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Abstract. In this paper the contrast source inversion method using a
multiplicative weighted L2-norm total variation regularizer is applied to
two- and three-dimensional image reconstructions from electromagnetic
microwave tomography experiments. This iterative method avoids solv-
ing a full forward problem in each iteration which makes the method
suitable to handle a large scale computational problem. The numerical
results both from simulation and experimental data with high contrast
biological phantom are presented and discussed.

1 Introduction

Image reconstruction is a complicated nonlinear problem in microwave tomog-
raphy because both the material parameters and the field distribution in the
investigation domain are unknowns. Serious efforts have been made to solve this
problem in two-dimensional model where the scalar Helmholtz equation (TM
electromagnetic polarization) can be applied. If the unknown object has small
contrast of dielectric properties, a linearization procedure like the Born approx-
imations [1] can be used to provide images with spatial resolution of a fraction
of the wavelength. Computer codes based on these approximations demonstrate
a high speed and can be used for almost real time imaging. Iterative procedures
for the Born approximation have been used for intermediate contrast objects [4].

More complicated mathematical reconstruction algorithms have been devel-
oped for reconstruction objects with high contrast in dielectric properties [3,
5–8, 10]. These algorithms require large computer resources, but nevertheless
theoretically provide a resolution with a sufficiently high signal-to-noise ratio.
The Newton method [11] has been successfully applied to high contrast objects.
The main bottlenecks of this Newton approach, especially discouraging in the
three-dimensional case, are the multiple forward solutions needed to construct
the Hessian matrix. Another type of method which avoids solving any forward
problem in each iterative step is introduced in [9, 12]. This approach can solve
the problem without dealing with a high-dimensional linear equation system but
it requires a larger number of iterations.

Recently, this type of method has been armed with a total variation regu-
larizer in order to handle high contrast objects [13]. Although the addition of

P.M.A. Sloot et al. (Eds.): ICCS 2002, LNCS 2331, pp. 207−216, 2002.
 Springer-Verlag Berlin Heidelberg 2002



the total variation to the cost functional has a very positive effect on the quality
of the reconstructions for both ‘blocky’ and smooth profiles, a drawback is the
presence of an artificial weighting parameter in the cost functional, which can
only be determined through considerable numerical experimentation and a pri-
ori information of the desired reconstruction. In [13], it was suggested to include
the total variation as a multiplicative constraint, with the result that the orig-
inal cost functional is the weighting parameter of the regularizer, so that this
parameter is determined by the inversion procedure itself. This eliminates the
choice of the artificial regularization parameters completely. The multiplicative
type of regularization seems to handle noisy as well as limited data in a robust
way without the usually necessary a priori information. In this paper the latter
method using the new weighted L2-norm total variation regularizer introduced
in [14] is applied to handle more complicated biological objects embedded in
a lossy medium. Numerical examples using simulation and experimental data
demonstrate the ability of the presented method.

2 Problem Statement

We consider an object, B, of arbitrary bounded cross section with complex di-
electric permittivity ε(x) and arbitrary shape. The complex permittivity and the
shape of this object B are unknown, but they are known to lie within a bounded
simply connected object domain D. This object domain D is assumed to be em-
bedded in the background medium, the immersion liquid, with permittivity εb.
The position vector is denoted by x. We assume a time harmonic dependence
exp(jωt), where j2 = −1, ω is angular frequency, and t is time. We also assume
that the object is irradiated successively by a number of known incident electric
fields Einc

s (x) = Einc(x,xS
s), s = 1, · · · , originating from source positions xS

s .
For each incident field, the total electric field will be denoted by Es. Nowa-

days, it is well-known that the total field Es and the scattered field Esct
s satisfy

the following domain integral representations

Es(x) = Einc
s (x)+

(
k2
b+∇∇·) ∫

D

g(x−x′)χ(x′)Es(x
′) dv(x′) , x ∈ D , (1)

Esct
s (x) =

(
k2
b+∇∇·) ∫

D

g(x−x′)χ(x′)Es(x
′) dv(x′) , x (∈ D , (2)

where χ(x) = ε(x)/εb−1 is the contrast, g(x) = exp(−j kb|x|)/4π|x| is the

Green’s function, and kb = ω (εbµ0)
1/2

denotes the wavenumber in the embed-
ding.

