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Abstract. Given a set of n points in some d-dimensional Euclidean
space, each point colored with one of k( ≥ 2) colors, a bichromatic clos-
est (resp., farthest) pair is a closest (resp., farthest) pair of points of
different colors. We present efficient algorithms to compute a bichro-
matic closest pair and a bichromatic farthest pair. We consider both
static, and dynamic versions with respect to color flips. We also give
some combinatorial bounds on the multiplicities of extreme distances in
this setting.

1 Introduction

Given a collection of k pairwise disjoint sets with a total of n points in d-
dimensional Euclidean space, we consider static and certain dynamic algorithms
to compute the maximum (resp. minimum) distance between pairs of points in
different sets. One may imagine each set colored by one of a palette of k colors
– in which case we are considering distances between points of different colors
(k is not fixed and may depend on n). In this paper, distance (or length) stands
for Euclidean distance when not specified.

Given n (uncolored) points in d-dimensional Euclidean space, the problem
of finding a closest pair is classical and, together with related problems, has
been studied extensively. We refer the reader to recent surveys by Eppstein and
Mitchell [10, 13]. In the following, we discuss the literature related to chromatic
versions of the problem that is relevant to our paper.

The bichromatic case in two dimensions – a set of n points in the plane
each colored red or blue – has been solved optimally in O(n logn) time, to
find either the minimum distance between a bichromatic (red-blue) pair (i.e.,
the bichromatic closest pair or BCP problem [19, 6]), or the maximum distance
between a bichromatic pair (i.e., the bichromatic farthest pair or BFP problem
[21, 7]).

Extending to higher dimensions turns out to be more difficult if one seeks
optimal algorithms. The approach of Bhattacharya-Toussaint [7] to the planar
problem has been extended to higher dimensions by Robert [17], and reduces
the BFP problem for n points in Rd to the problem of computing the diameters
of cd sets of points in Rd , for some constant cd depending exponentially on d.

The BCP problem is intimately related with that of computing an Euclidean
minimum spanning tree (EMST). Similarly, the BFP problem is closely related
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with that of computing an Euclidean maximum spanning tree (EXST). It is not
difficult to verify that an EMST of a set of points each colored red or blue
contains at least one edge joining a bichromatic closest pair, so after an EMST
computation the BCP problem can be solved in further linear time. In the oppo-
site direction Agarwal et al [1] show that if the BCP problem for a set of n red
or blue points in Rd can be solved in time Tmin

d (2, n), then an EMST of n points

in R
d can be computed in time O(Tmin

d (2, n) logd n). Their result is improved
by Krznaric and Levcopoulos [12], where the authors show that the problem of
computing an EMST and the BCP problem are, in fact, equivalent to within a
constant factor.

Dynamic versions of the (uncolored) closest and farthest pairs problem, espe-
cially the former – the setting being an uncolored point set subject to insertion
and deletion – have been of considerable interest as well and the literature is
extensive. We refer the reader to a recent paper by Bespamyatnikh and the
bibliography therein [5]. Dynamic versions of the bichromatic closest and far-
thest pairs problem have been studied as well [8, 9, 22], again from the point of
view of inserting into and deleting from a point set. The best update times are
polynomial in the current size of the point set.

In this paper we consider both static and dynamic bichromatic closest and
farthest pairs problems, in the multicolor setting. In the dynamic case, the point
set itself is fixed, but points change their color. To our knowledge ours is the
first paper to consider this restricted dynamism and, not surprisingly, our update
times are superior to and our algorithms less complicated than the best-known
ones for the more general problem mentioned above where points themselves
may be inserted and deleted.

Specifically, the input to our problem is a set of n points in R
d , at fixed

locations, colored using a palette of k colors, and the goal is to compute (resp.,
dynamically maintain after each color flip) a bichromatic closest pair and a
bichromatic farthest pair (if exists).

The algorithms for the static version and the preprocessing involved in our
dynamic algorithms are essentially EMST and EXST computations, so it is rel-
evant to briefly discuss the current best-known times for these.

