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Abstract. We analyze complex model processes and time series with 
respect to their predictability. The basic idea is that the detection of local 
order and of intermediate or long-range correlations is the main chance 
to make predictions about complex processes. The main methods used 
here are discretization, Zipf analysis and Shannon's conditional entropies. 
The higher order conditional Shannon entropies and local conditional 
entropies are calculated for model processes (Fibonacci, Feigenbaum) and 
for time series (Dow Jones). The results are used for the identification of 
local maxima of predictability. 

1 Introduction 

Our everyday experience with the prediction of complex processes is showing 
us that predictions may be done only with certain probability. Based on our 
knowledge on the present state and on certain history of the process we make 
predictions, sometimes we succeed and in other cases the predictions are wrong 
[I]. Considering a mechanical process, we need only some knowledge about the 
initial state. The character of the dynamics, regular or chaotic, and the precision 
of the measurement of the initial states decide about the horizon of predictability. 
For most complex systems, say e.g. meteorological or financial processes, we have 
at best a few general ideas about their predictability. 
The problem we would like to discuss here is, in which cases our chances to 
predict future states are good and in which cases they are rather bad. Our 
basic tool to analyze these questions are the conditional entropies introduced 
by Shannon and used by many workers [2-61. By using the methods of symbolic 
dynamics any trajectory of a dynamic system is first mapped to a string of letters 
on certain alphabet [2,4,5]. This string of letters is analyzed then by Shannon's 
information-theoretical methods. 

2 Conditional Entropies 

This section is devoted to the introduction of several basic terms stemming 
from information theory which were mostly used already by Shannon. Let us 
assume that the processes to be studied are mapped to trajectories on discrete 
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state spaces (sequences of letters) with the total length L. Let X be the length of 
the alphabet. Further let A1A2 . : . An be the letters of a given subtrajectory of 
length n < L. Let further p ( " ) ( ~ ~  . . . A,) be the probability to find in the total 
trajectory a block (subtrajectory) with the letters A1 . . .A,. Then according to 
Shannon the entropy per block of length n is: 

From this we derive conditional entropies as h, = (H,+l - H,) < log(X) The 
limit of the dynamic n-gram entropies for large n is the entropy of the source h 
(called also dynamic entropy or Kolmogorov - Sinai entropy). Further we define 

as the average predictability of the state following after a measured n-trajectory. 
We remember that log (A)  is the maximum of the uncertainty, so the predictabil- 
ity is defined as the difference between the maximal and the actual uncertainty. 
In other words, predictability is the information we get by exploration of the 
next state in the future in comparision to the available knowledge. In the fol- 
lowing we shall use X as the unit of the logarithms. 
The predictability of processes is closely connected with the dynamic entropies 
[7]. Let us consider now certain section of length n of the trajectory, a time series, 
or another sequence of symbols A1 . . .A,, which often is denoted as a subcylin- 
der. We are interested in the uncertainty of the predictions of the state following 
after this particular subtrajectory of length n. Following again the concepts of 
Shannon we define the expression 

as the conditional uncertainty of the next state (1 step into the future) following 
behind the measured trajectory A1 . . . A, .Further we define 

T;)(A~.  . . A,) = I - h p ) ( ~ ~  . . .A,) (4) 

as the predictability of the next state following after a measured subtrajectory, 
which is a quantity between zero and one. We note that the average of the local 
uncertainty leads us back to Shannon's conditional entropy h, . The predictabil- 
ity may be improved by taking into account longer blocks. In other words, one 
can gain advantage for predictions by basing the predictions not only on actual 
states but on whole trajectory blocks which represent the actual state and its 
history. 

3 The conditonal entropy for model processes and time 
series 

The first mathematical model of a nonlinear process was formulated in 1202 by 
the Italian mathematician Leonardo da  Pisa, better known as Fibonacci, in his 
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book Liber Abaci. Fibonacci considered the problem how many rabbit pairs are 
generated after n breeding sessions assuming the following simple rules: 
- the game starts with an immature pair, 
- rabbits mature in one season after birth, 
- mature rabbit pairs produce one new pair every breeding session, 
- rabbits never die. This game generates the famous sequence of Fibonacci num- 
bers 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, ...... The Fibonacci model may be encoded as 
a sequence of zeroths and ones by using the rules 0 + 1 denoting "young rab- 
bits grow old" and 1 -+ 10 standing for "old rabbits stay old and beget young 
ones". Beginning with a single 0, continued iteration gives 1, 10, 101, 101 10, etc., 
resulting finally in the infinite selfsimilar Fibonacci sequence 101 10101 101 10 . . . 
Alternatively we may formulate the rules by a grammar: 

The conditional entropy of the Fibonacci sequence is exactly known [8]. These 
entropies behave in the limit of large n as 

Another well-studied simple model of a nonlinear process is the logistic map: 

In order to generate a discrete string from this map we use the bipartition (A = 2) 