In the inverse scattering problem F s = Esct
s will be measured on some do-

main S outside D, so the integral representation in (2) for points exterior to D
is written symbolically as the data equation,

Fs = GSχEs , x ∈ S , (3)

while the integral equation in (1) is written symbolically as the object equation,

Einc
s = Es− GDχEs , x ∈ D , (4)
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where the operator GS is an operator mapping from L2(D) into L2(S) and the
operator GD is an operator mapping L2(D) into itself.

The inverse scattering problem consists of determining χ from a knowledge
of the incident fields, Einc

s , on D and the scattered fields, Fs, on S. Because the
total fields Es on D are also unknown, this problem is non-linear. In practice it
can only be solved iteratively due to a large number of unknowns.

3 Inversion Algorithm

In this method, one chooses to reconstruct the material contrast χ and the
contrast sources Ws instead of the fields Es. The contrast sources are defined
by

Ws(x) = χ(x)Es(x) . (5)

Using (5) in (3), the data equation becomes

Fs = GSWs , x ∈ S , (6)

while the object equation becomes

Es = Einc
s + GDWs , x ∈ D . (7)

Substituting (7) into (5), we obtain an object equation for Ws

χEinc
s = Ws − χGDWs , x ∈ D . (8)

Then, in the Contrast Source Inversion (CSI) method [12] using the multi-
plicative weighted L2-norm Total Variation (TV) regularization factor [14] (de-
noted by MR-CSI), the sequences of Ws,n and χn for n = 1, 2, · · ·, are iteratively
found by minimizing a cost functional, viz.,

Fn(Ws, χ) =
[
FS(Ws) + FD

n (Ws, χ)
]
FR
n (χ) ,

=
[
ηS

∑
s‖Fs−GSWs‖2

S + ηDn
∑

s‖χEinc
s −Ws+ χGDWs‖2

D

]
FR
n (χ) , (9)

where FS and FD
n are the errors in the data and object equations. The nor-

malization factors in the cost functional are chosen as ηS =
∑

s‖Fs‖2
S and

ηDn =
∑

s‖χ̃Einc
s ‖2

D, respectively. Further, ‖ · ‖2S,D denotes the squared norm

on S/D. The weighted L2-norm TV factor is as introduced in [14],

FR
n (χ) =

1∫
D dv(x)

∫
D

|∇χ|2 + δ2
n

|∇χ̃|2 + δ2
n

dv(x) = ‖bn∇χ‖2
D + δ2

n‖bn‖2
D , (10)

where bn =
[∫

D
dv(x) (|∇χ̃|2 + δ2

n)
]−1/2

. In (9) and (10) χ̃ is some particular
contrast value. Its choice will be determined later. Although the constant pa-
rameter δ2

n is introduced for restoring differentiability of the regularizer, it also
controls the influence of the regularization. We therefore have chosen to increase
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the regularization as a function of the number of iterations by decreasing this
parameter δ2

n. Since the normalized object error term will decrease as a function
of the number of iterations, we choose

δ2
n = FD

n (Ws,n, χ̃) ∆̃2 , (11)

where ∆̃ denotes the reciprocal mesh size of the discretized domain D. Its choice
is inspired by the idea that in the first few iterations, we do not need the mini-
mization of the regularizer and as the iterations proceed we want to increase the
effect of the regularizer.

The structure of the cost functional in (9) is such that it will minimize the
factor FR

n with a large weighting parameter in the beginning of the optimization
process, because the value of FS+FD

n is still large, and that it will gradually
minimize more and more the normalized errors in the data and object equations
when the factor FR

n remains a nearly constant value close to one. If noise is
present in the data, the term FS will remain at a large value during the whole
optimization and therefore, the weight of the factor FRn will be more significant.
Hence, the noise will, at all times, be suppressed in the reconstruction process.

This MR-CSI method starts with back propagation as the initial estimates
for the contrast sources and the contrast [12]. Then, in each iteration we first
update the contrast sources W s,n using a conjugate gradient step

Ws = Ws,n−1 + αnws,n , (12)

where the functions ws,n are the Polak-Ribière conjugate gradient directions,

ws,0 = 0 , ws,n = ∂ws,n +

∑
sRe〈∂ws,n, ∂ws,n−∂ws,n−1〉D∑

s‖∂ws,n−1‖2
D

ws,n−1 . (13)