EMST and EXST Computations

Given a set S of n points in Rd , an EMST (resp., EXST) is a spanning tree
of S whose total edge length is minimum (resp., maximum) among all spanning
trees of S, where the length of an edge is the Euclidean distance between its
endpoints.

For two dimensions (d = 2), an optimal O(n logn) time algorithm to compute
the EMST of n points is given by Shamos and Hoey [19]. Agarwal et al [1]
show how to compute an EMST in d dimensions, for arbitrary d, in randomized
expected time O((n logn)4/3) for d = 3, or deterministically in time O(n2−αε,d)
for d ≥ 4 and any fixed ε > 0 (here αε,d = 2

�d/2�+1+ε). See also the two surveys

mentioned above.
Monma et al [14] provide an optimal O(n logn) time algorithm for EXST

computation in the plane. In higher dimensions, Agarwal et al [2] present
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subquadratic-time algorithms, based on efficient methods to solve the BFP prob-
lem: a randomized algorithm with expected time O(n4/3 log7/3 n) for d = 3, and
O(n2−αε,d) for d ≥ 4 and any fixed ε > 0 (here αε,d = 2

�d/2�+1+ε). See also [10,

13].

Summary of Our Results. In this paper, we obtain several results on the theme
of computing extreme distances in multicolored point sets, including:

(1) We relate the various time complexities of computing extreme distances in
multicolored point sets in Rd with the time complexities for the bichromatic
versions. We also discuss an extension of this problem for computing such
extreme distances over an arbitrary set of color pairs.

(2) We show that the bichromatic closest (resp. farthest) pair of points in a
multicolored point set in Rd can be maintained under dynamic color changes
in logarithmic time and linear space after suitable preprocessing. These al-
gorithms can, in fact, be extended to maintaining the bichromatic edge of
minimum (resp., maximum) weight in an undirected weighted graph with
multicolored vertices, when vertices dynamically change color.

(3) We present combinatorial bounds on the maximum number of extreme dis-
tances in multicolored planar point sets. Our bounds are tight up to multi-
plicative constant factors.

2 Algorithmic Implications on Computing Extreme
Distances

We begin with a simple observation:

Observation 1. Let S be a set of points in an Euclidean space, each colored
with one of k colors. Then the Euclidean minimum spanning tree (EMST) of S
contains at least one edge joining a bichromatic closest pair. Similarly, the Eu-
clidean maximum spanning tree (EXST) of S contains at least one edge joining
a bichromatic farthest pair.

Proof. Assume that the minimum distance between a bichromatic pair from S,
say between points p and q, is strictly smaller than that of each bichromatic edge
(i.e., an edge joining points of different color) of the EMST T of S. Consider the
unique path in T between p and q. Since p and q are of different colors there
exists a bichromatic edge rs on this path. Exchanging edge rs for pq would
reduce the cost of T , which is a contradiction.

The proof that the EXST of S contains at least one edge joining a bichromatic
farthest pair is similar. ��

In the static case, the only attempt (that we know of) to extend to the
multicolor version, algorithms for the bichromatic version, appears in [3]. The
authors present algorithms based on Voronoi diagrams computation, for the
bichromatic closest pair (BCP) problem in the plane – in the multicolor setting
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– that run in optimal O(n logn) time. In fact, within this time, they solve the
more general all bichromatic closest pairs problem in the plane, where for each
point, a closest point of different color is found. However the multicolor version
of the BFP problem does not seem to have been investigated.

Let us first notice a different algorithm to solve the BCP problem within
the same time bound, based on Observation 1. The algorithm first computes an
EMST of the point set, and then performs a linear scan of its edges to extract a
bichromatic closest pair. The same approach solves the BFP problem, and these
algorithms generalize to higher dimensions. Their running times are dominated
by EMST (resp., EXST) computations.

