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Abstract. We introduce a condition that establishes a duality known
from Delaunay triangulations and Voronoi diagrams for diagrams asso-
ciated with a class of dynamical systems defined via a set of disks in the
plane. Under this condition the maximum geometric and worst case al-
gorithmic complexities of the latter diagrams decrease. The condition is
natural in the sense that it is automatically fulfilled by some important
classes of sets of disks in the plane.
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1 Introduction

It is possible to associate a dynamical system with a set of disks in the plane
which we want to call disk induced flows. In [4,5] we studied the fixpoints of
these dynamical systems, i.e. the minima, maxima and saddles of the flow. With
a minimum m we associate all points that are connected to m by the disk induced
flow, i.e. all points x that are connected to m by a curve such that all points in
the interior of the curve flow into x under the disk induced flow. The set of all
these points is a connected region in the plane that we call the Min region of m.
Similarly Max regions are assigned to maxima. The collection of all Min regions
defines a plane diagram that is closely related to the Delaunay triangulation
of the same set of disks. The analogous diagram of the Max regions is closely
related to the Voronoi diagram. The Delaunay diagram of a set of disks is the
Voronoi diagram of a dual set of disks and vice versa. This is not the case for
Min- and Max diagrams, i.e. the Min diagram of a set of disks need not be the
Max diagram of the dual set of disks or vice versa. That is, in general a set of
disks in the plane gives rise to four different flow diagrams, namely the Min-
and Max diagrams of the original and the dual set of disks. There are further
differences between Delaunay- and Min diagrams or Voronoi- and Max diagrams,
respectively. The maximum geometric complexities of Min- and Max diagrams
associated with n disks are ©(n?) vertices, ©(n?) edges and ©(n) regions. This
is in contrast to Voronoi- and Delaunay diagrams whose geometric complexities
are: ©(n) vertices, O(n) edges and ©(n) regions. The worst case algorithmic
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complexity of Min- and Max diagrams is ©(n?) in contrast to the worst case
algorithmic complexity of Voronoi- and Delaunay diagrams which is ©(nlogn).

Here we introduce a natural condition under which one of the dualities be-
tween Voronoi- and Delaunay diagrams also holds for Min- and Max diagrams.
This condition is for example always fulfilled for finite sets of points, i.e. disks
of radius zero. We call the condition strong duality condition since it has some
strong implications. In fact we will show that under the strong duality condition
the following holds:

(1) The Max diagram of the original set of disks is the Min diagram of the dual
set of disks.

(2) The Min diagram of the original set of disks is the Voronoi diagram of these
disks.

(3) The maximum geometric complexities of the Min- and Max diagram of the
original set of disk are ©(n) vertices, ©(n) edges and @(n) regions.

(4) The worst case algorithmic complexity the Min- and Max diagram of the
original set of disk are @(nlogn).

(5) The Max diagram of the original set of disks coincides with a diagram as-
sociated with a discrete flow on the set of Delaunay triangles. This discrete
flow was studied in [3] to identify and compute pockets in macromolecules.

The paper is organized as follows: In Section 2 we give basic definitions. In
Section 3 we introduce disk induced flows and the associated notions of Max-
and Min regions. Finally we introduce the strong duality condition and prove
the results mentioned above.

2 Disks, diagrams and critical points

Disk. A disk is a pair (z,7) € R®, where z € R? is the center of the disk and
/7 € C its radius. Note that we also allow purely imaginary radii in which case
the geometric intuition about disks is not helpful. We refer to r also as the power
of the disk.

In the following we are going to consider finite sets of disks. Very often these
disks are not in general position. That is, we do not assume general position
unless stated differently.

Power distance. The power distance of a point € R? from a disk (z,7) is
m(z) = ||z —z||* —r.

Voronoi diagram. Given a set B of disks. The Voronoi cell of a disk b;
under the power distance is given as

V, = {x cR? . Vbj € B, Wz(x) < 7Tj(x)}‘

The sets V; are convex polygons or empty since the set of points that have the
same power distance from two disks forms a straight line. Closed line segments
shared by two Voronoi cells are called Voronoi edges and the points shared by
three or more Voronoi cells are called Vorono: vertices. The term Voronoi object
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can denote either a Voronoi cell, edge or vertex. The Voronoi diagram of B is
the collection of Voronoi cells, edges and vertices. It defines a cell decomposition
of R?.

