction can be made for out-of-sample data. This is confirmed by
statistical estimations of the prediction quality.

1   Introduction

In this talk we consider dynamic processes in three sectors of the international finan-
cial markets - currency, monetary and capital. Novelty of an approach consists in the
analysis of financial dynamics by neural network methods in a combination with the
approaches advanced in econophysics [1]. The neural network approach to the analy-
sis and forecasting of the financial time series used in the present talk is based on a
paradigm of the complex systems theory and its applicability to the analysis of finan-
cial markets [2,3]. The approach we used is original and differs from approaches of
other authors [4-7] in the following aspects. While choosing the architecture of a
network and a stratagy of forecasting we carried out deep data preprocessing on the
basis of methods of complex systems theory: fractal and multifractal analysis, wave-
let-analysis, methods of nonlinear and chaotic dynamics [1,2,3]. In the present talk
we do not describe stages and methods of this data preprocessing. However the pre-
liminary analysis has allowed to optimize parameters of the neural network, to de-
termine horizon of predictability and to carry out comparison of forecasting quality
of different time series from various sectors of the financial market.
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Specifically we studied dynamic processes in the currency, monetary, capital mar-
kets in the short-term periods, predicting daily changes of prices of the following
financial assets: futures on a rate US dollar - DM (it is designated as DM), futures on
the rate of interest LIBOR on eurodollars (ED), futures on American stock index
Standard & Poor’s 500 (SP).

2   Method of Prediction and Network Architecture

It should be noted that the success or failure of a neural network predictor depends
strongly on the user definition of the architecture of the input and desired output. For
prediction of data sets under consideration the neural network we had used two in-
puts. As the first input we used the daily returns expressed as follows: to 1,5% return
there corresponded the value 1.5. As the second input we used the mean values for
the last 5 days. The presence of noise in analyzed time series can degenerate the
learning and generalisation ability of networks. It means that some smoothing of
time series data is required. We used the simplest techniques for smoothing, i.e. 5-
days moving average shifted backwards for one day. Thus such neural network aims
to predict smoothed daily return to next day. Among all possible configurations of
neural nets we chose the recurrent network with hidden layer feedback into input
layer known as the Elman-Jordan Network (see Fig.1).
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Fig. 1. Architecture of the Elman-Jordan neural network used for prediction



To our opinion this is one of the most powerful recurrent network. This type of
backpropagation network has been successfully used in predicting financial markets
because recurrent networks can learn sequences, so they are powerful tools for time
series data processing. They have the slight disadvantage of taking longer to train. A
backpropagation network with standard connections responds to a  given input pat-
tern with exactly the same output pattern every time the input pattern is presented. A
recurrent network may respond to the same input pattern differently at different
times, depending upon the patterns that have been presented as inputs just previ-
ously. Thus, the sequence of the patterns is as important as the input pattern itself.
Recurrent networks are trained in the same manner as standard backpropagation
networks except that patterns must always be presented in the same order; random
selection is not allowed. The one difference in structure is that there is one extra slab
in the input layer that is connected to the hidden layer just like the other input slab.
This extra slab holds the contents of one of the layers as it existed when the previous
pattern was trained. In this way the network sees previous knowledge it had about
previous inputs. This extra slab is sometimes called the network’s ’’long term’’ mem-
ory.

The Elman-Jordan network has logistic f(x)=1/(1+exp(-x)) activation function of
neurons in its hidden (recurrent) layer, and linear activation function of neurons in
its output layer. This combination is special in that two-layer networks with these
activation functions can approximate any function (with a finite number of disconti-
nuities) with arbitrary accuracy. In the present research we changed the logistic acti-
vation function by the symmetric logistic function f(x)=(2/(1+exp(-x)))-1. This do
not change the properties of the network in principle but allows to speed up the con-
vergence of the algorithm for the given types of series. The only requirement is that
the hidden layer must have enough neurons. More hidden neurons are needed as the
function being fitted increases in complexity. In the network we used the hidden
layer consisted of 100 neurons.

One of the hard problems in building successful neural networks is knowing when
to stop training. If one trains too little the network will not learn the patterns. If one
trains too much, the network will learn the noise or memorise the training patterns
and not generalise well with new patterns. We used calibration to optimise the net-
work by applying the current network to an independent test set during training.
Calibration finds the optimum network for the data in the test set which means that
the network is able to generalise well and give good results on out-of-sample data.

3 Neural Network Prediction of Returns

We divided each analysed time series into 3 subsets: training set, test set and pro-
duction set. As the training set, i.e. the set on which the network was trained to give
the correct predictions, we took the first 900 observations. The test set was used for
preventing the overfitting of the network and for calibration and included the obser-
vations numbering from 901 up to 1100. The production set included observations,
which “were not shown” to the network and started from the 1101-th observation up
to the end of the series.
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The results of predictions for training sets of all analysed financial assets are
given in Fig1, Fig2, Fig.3.