Next we consider the following generalization of this class of proximity prob-
lems. Instead of asking for the maximum (resp. minimum) distance between all
pairs of points of different colors, we restrict the sets of pairs. To be precise, let
G be an arbitrary graph on k vertices {S1, . . . , Sk}, where Si, (i = 1, . . . , k)
are the k sets, of different colors, comprising a total of n points. This extension
of the BCP problem asks for a pair of points pi ∈ Si, pj ∈ Sj which realize a
minimum distance over all pairs Si ∼G Sj . There is an analogous extension of
the BFP problem.

Lemma 1. The edge set of a graph on k vertices can expressed as a union of
the sets of edges of less than k complete bipartite graphs on the same set of k
vertices. This bound cannot be improved apart from a multiplicative constant.
Moreover each such bipartition can be generated in linear time.

Proof. Let V = {0, . . . , k − 1} be the vertex set of G. For i = 0, . . . , k − 2, let
Ai = {i} and Bi = {j ∈ {i + 1, . . . , k − 1} | i ∼G j} specify the bipartitions.
Clearly each edge of G belongs to at least one complete bipartite graphs above.
Also all edges of these bipartite graphs are present in G. One can easily see that
certain sparse graphs (e.g Ck, the cycle on k vertices) require Ω(k) complete
bipartite graphs in a decomposition. ��

Lemma 1 offers algorithms for solving the extended versions of the BCP
(resp., BFP) problem by making O(k) calls to an algorithm which solves the
corresponding bichromatic version.

Putting together the above facts we can relate the time complexities for com-
puting extreme distances in bichromatic and multichromatic point sets. However,
it is convenient first to define some notation.

Let TEMST
d (n) denote the best-known worst-case time to compute an EMST

of n points lying in d-dimensional Euclidean space, and TEXST
d (n) denote the

analogous time complexity to compute an EXST (see Section 1 for a discussion of
these times). Let Tmin

d (k, n) denote the best of the worst-case time complexities
of known algorithms to solve the BCP problem for n points of at most k different
colors lying in d-dimensional Euclidean space. Let Tmax

d (k, n) denote the analo-
gous time complexity for the BFP problem. Let Emin

d (k, n) (resp., Emax
d (k, n))

be the analogous time complexities for the extended versions of the BCP (resp.,
BFP) problem.
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Theorem 1. The following relations hold between various time complexities:

(i) Tmin
d (k, n) = O(Tmin

d (2, n)) = O(TEMST
d (n)).

(ii) Tmax
d (k, n) = O(Tmax

d (2, n)) = O(Tmax
d (n)) = O(TEXST

d (n)).
(iii) Emin

d (k, n) ≤ O(k · Tmin
d (2, n)).

(iv) Emax
d (k, n) ≤ O(k · Tmax

d (2, n)).

The algorithms implied by (iii) and (iv) represent improvements over the
corresponding straightforward O(dn2) time algorithms (which look at all pairs
of points), when k is not too large. For example, when k =

√
n and d = 4, the

algorithm for the extended version of the BCP would run in o(n2) time (making
use of the algorithm in [1] for the bichromatic version).

For purpose of comparison, we present another approach based on graph
decomposition. As usual, denote by Kn the complete graph on n vertices, and
by Km,n the complete bipartite graph on m and n vertices.

Lemma 2. The edge set of the complete graph on k vertices can expressed as a
union of the sets of edges of 
log k� complete bipartite graphs on the same set of
k vertices. Moreover each such bipartition can be generated in linear time.

Proof. Put l = 
log k�; l represents the number of bits necessary to represent in
binary all integers in the range {0, . . . , k−1}. For any such integer j, let ji be its
i-th bit. We assume that the vertex set of the complete graph is {0, . . . , k − 1}.
For i = 1, . . . , l, let Ai = {j ∈ {0, . . . , k− 1} | ji = 0} and Bi = {j ∈ {0, . . . , k−
1} | ji = 1} specify the bipartitions. It is easy to see that each edge of the
complete graph belongs to at least one complete bipartite graphs above. Also
all edges of these bipartite graphs are present in the complete graph, which
concludes the proof. ��

Lemma 2 offers us an algorithm for solving the BCP (resp. BFP) problem
by making O(log k) calls to an algorithm which solves the corresponding bichro-
matic version. The algorithm in [3], as well as ours at the beginning of this
section, have shown that Tmin

2 (k, n) = O(n logn). Using Lemma 2, we get an al-
gorithm for the BCP (resp., BFP) problem which runs inO(Tmin

d (2, n) log k) time
(resp., O(Tmax

d (2, n) logk) time in d dimensions, e.g., in only O(n logn log k) =
O(n log2 n) time in the plane.