Delaunay diagram. The Delaunay diagram of a set of disks B is dual
to the Voronoi diagram of B. The convex hull of three or more center points
defines a Delaunay cell if the intersection of the corresponding Voronoi cells is
not empty and there exists no superset of center points with the same property.
Analogously, the convex hull of two center points defines a Delaunay edge if
the intersection of their corresponding Voronoi cells is not empty. Every center
point is called Delaunay vertex. The term Delaunay object can denote either a
Delaunay cell, edge or vertex. The Delaunay diagram defines a decomposition of
the convex hull of all center points. This decomposition is a triangulation if the
disks are in general position.

Sometimes it is convenient to introduce an additional disk with center at
infinity and with power 0. This gives us a Voronoi vertex at infinity at the end
of every unbounded Voronoi edge. One benefit of adding a disk at infinity is that
it provides us with the following duality.

Duality. Let B be a set of disks. This set gives rise to another set of disks,
namely for every Delaunay cell its orthodisk, see [2] for the details. The new disks
are centered at Voronoi vertices. The set C' exchanges Voronoi and Delaunay
diagram.

Power height function. Let B be a set of disks in R2. The power height
function is given as

h(z) = min{m;(z) : b; € B}. (1)

Observe that the function h is continuous. It is smooth everywhere besides
at points which have the same power distance from two or more disks, i.e. at
points that lie on the boundary of Voronoi cells.

Regular- and critical points. Let B be a set of disks. The critical points
of the power height function h are the intersection points of Voronoi objects V'
and their dual Delaunay object o. The index of a critical point is the dimension
of o. All points which are not critical are called regular.

The power height function associated with a set of disks B and the power
height function associated with the dual set of disks C' have the same critical
points. The index of a critical point in the dual is 2 minus its index in the primal,
i.e. maxima and minima get exchanged.

3 Disk induced flow

Disk induced flow. Given a set B of disks, the induced flow ¢ is given as
follows: Since the Voronoi diagram of B is a decomposition of the plane any
point z € R? lies in some Voronoi object. Let V be the lowest dimensional
Voronoi object that contains x. Assume that x is the intersection point of V' and
its dual Delaunay object. In this case we set:

o(t,x)=x,te|0,00)
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Otherwise let o be the dual Delaunay object of V' and y = argmin, ., [z — y'[|.
Since o is convex there is only one such y. If y also lies in a lower dimensional
Delaunay object than o then we replace V' by the dual Voronoi object of the low-
est dimensional Delaunay object. Let R be the ray originating at « and shooting
in the direction = — y. Let 2 be the first point on R for which argmin,, .||z —¢/||
is different from y where 7 denotes the dual Delaunay object of the lowest di-
mensional Voronoi object z lies in. Note that such a z need not exist in R2. In
this case let z be the point at infinity. We set:

T—Y
¢t ) =x+t——  t€[0,]lz — ]
= yll

For ¢t > ||z — || the flow is given by property (2) in the definition of flow, i.e.

ot x) = ot — ||z =zl + ||z — zf|, =)
= ot =z =zl ¢ (lz — =[], ).

It is not completely obvious but ¢ can be shown to be well defined on the whole
of [0,00) x R?. Furthermore, the following two properties of dynamical systems
hold for disk induced flows,

(1) 6(0,7) = =.
(2) ¢(t + s, {E) = ¢(tv ¢(87 .’E))

The following three observations are helpful to get a better understanding of
disk induced flows and their their relationship to the power height function of
the same set of disks.

(1) The fixpoints of ¢ are the critical points of the power height function.
(2) The orbits of ¢ are piecewise linear curves that are linear in Voronoi objects.
(3) The flow ¢ has no closed orbits.

Because of the first observation we want to refer to fixpoints of ¢ as minimum,
saddle or maximum if the corresponding critical point of the power height func-
tion is a minimum, saddle or maximum, respectively.

Stable- and Unstable Manifolds. Given a disk induced flow ¢ in the
plane. The stable manifold S(x) of a fixpoint € M contains all points that
flow into x, i.e.

S(x) = {ye R : tli)rgo(by(t) =z}

The unstable manifold U(x) of a fixpoint z is a little bit more involved to define.
Given a neighborhood U of x and let V(U) be the set of all points which lie in
an orbit that starts in U, i.e.