Fig. 2. Results of neural network prediction of 5-days moving average of returns for Deutsche
mark futures: actual versus predicted returns in percents (top figure), coincidence of signs of
predicted and actual returns (middle figure), absolute value of the actual minus predicted
returns in percents (bottom figure)
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Fig. 3. Results of neural network prediction of 5-days moving average of returns for Eurodol-
lar futures: actual versus predicted returns in percents (top figure), coincidence of signs of
predicted and actual returns (middle figure), absolute value of the actual minus predicted
returns in percents (bottom figure)
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Fig. 4. Results of neural network prediction of 5-days moving average of returns for S&P500
futures: actual versus predicted returns in percents (top figure), coincidence of signs of pre-
dicted and actual returns (middle figure), absolute value of the actual minus predicted returns
in percents (bottom figure)
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The quality of prediction was estimated by the following parameters:
• Training time and number of learning epochs - the quantities showing how long

the network can improve its predictions to achieve the best results on the test set.
By the learning epoch we mean the single presentation to the network of all
samples from training set. These parameters can vary depending on the given
learning rate and momentum. Leaning rate and momentum are established on
the basis of desirable accuracy of the prediction. For the neural network we used
both these parameters were equal to 0.003.

• Coefficient Q  compares the accuracy of the model to the accuracy of a  trivial
benchmark model or trivial predictor wherein the prediction is just the mean of
all of the samples. A  perfect fit would result in an Q value of 1, a  very good fit
near 1, and a  very poor fit less than 0. If neural model predictions are worse
than one could predict by just using the mean of sample case outputs, the coeffi-
cient Q value will be less than 0.

• R-squared - the coefficient of determination which is a statistical indicator usu-
ally applied to regression analysis being the ratio of predicted values variation to
the actual values variation.

• Mean absolute error - this is the mean over all patterns of the absolute value of
the actual minus predicted values.

• Max absolute error - this is the maximum of actual values - predicted values of
all patterns.

• % of proper predictions of returns signs – this is the ratio of number of samples
for which signs of predicted values coincide with signs of actual ones to the
number of considered samples.

For details the reader is referred to the linear statistical analysis literature [8].
The above characteristics of neural network prediction quality for the analysed se-

ries are given in table 1. The table consists of three blocks. The upper one gives
characteristics of the network training. The middle one refers to the whole time se-
ries, which includes training, test and production sets. The bottom block describes
only the results for production sets.

The table shows that the best predictions are obtained for S&P500 futures, the worse
predictions are obtained for the Eurodollar (ED) futures. Deutsche mark (DM) fu-
tures has intermediate predictions. This follows from values of coefficient Q  for
production set (see the bottom block of table 1) although it hardly can be seen by
sight from Fig.3 and Fig.4. It should be noted that despite the approximately equal
quality of learning (see values of coefficient Q  in the middle block of table 1) the
training time for S&P500 is five times bigger than that for DM and training time for
DM futures is four times bigger than training time for ED. This obviously means that
to find hidden regularities in S&P500 futures is noticeably complicated than in DM
futures and all the more in ED futures. At the same time the best quality of predic-
tion is obtained just for S&P500 and the worse for ED. All this points out that hid-
den regularities found by neural network in S&P500 preserve their character much
more longer than that found in ED. In other words ED futures have more unsteady
hidden regularities what results in the worse quality of predictions.
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In summary one should mention that ultimate goal of any financial forecasting is
profitability. The latter is always connected with some trading rule and/or the money
management strategy. This problem is out the scope of the present talk (see, however
our recent paper [9]).
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% of signs 86 83 83
Nprod 77 74 74
Q 0,8032 0,5897 0,4517
r–squared 0,8062 0,6319 0,5697
mean error, % 0.217 0,279 0,201
max.error, % 0.799 1,046 1,234
% of signs 88 86 88

denotes the number of samples in the
whole time series while Nprod stands for the number of samples in production set, % of signs
means the percent of proper predictions of returns signs)

Characteristics S&P500
 futures

DM  futures ED futures

N 30512 6779 1873
τ (hours) 19 4 1
Nwhole 1173 1170 1170
Q 0,7408 0,7594 0,7436
r–squared 0,7431 0,7612 0,7452
mean abs.er., % 0,182 0,196 0,179
max abs.er., % 2,172 1,291 2,281

Table 1. Numerical characteristics of neural network predictions quality (N denotes the num-
ber of learning epochs, τ stands for training time, Nwhole


	Introduction
	Method of Prediction and Network Architecture
	Neural Network Prediction of Returns
	References