3 Dynamic color changes

The input to our problem is a set of n points in R
d , at fixed locations, colored

using a palette of k colors, and we maintain a bichromatic closest and a bichro-
matic farthest pair (if exists) as each change of a point color is performed. This,
of course, maintains the distance between such pairs as well. When the point set
becomes monochromatic that distance becomes ∞ and no pair is reported. Both
our algorithms to maintain the bichromatic closest and farthest pairs run in
logarithmic time and linear space after suitable preprocessing. These algorithms
can, in fact, be extended to maintaining the bichromatic edge of minimum (resp.,
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maximum) weight in an undirected weighted graph with multicolored vertices,
when vertices dynamically change color. We first address the closest pair problem
which is simpler.

3.1 Closest Pair

Our approach is based on the above observation. In the preprocessing step,
compute T , an EMST of the point set, which takes TEMST

d (n) time. Insert all
bichromatic edges in a minimum heap H with the Euclidean edge length (or its
square) as a key. Maintain a list of pointers from each vertex (point) to elements
of H that are bichromatic edges adjacent to it in T . In the planar case, the
maximum degree of a vertex in T is at most 6. In d dimensions, it is bounded by
cd, a constant depending exponentially on d [18]. Thus the total space is O(n).

To process a color change at point p, examine the (at most cd) edges of
T adjacent to p. For each such edge, update its bichromatic status, and con-
sequently that edge may get deleted from or inserted into H (at this step we
use the pointers to the bichromatic edges in H adjacent to p). The edge with
a minimum key value is returned, which completes the update. When the set
becomes monochromatic (i.e., the heap becomes empty), ∞ is returned as the
minimum distance. Since there are at most cd heap operations, the total update
time U(n) = O(logn), for any fixed d. We have:

Theorem 2. Given a multicolored set of n points in Rd , a bichromatic closest
pair can be maintained under dynamic color changes in O(logn) update time,
after O(TEMST

d (n)) time preprocessing, and using O(n) space.

3.2 Farthest Pair

We use a similar approach of computing an EXST of the point set and maintain-
ing its subset of bichromatic edges for the purpose of reporting one of maximum
length, based again on the observation made above. However, in this case matters
are complicated by the fact that the maximum degree of T may be arbitrarily
large and, therefore, we need new data structures and techniques.

In the preprocessing step, compute T , an EXST of the point set, which takes
TEXST
d (n) time. View T as a rooted tree, such that for any non-root node v,
p(v) is its parent in T . Conceptually, we are identifying each edge (v, p(v)) of T
with node v of T . Consider [k] = {1, 2, . . . , k} as the set of colors. The algorithm
maintains the following data structures:

– For each node v ∈ T , a balanced binary search tree Cv, called the color tree
at v, with node keys the set of colors of children of v in T . For example if
node v has 10 children colored by 3, 3, 3, 3, 5, 8, 8, 9, 9, 9, Cv has 4 nodes with
keys 3, 5, 8, 9.

– For each node v ∈ T and for each color class c of the children of v, a max-
heap Hv,c containing edges (keyed by length) to those children of v colored
c. In the above example, these heaps are Hv,3, Hv,5, Hv,8, Hv,9. The heaps
Hv,c for the color classes of children of v are accessible via pointers at nodes
of Cv.
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– A max-heap H containing a subset of bichromatic edges of T . In particular,
for each node v and for each color class c, distinct from that of v, of the
children of v, H contains one edge of maximum length from v to a child of
color c. In other words, for each node v and each color c distinct from that of
v, H contains one maximum length edge in Hv,c. For each node v (of color
c), pointers to Cv, to the edge (v, p(v)) in H (if it exists there) and in Hp(v),c

are maintained.