VU) ={ye R?:3zeU,te [0,00) s.t. ¢.(t) =y or tir&‘bz(t) =y}

Then U(x) is given as the intersection of all such sets V(U).



158 J. Giesen and M. John

T

Fig.1. A set of disk in the plane (on the left), its Voronoi- and Delaunay diagram
(second from the left), some orbits of the flow induced by the disks (third form the
left) and the minima ©, saddles ® and maxima @ of this flow (on the right).

Instead of working directly with unstable manifolds of minima and stable
manifolds of maxima we introduce Max- and Min regions which have nicer prop-
erties.

Max- and Min regions. Given a disk induced flow system with finitely
many fixpoints. If m is a maximum of this system we call the closure of the
stable manifold S(m) the Max region of m.

If m is a minimum of a disk induced flow we call the closure of the interior
of the unstable manifold U(m) the Min region of m.

Fig. 2. An unstable manifold of a minimum & of the flow induced by the disks from
Figure 1 (on the left) and its corresponding Min region (second from the left). The
Min region is a true subset of the unstable manifold. A stable manifold of a maximum
@ of a different flow (second from the right) and its corresponding Max region (on the
right). The Max region is a superset of the stable manifold.

Next we discuss stable and unstable manifolds of saddles which are a key
tool to characterize and compute Max- and Min regions. Given a saddle s be a
saddle of ¢. We observe that

(1) The unstable manifold U(s) of s is a piecewise linear curve.
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(2) If the stable manifold S(s) of s does not contain a Voronoi vertex then
closure(S(s)) is a piecewise linear curve.

\‘ e
® Po._.
L@ ©
© @\@ Of
e .‘\\\:8 e
9

Fig. 3. The unstable manifolds of the saddles ® of the flow induced by the disks from
Figure 1 (on the left). An example that shows that the stable manifolds of saddles ®
need not be curves (on the right).

The second observation indicates that the stable manifolds of saddles can be
more complicated to deal with than the unstable manifolds. In [5] we deal with
this problems. Here we want to assume that the stable manifolds of all saddles
do not contain any Voronoi vertex. This assumption is not really a restriction
since it is automatically fulfilled under the strong duality condition which is the
main topic of this paper.

The unstable manifolds of different saddles might join at some point or they
might continue to infinity. The only points where two such unstable manifolds
might join must lie on the boundaries of Voronoi cells, i.e. in the interior of
Voronoi edges or at Voronoi vertices. If a point where two or more unstable
manifolds of saddles join is not a maximum or saddle then we call it a Steiner
vertez.

Unstable decomposition graph. Let G be the following graph: Its vertex
set consists of all maxima, saddles and Steiner vertices. Two vertices are con-
nected by an edge if there exists an unstable manifold U (s) of some saddle s such
that the two vertices are both contained in U(s) and there is no other vertex
in U(s) between them. We add an additional vertex at infinity to the vertex set
of G and add edges that connect this point to all vertices of G that flow under
¢ on a straight line to infinity. We refer to G as the unstable decomposition
graph associated with a disk induced flow. Let S be the set of saddles of ¢ and
U(S) = U,es U(s). We refer to U(S) as the geometric realization of G.

Stable decomposition graph. Let G be the following graph: Its vertex
set consists of all minima, saddles and joins. Two vertices are connected by an
edge if there exists a stable manifold S(s) of some saddle s such that the two
vertices are both contained in closure(S(s)) and there is no other vertex on
S(s) between them. We have to take the closure of the stable manifolds because
otherwise the minima would not be contained in them. We refer to G as the
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stable decomposition graph associated with a disk induced flow. Let S be the
set of saddles of ¢ and S(S) = |J,gclosure(S(s)). We refer to S(S) as the
geometric realization of G.

Theorem 1. The following is true.

(1) The mazimum complexities of the geometric realizations of the stable- and
unstable decomposition graph of n disks are both O (1?) vertices, ©(n?) straight
line segments and O(n) regions.

(2) The worst case algorithmic complexities of the stable- and unstable decom-
position graph of n disks are both O(n?). O

In [4] and [5] we establish a connection of the unstable decomposition graph
and the Min regions of the same set of disks and a connection of the stable
decomposition graph and the Max regions.