This way the states are mapped on the symbols 0 
mapped on binary strings. We denote these sequences 
The rank-ordered word distributions for Feigenbaum 

and 1 and the process is 
as Feigenbaum sequences. 
strings were discussed by 

several authors [2,9,11]. For r = 4 all the words of fixed length are equally dis- 
tributed and the entropy is maximal h, = 1. For the Feigenbaum accumulation 
point r, = 3.5699456 ... we get also a simple word distributions consisting only 
of one or two steps in dependence on the word length [2,9,11]. The construc- 
tion rules for the generation of these sequences generate selfsimilar structures. 
Accordingly the n-gram block entropies satisfy the relations 

By specialization of eqs.(l2) we get for n = 2* a result first obtained in 1986 by 
Grassberger [7] : 

Hn = log2(3n/2) P 3 )  
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In a similar way we obtain 
conditional entropies we get 
conditional entropies 

In between two Grassberger 
entropies jump to the value 

the H ,  for all the other sequences [2,9]. For the 
for the Grassberger numbers n = 2,4,8,16,  ... the 

numbers namely at n = 3,6,12,24, . .. the dynamic 
according to the next Grassberger number. In this 

way a simple step function is obtained. We see that the dynamic entropy itself 
(which is the limit of infinite n)  is zero. For infinite histories the predictability 
is 1 i.e. 100%. This correponds to a zero Lyapunov exponent X = 0 [7,11]. In 
the region r > 3.5699 ... the Lyapunov exponent is in general larger zero, corre- 
sponding to chaotic states. Then the Pesin theorem h = X may be used in order 
to obtain a lower border for the conditonal entropies [5]. The convergence to the 
limit is rather fast. This may be exploited also for the investigation of optimal 
partitions [5]. Further we may use the knowledge of the lower order entropies 
and of the limit for the construction of Pade approximations. 
We mention that similar long range correlations are also generated by intermit- 
tent processes [I l l .  A special group of discrete intermittent maps of such type 
was investigated by Szepfaluzy and coworkers [lo]. The following scaling for the 
approach to the limit was found 

The processes considered so far, correspond to the limiting case of processes 
which are predictable on the basis of a long observation. This property is lost, if 
noise is added which leads always to an upper limit of the predictability r,,, < 1 
[11,91. 
There exist several types of noise, the simplest is the perturbation by a noisy 
channel. Assuming that the percentage E of the symbols is subject to random 
flips, the source entropy as a function of may be estimated by 

Real data behave similar to maps with noise. By combination of a solvable map 
with local structures on any scale, say the Feigenbaum map, with channel noise 
(measurement noise)and by adaptation of the parameter a wide variety of 
shapes of the entropy function h, may be represented. 
Let us present now an application of these concepts to the analysis of real strong 
noisy data [4]. Prediction of strong noisy data using classical linear methods 
usually fails to give accurate predictions and a reliable confidence level. The 
concept of entropy and local predictability in combination with classical methods 
is a good candidate to give reliable results. Applications of these concepts to 
meteorological strings were given in [12,13] and to nerve signals in [5]. 
In the following our concept will be demonstrated on daily stock index data St: 
Dow Jones 1900-1999 (27044 trading days). Since the stock index itself has an 
exponentially growing trend we will use daily logarithmic index changes 
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An application of the entropy concept requires a partitioning of the real value 
data xt into symbols At of an alphabet. To find an optimal partition and alphabet 
is a process of maximizing the Kolmogorov-Sinai entropy [5]. However for strong 
noisy signals with short memory an equal frequency of the letters is near to 
optimal. To be concrete we used X = 3 and At = 0; xt < -0 .OO% (strong decrease 
in the stock value), At = 2; xt > 0.0034 (strong increase), At = 1 (intermediate) 
were chosen [4]. In Fig. 1 the result of calculations of the conditional entropy is 
presented [4]. 

Fig. 1. Condi t ional  en tropy  h ,  = Hn+l - H,  as  a func t ion  of word length n; the strong 
decrease for n 2 5 is an artefact due to length effects. 

We see that the average predictability is rather small. For n 2 4 - 5 the error 
is growing due to length effects [14]. The further decay seems to be an artefact, 
the true entropy probably remains constant for n 2 5. Therefore the average 
uncertainty of the daily stock index is very high und the average predictability 
is less than 5%. 

4 Predictions Based on a Local Analysis 

Sometimes the analysis of the average entropies fails to detect existing cor- 
relations. On the other hand the average uncertainty of predictions is in many 
cases (e.g. for the stock market as shown above) higher than 0.9 (i.e. higher 
than 1.8 bits). Therefore the average predictability is rather low. For practical 
applications, one is not so much interested in an average value but even more in 
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a concrete prediction based on the the observation of a concrete string of finite 
length n. In other words one is more interested in concrete predictions than in 
"average predict abilities" . 
Therefore we have studied also the predictabilities of the states following right 
after the particular strings A1 . . .A, which we denoted by r p )  (A1 . . . A,) 

This is a quantity depends on the local "history" A1 . . .A, and fluctuates 
therfore while going along the string. Another closely related fluctuation quantity 
is the transinformation, which is connected with the local predictability. 
For the Fibonacci sequences as well as for the Feigenbaum sequences the local 
regularities follow from the grammar rules. Sometimes the next letter is nearly 
predetermined. Let us give just one example. In the Fibonacci sequence as well as 
in the Feigenbaum sequence the subsequence 00 is forbidden by the grammatical 
rules. Therefore in the state 0 the predictability of the next state is 1,  after the 
symbol 0 comes the symbol 1 with 100% certainty. The rule that 00 is forbidden, 
creates a special local order. 
In the following the existence of local regularities will be demonstrated on the 
daily stock index data St discussed above. 