The preprocessing step computes Cv and Hv,c, for each v ∈ T and c ∈ [k], as
well as H , in O(n logn) total time. The preprocessing time-complexity is clearly
dominated by the tree computation, thus it is O(TEXST

d (n)).
Next we discuss how, after a color change at some point v, the data structures

are updated in O(logn) time. Without loss of generality assume that v’s color
changes from 1 to 2. Let u = p(v) and let j be the color of u. Assume first that
v is not the root of T .

Step 1. Search for colors 1 and 2 in Cu and locate Hu,1 and Hu,2. Let e1 (resp.
e2) be the maximum length edge in Hu,1 (resp. Hu,2). Recall that if any of these
two edges is bichromatic, it also appears in H . Vertex v (edge (u, v)) is deleted
from Hu,1 and inserted into Hu,2. The maximum is recomputed in Hu,1 and
Hu,2. If j = 1, the maximum edge in Hu,2 updates the old one in H (i.e. e2 is
deleted from H and the maximum length edge in Hu,2 is inserted into H). If
j = 2, the maximum edge in Hu,1 updates the old one in H (i.e. e1 is deleted
from H and the maximum length edge in Hu,1 is inserted into H). If j > 2, both
maximum edges in Hu,1 and Hu,2 update the old ones in H .

Step 2. Search for colors 1 and 2 in Cv and locate Hv,1 and Hv,2. The maximum
edge of Hv,1 is inserted into H , and the maximum edge of Hv,2 is deleted from
H . Finally, the maximum bichromatic edge is recomputed in H and returned,
which completes the update.

If v is the root of T , Step 1 in the above update sequence is simply omitted.
One can see that the number of tree search and heap operations is bounded by
a constant, thus the update time is U(n) = O(logn).

The total space used by the data structure is clearly O(n) and we have:

Theorem 3. Given a multicolored set of n points in Rd , a bichromatic farthest
pair can be maintained under dynamic color changes in O(logn) update time,
after O(TEXST

d (n)) time preprocessing, and using O(n) space.

Remark 1. As the approach for maintaining the farthest pair under dynamic
color flips is more general, it applies to closest pair maintenance as well. There-
fore, since the complexity of the first (simpler) approach to maintaining the
closest pair increases exponentially with d, one may choose among these two
depending on how large d is.

We further note that we have implicitly obtained an algorithm to maintain
a bichromatic edge of minimum (resp., maximum) weight in general graphs.
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Specifically, let G = (V,E), |V | = n, |E| = m be an undirected weighted
graph whose vertices are k-colored, and TMST (n,m) be the time complexity of
a minimum spanning tree computation on a graph with n vertices and m edges.
Since for arbitrary graphs, the time complexity of a minimum spanning tree
computation is the same as that of a maximum spanning tree computation, we
have:

Theorem 4. Given an undirected weighted graph on n multicolored vertices with
m edges, a bichromatic edge of minimum (resp., maximum) weight can be main-
tained under dynamic color changes in O(logn) update time, after
O(TMST (n,m)) time preprocessing, and using O(n) space.

Open Problem. Given a multicolored set of n points in R
d , a bichromatic

Euclidean spanning tree is an Euclidean spanning tree where each edge joins
points of different colors. Design an efficient algorithm to maintain a minimum
bichromatic Euclidean spanning tree when colors change dynamically. Note that
it may be the case that all its edges change after a small number of color flips.

4 Combinatorial Bounds in the Plane

In this section, we present some combinatorial bounds on the number of extreme
distances in multicolored planar point sets. We refer the reader to [11] for such
bounds in the bichromatic case in three dimensions.