Theorem 2. The following is true:

(1) The regions of the unstable decomposition graph of a set of disks are exactly
the Min regions of the flow associated with these disks.

(2) The regions of the stable decomposition graph of a set of disks are exactly
the Max regions of the flow associated with these disks. a

4 Strong duality

Strong duality condition. A set B of disks in R? obeys the strong duality
condition if the center of each disk in B is contained in its dual Voronoi cell, i.e.
every disk center is a minimum of the flow induced by B.

Observe that the strong duality condition is always obeyed by a set of points,
i.e. a set of disks that all have radius zero.

The Gabriel graph of a set of disks is a well studied object that has appli-
cations in many areas. It turns out that the unstable decomposition graph is a
Gabriel graph under the strong duality condition.

Gabriel graph. Given a set B of disks in the plane. The Gabriel graph of
G is given as follows: Its vertices are the centers of the disks in B and its edges
are given by Delaunay edges that intersect their dual Voronoi edge. The edges of
the Gabriel graph are called Gabriel edges. From the Definition of critical points
we know that there is a one to one correspondence between Gabriel edges and
saddles of ¢p.

Theorem 3. The following is true.

(1) The mazimum geometric complexity of a Gabriel graph of n disks is ©(n)
vertices, O(n) edges and O(n) regions.

(2) The worst case algorithmic complexity, i.e. the number of steps it takes to
compute the Gabriel graph of n disks, is ©(nlogn). O
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Theorem 4. Given a set B of disks that obeys the strong duality condition plus
one additional disk at infinity. Let C' be the set of dual disks and ¢ and ¢c be
the flows induced by B and C, respectively. The following is true:

(1) Every disk center of B is a minimum of ¢p and a mazimum of ¢c.

(2) The geometric realizations of the unstable decomposition graph associated
with ¢c and the stable decomposition graph associated with ¢g are both the
Gabriel graph of B.

Proof. (1) This follows just from the definition of critical points. (2) Every saddle
of ¢ is by definition also a saddle of ¢ and vice versa. The Delaunay edge (with
respect to B) that contains some saddle s is a Gabriel edge by the definitions
of saddles and Gabriel edges, respectively. This Gabriel edge is a Voronoi edge
with respect to C' and the endpoints of this edge are minima of ¢p and maxima
of ¢¢c by the strong duality condition and the definition of duality. That is,
s is connected by this Gabriel edge to two minima with respect to B and to
two maxima with respect to C. Hence this Gabriel edge is both U(s) (with
respect to C) and S(s) (with respect to B). This implies that the geometric
realizations of the unstable decomposition graph associated with ¢¢ and the
stable decomposition graph associated with ¢p are the Gabriel graph of B. 0O

Corollary 1. The following is true:

(1) The Max regions of ¢p are exactly the bounded Min regions of ¢c.

(2) The Max regions of ¢p are a set of contiguous Delaunay cells of B separated
by Gabriel edges.

(3) The mazimum complexities of the geometric realization of the stable decom-
position graph associated with ¢ and the geometric realization of the un-
stable decomposition graph associated with ¢c are both O(n) vertices, O(n)
edges and O(n) regions.

(4) The worst case algorithmic complexities of the geometric realization of the
stable decomposition graph associated with ¢ and the geometric realization
of the unstable decomposition graph associated with ¢c are both @(nlogn).

v 7
Y
RS e /!
’ N
- / A}
== 1 .\ L \
NN
! 4
\‘ S 7%
‘l 7 1
1 Q 1
[ . 1 A
1 )
=@/
NS
g "®
4 A}
.
’ . Ay
4 Ay
\

Fig. 4. Max regions of maxima @ in the primal (on the left) are bounded Min regions
of minima & in the dual (on the right) under the strong duality condition. Note that
here the boundaries of these regions are emphasized.
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The analogous result to the first observation for the bounded Min regions of
¢p and the Max regions of ¢. does not hold as can be seen easily from examples.
Note that the the set C' of dual disks need not fulfill the strong duality condition
even if B does.

Under the strong duality condition we have a simpler characterization of the
Min regions of ¢p.

Theorem 5. Let B a set of disks that obeys the strong duality condition and ¢
the flow induced by B. The Min regions of ¢ are the Voronoi cells of B.