The result of the calculation of the local uncertainty h, (A1, . . . , A,) for the 
next trading day following behind an observation of n trading days A1, . . . , A, 
for n = 5 is plotted in Fig. 2. The local uncertainty is almost near one, i.e. the 
average predictability is very small. However behind certain patterns of stock 
movements A l l .  . . , A, the local predictability reaches 8% - a notable value for 
the stock market, which in average is near to random. The mean predictability 
over the full data set is less then 2% (see Fig. 1). 

The question of the significance of the prediction is treated by calculating 
a distribution of local uncertainty hz (A1, . . . , A,) by help of surrogates. We 
constructed surrogate sequences having the same two point probabilities as the 
original sequence [4]. The level of significance Ii' was calculated as 

where ( h i  (A1, . . . , A,)) is the mean and c is the standard deviation of the local 
uncertainty distribution for the word Al l  . . . , A,. 

Assuming Gaussian statistics lIi'1 5 2 represents confidence greater then 
95%. However since the local uncertainty distribution is more exponential like 
larger IGvalues are required to guarantee significance. For the analyzed data set 
a word length up to 6 seems to give still reliable results. In Fig. 2 we represented 
the uncertainty of the state subsequent to six observed states as a function of 
time, the interval corresponds to the last months of 1987 [4]. The greyvalue 
codes the level of significance calculated from a first order Markov surrogate. 
Dark represents a large deviation from the noise level (good significance). 
It is remarkable that higher local predictabilities coincide with larger levels of 
significance. This can be seen also from Table 1. 

Since we used a timeseries over a very long period we have to address the 
problem of non-stationary by dividing the original timeseries into smaller pieces. 
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Fig. 2. Local uncertainty of the the daily Dow Jones index ( in  symbolic representation) 
which foddows after a n  observation of 5 subsequent days. W e  represented a n  interval 
corresponding to  the second half of 1987. 

Furthermore instead of producing surrogates on the level of Symbols one can 
discuss surrogates obtained by modells of a stockmarkets like ARCHIGARCH- 
modells. This has been done in [4]. 

Analyzing the data in Table 1 we see, that in spite of the fact that the av- 
erage predictability is very low (about 2%) there are special days, where the 
predictability is up to 8%, i.e. up to 4 times higher than in avaerage. We re- 
member that in our way of coding 0 stands for a day with a strong downswing 
of the index, 2 stands for a strong upswing and 1 stands for a day where the 
index remains nearly constant. Remarkable is, that the highest predictability 
correponds to the days following the October-Crash in 1987. 
As a result of these investigations we may state that in spite of the fact that the 
stock market index index is in average very uncertain, some local order might 
be detected which is helpful for predictions. Similar resultes were obtained for 
meteorological data and for nerve signals [5,12,13]. 

5 Conclusions 

Our results show that the dynamic entropies are an appropriate measure for 
studying the predictability of complex processes. Of particular interest are local 
studies of the predictabilities after certain local histories. Local minima of the 
uncertainty may be found in many processes including even the index of the 
stock market. The basic problem for improving predictions is the detection of 
middle range and of long range correlations. These correlations are of specific 
interest since they improve the predictability. If long range correlations exist, 
one can improve the resultes by basing the predictions at longer observations. 
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Table 1. Sequences of 3-5 daily indices of the  Dow Jones  with the  highestpredictabil i ty 
of the  following (nex tday)  index.  

Further we have found that there are specific local substrings, where the un- 
certainty is much smaller than the average, i.e. the predictability is better than 
in average. In other words, even for the case of noisy data,  there are specific 
situations where local predictions are possible, since the local predictability is 
much better than the average predictability. It may be of practical importance to 
find out all substrings which belong to this particular class. Our results clearly 
demonstrate that the best chance for predictions is based on the observation 
of ordered local structures. The entropy-like measures studied here operate on 
the sentence and the word level. In some sense entropies are the most complete 
quantitative measures of correlation relations. This is due to the fact that the en- 
tropies include also many point-correlations. On the other hand the calculation 
of the higher order entropies is extremely difficult and at  the present moment 
there is no hope to extend the entropy analysis to the level of hundreds of letters. 
In conclusion we may say that a more careful study of the correlations in time 
series sequences of mediate and long range may contribute to better predictions 
of complex processes. 

The author thanks J. Freund, L. Molgedey, T .  Poschel, K.  Rateitschak, and 
R. Steuer for many fruitful discussions and a collaboration on special topics of 
the problems discussed here. 
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