Let fmin
d (k, n) be the maximum multiplicity of the minimum distance be-

tween two points of different colors, taken over all sets of n points in Rd colored
by k colors. Similarly, let fmax

d (k, n) be the maximum multiplicity of the max-
imum distance between two points of different colors, taken over all sets of n
points in Rd colored by k colors. For simplicity, in the monochromatic case, the
argument which specifies the number of colors will be omitted.

A geometric graph G = (V,E) [16] is a graph drawn in the plane so that
the vertex set V consists of points in the plane and the edge set E consists of
straight line segments between points of V .

4.1 Minimum Distance

It is well known that in the monochromatic case, fmin
2 (n) = 3n− o(n) (see [16]).

In the multicolored version, we have

Theorem 5. The maximum multiplicity of a bichromatic minimum distance in
multicolored point sets (k ≥ 2) in the plane satisfies

(i) 2n− o(n) ≤ fmin
2 (2, n) ≤ 2n− 4.

(ii) For k �= 2, 3n− o(n) ≤ fmin
2 (k, n) ≤ 3n− 6.

Proof. Consider a set P of n points such that the minimum distance between
two points of different colors is 1. Connect two points in P by a straight line
segment, if they are of different colors and if their distance is exactly 1. We obtain
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a geometric graph G. It is easy to see that no two such segments can cross: if
there were such a crossing, the resulting convex quadrilateral would have a pair
of bichromatic opposite sides with total length strictly smaller than of the two
diagonals which create the crossing; one of these sides would then have length
strictly smaller than 1, which is a contradiction. Thus G is planar. This yields
the upper bound in (ii). Since in (i), G is also bipartite, the upper bound in (i)
is also implied. To show the lower bound in (i), place about n/2 red points in a√
n/2 by

√
n/2 square grid, and place about n/2 blue points in the centers of

the squares of the above red grid. To show the lower bound in (ii), it is enough
to do so for k = 3 (for k > 3, recolor k − 3 of the points using a new color for
each of them). Consider a hexagonal portion of the hexagonal grid, in which we
color consecutive points in each row with red, blue and green, red, blue, green,
etc., such that the (at most 6) neighbors of each point are colored by different
colors. The degree of all but o(n) of the points is 6 as desired. ��

4.2 Maximum Distance

Two edges of a geometric graph are said to be parallel, if they are opposite sides
of a convex quadrilateral. We will use the following result of Valtr to get a linear
upper bound on fmax

2 (n).

Theorem 6. (Valtr [23]) Let l ≥ 2 be a fixed positive integer. Then any geo-
metric graph on n vertices with no l pairwise parallel edges has at most O(n)
edges.

It is well known that in the monochromatic case (here fmax
d (n) is the maxi-

mum multiplicity of the diameter), fmax
2 (n) = n, (see [16]). In the multicolored

version, we have

Theorem 7. The maximum multiplicity of a bichromatic maximum distance in
multicolored point sets (k ≥ 2) in the plane satisfies

fmax
2 (k, n) = Θ(n).

Proof. For the lower bound, place n − 1 points at distance 1 from a point p
in a small circular arc centered at p. Color p with color 1 and the rest of the
points arbitrarily using up all the colors in {2, . . . , k}. The maximum bichromatic
distance occurs n− 1 times in this configuration.

Next we prove the upper bound. Consider a set P of n points such that
the maximum distance between two points of different colors is 1. Connect two
points in P by a straight line segment, if they are of different colors and if their
distance is exactly 1. We obtain a geometric graph G = (V,E). We claim that
G has no 4 pairwise parallel edges. The result then follows by Theorem 6 above.

Denote by c(v) the color of vertex v, v ∈ V . For any edge e = {u, v}, u, v ∈ V ,
let the color set of its endpoints be Ae = {c(u), c(v)}. Assume for contradiction
that G has a subset of 4 pairwise parallel edges E

′
= {e1, e2, e3, e4}. Without

loss of generality, we may assume e1 is horizontal. Consider two parallel edges
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ei, ej ∈ E
′
, (i �= j). Let ∆ij be the triangle obtained by extending ei and ej

along their supporting lines until they meet. Let αij be the (interior) angle of
∆ij corresponding to this intersection. (If the two edges are parallel in the strict
standard terminology, ∆ij is an infinite strip and αij = 0.) The circular sequence
(resp. circular color sequence) of ei, ej is the sequence of their four endpoints
(resp. their colors), when the corresponding convex quadrilateral is traversed
(in clockwise or counterclockwise order) starting at an arbitrary endpoint. Note
that this sequence is not unique, but is invariant under circular shifts.