Proof. Let z be the center of a disk in B and V its dual Voronoi region. By
the strong duality condition z lies in the interior of V' which implies that z is a
minimum of ¢. From the definition of ¢ we have that the interior of V' is a subset
of the Min region M of z. Furthermore, V' is a subset of M since Min regions are
always closed. Now assume that V is a true subset of M. The difference M — V
has to contain an open subset U of R?, because by definition Min regions are
the closure of the interior of some subset of R?. The set U must have a non
empty intersection with the interior of some Voronoi cell V’ different from V.
The interior of V' is part of the Min region of its dual Delaunay vertex m/'.
Let 2 € U NV’. By the definition of ¢ the closure of the set {y € R : 3t €
[0,00) s.t. ¢y (t) = x} is the line segment that connects m’ with z. Thus x belongs
neither to the unstable nor to the Min region of m. That is a contradiction to
our assumption. Hence M = V. O

Corollary 2. The following is true:

(1) The mazimum complexities of the geometric realization of the unstable de-
composition graph associated with ¢p is O(n) vertices, O(n) edges and O(n)

regions.
(2) The worst case algorithmic complexity of the geometric realization of the
unstable decomposition graph associated with ¢g is ©(nlogn). o

The strong duality condition allows to define a discrete flow, i.e. a discrete
dynamical system on the set of triangles of the Delaunay triangulation [3]. In
the following we assume that the disks are in general position, i.e. the Delaunay
diagram is actually a triangulation.

Given a triangle in the Delaunay triangulation of a set of disks. We associate
every edge of the triangle with the halfspace that intersects the triangle only in
this edge. We call the wedge in the intersection of two such halfspaces that does
not contain the triangle a Delaunay wedge.

Lemma 1. Let B be a set of disks that obeys the strong duality condition. Then
no Voronoi vertex is contained in a Delaunay wedge of its dual Delaunay triangle.

Proof. Assume the contrary, i.e. there exists a Voronoi vertex v that is contained
in a Delaunay wedge of its dual Delaunay triangle o. Let x be the Delaunay
vertex that is incident to the two edges of o whose associated halfspaces define
the wedge that contains x. By construction x cannot be contained in the wedge



Duality in Disk Induced Flows 163

centered at v and bounded by the two Voronoi edges dual to the two Delaunay
edges incident to x. That is, z is not contained in its dual Voronoi cell. That
contradicts the strong duality condition. O

Triangle flow. Given a set B of disks that obeys the strong duality condi-
tion. Let D denote the set of all Delaunay triangles in the Delaunay triangulation
of B together with an abstract triangle inf at infinity. The flow on D is a function
@ : Ny x D — D which satisfies
(1) ©(0,0) = o for every o € D.

(2) &(n+m,o) =P(n,P(m,o)) for every o € D.

That is, @ is defined recursively. The recursion has to be anchored by defining
&(1,0). We set &(1,0) = o if 0 = inf or the dual Voronoi vertex v of o
is contained in o. Otherwise v is contained in exactly one of the halfspaces
associated with the edges of o. If there exists a second Delaunay triangle o’
incident to the edge that corresponds to the halfspace that contains v we set
&(1,0) = o’. Otherwise we set ¢(1,0) = inf.

We find directly from the definitions that the fixpoints besides inf of a
triangle flow are exactly the dual triangles of the maxima of the continuous flow
induced by the same set of disks.

Theorem 6. Let B be a set of disks that obeys the strong duality condition and
¢ the flow induced by B. Let m be a mazimum of ¢ and o its dual Delaunay
triangle. Then the Max region of m is the following set

{r €0’ €D : 3In>0 such that H(n,o’) = o},

where @ is the triangle flow on the triangle set D of the Delaunay triangulation
of B.

Proof. First observe that the flow @ has to be acyclic, because the power of the
orthodisks of the Delaunay triangles increases in every time step of the flow @.

By construction the flow @ cannot pass any Gabriel edge. Every region in
the Gabriel graph of B contains exactly one maximum of ¢, i.e. one fixpoint of
. Since @ is acyclic all triangles in a region of the Gabriel graph have to flow
into this unique fixpoint. From Corollary 1(2) we know that all points in this
region flow into m under the flow ¢. O
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