We make several observations:

(i) For all i, j ∈ {1, 2, 3, 4}, i �= j, αij < 60◦. Refer to Figure 1: the supporting
lines of the two edges ei = BD and ej = CE intersect in A, where \A = αij .
Assume for contradiction that αij ≥ 60◦. Then one of the other two angles
of ∆ij = ABC, say \B, is at most 60◦. Put x = |BC|, y = |AC|. We have
x ≥ y > 1, thus c(B) = c(C). Hence CD and BE are bichromatic and |CD| +
|BE| > |BD| + |CE| = 2. So at least one of CD or BE is longer than 1, which
is a contradiction. As a consequence, all edges in E

′
have slopes in the interval

(− tan 60◦,+tan60◦) = (−√
3,+

√
3), in particular no two endpoints of an edge

in E
′
have the same x-coordinate. For ei ∈ E

′
, denote by li (resp. ri), its left

(resp. right) endpoint. We say that ei ∈ E′
is of type (c(li), c(ri)).

(ii) If the circular color sequence of ei, ej is 〈c1, c2, c3, c4〉, then either c1 = c3 or
c2 = c4. For, if neither of these is satisfied, the lengths of the two diagonals of the
corresponding convex quadrilateral would sum to more than 2, so one of these
diagonals would be a bichromatic edge longer than 1, giving a contradiction.

(iii) The circular sequence of ei, ej is 〈li, ri, rj , lj〉. Assume for contradiction that
the circular sequence of ei, ej is 〈li, ri, lj, rj〉. But then by the slope condition (in
observation (i)), the corresponding triangle ∆ij would have αij ≥ 60◦, contra-
dicting the same observation.

As a consequence, if ei and ej have the same color set (Aei = Aej ), they
must be of opposite types, so there can be at most two of them. Assume for
contradiction that ei and ej have (the same color set and) same type {1, 2}. Then
the circular color sequence of ei, ej is 〈1, 2, 2, 1〉 by observation (iii), contradicting
observation (ii).

We now prove our claim that that G has no 4 pairwise parallel edges (the set
E

′
). We distinguish two cases:

Case 1: There exist two parallel edges with the same color set. Without loss of
generality assume that e1 is of type (1, 2) and e2 is of type (2, 1). We claim that
G has no 3 pairwise parallel edges. Without loss of generality, e3 is of type (2, 3),
by observation (ii). By observation (iii), the circular color sequence of e2, e3 is
〈2, 1, 3, 2〉 which contradicts observation (ii).

Case 2: No two parallel edges have the same color set. We claim that G has no
4 pairwise parallel edges. Without loss of generality we may assume that e1 is
of type (1, 2), and e2 is of type (3, 1) (that is 1 is the common color of e1 and
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e2). To satisfy observations (ii) and (iii), e3 is constrained to be of type (2, 3).
Finally, one can check that there is no valid type choice for e4, in a manner
consistent with observations (ii) and (iii) and the assumption in this second case
(e4 would have an endpoint colored by a new color, say 4, and then it is easy to
find two edges with disjoint color sets).

The claim follows completing the proof of the theorem. ��

A

B

C

D

E

ei

ej

Fig. 1. Illustration for the proof of Theorem 7

Remark 2. It is not hard to show that fmax
2 (2, n) = fmax

2 (n, n) = n. A different
approach than that taken in the proof of Theorem 7 leads to an upper bound
of 2n [15, 20]. A lower bound of 3

2n−O(1) can be obtained for certain values of
k. However determining an exact bound for the entire range 2 ≤ k ≤ n remains
open.
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