The gradient ∂ws,n of the cost functional Fn(Ws, χ) in (9) with respect to Ws

evaluated at Ws,n−1 and χn−1 is given by

∂ws,n = −ηSGS∗ρs,n−1−ηDn
(
rs,n−1−GD∗χn−1 rs,n−1

)
, (14)

where GS∗ and GD∗ are the adjoint operators of GS and GD, respectively, and
the overbar denotes the complex conjugate. Further, the residuals are defined as

ρs,n = F−GSWs,n and rs,n = χnE
inc
s −Ws,n+χnGDWs,n . (15)

The real parameter αn is found as minimizer of Fn(Ws,n−1+ αws,n, χn−1),

αn =
−∑sRe〈∂ws,n,ws,n〉D

ηS
∑

s‖GSws,n‖2
S + ηDn

∑
s‖ws,n−χn−1GDws,n‖2

D

. (16)

Note that the cost functional in (9) is a quadratic function of α, and the mini-
mizer is unique. In the updating scheme for the contrast sources χ̃ is chosen to
be the contrast in the previous iteration, χ̃ = χn−1. Then FR

n (χn−1) is always
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equal to one during the updating of Ws,n. Subsequently, we compute the field
Es,n by substituting (12) in (4).

After Ws,n have been obtained, in each iteration, we proceed with updating
of χn. First, we observed that the closed-form expression of the contrast can be
found if the regularization factor FR

n is absent, viz.,

χn= arg min complex χ
{
FS(Ws,n) + FD

n (Ws,n, χ)
}

=

∑
sWs,n ·Es,n∑
s|Es,n|2

. (17)

From this point we make an additional minimization step,

χRn = χn + βndn , (18)

where χn is now given by (17) and dn is the Polak-Ribière conjugate gradient

d0 = 0 , dn = gRn +
Re〈gRn , gRn −gRn−1〉D

‖gRn−1‖2
D

dn−1 . (19)

We remark that we prefer now a line minimization around the minimum of the
cost functional FS +FD

n (physical cost criterion). Then, during the updating of
the contrast χ̃ is taken to be equal to χn in (17). In view of (17) we take gRn as

gRn =

[
∂FDn (Ws,n,χ)

∂χ FR
n (χ) +

[
FS(Ws,n)+FD

n (Ws,n, χ)
] ∂FRn (χ)

∂χ

]
χ=χn∑

s |Es,n|2

=
[
FS(Ws,n)+FD

n (Ws,n, χn)
] ∇ · (b2n∇χn)∑

s |Es,n|2
, (20)

a preconditioned gradient of the cost functional Fn(Ws,n, χ) with respect to
changes in the contrast around the point χ = χn. In view of the previous mini-
mization step, the gradient of FD

n with respect to changes in the contrast around
the point χ = χn vanishes. Hence, the gradient with respect to the contrast, in
contrary to the previous approaches of the MR-CSI method [13, 14], contains
only a contribution of the additionally imposed regularization.

The real parameter βn is found from a line minimization as a minimizer of
the cost functional in (9). The minimization of Fn(Ws,n, χn+βdn), which is a
fourth-degree polynomial in β, can be performed analytically viz.,

Fn = (A+Bβ2)(X + 2Y β + Zβ2) , (21)

with

X = ‖bn∇χn‖2
D + δ2

n‖bn‖2
D , A = FS(Ws,n) + FD

n (Ws,n, χn) ,

Y = Re〈bn∇χn, bn∇dn〉D , B =
∑

s‖dnEs,n‖2
D/

∑
s‖χn−1E

inc
s ‖2

D ,
Z = ‖bn∇dn‖2

D .
(22)

Then, differentiation with respect to β yields a cubic equation with one real
root and two complex conjugate roots. The real root is the desired minimizer
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βn. The cost functional Fn in (21) is a convex function of real β and has one
minimum for real β because its second derivative with respect to β is positive.
The second derivative is obtained as ∂2Fn/∂β2 = 12BZβ2+12BY β+2(BX+AZ).
For β = 0 this function is positive, and remains positive when the right-hand
side has no real zeros. This is the case if Y 2 < 2/3(XZ+AZ2/B). Since both A
and B are functions of ws,n, we rather want a criterion in which only functions
of contrast quantities occur. Further the term AZ2/B is always non-negative.
Hence a sufficient condition that the second derivative is a positive function of
β is Y 2 ≤ 2/3XZ or

[Re〈bn∇χn, bn∇dn〉D]
2

[‖bn∇χn‖2
D + δ2

n‖bn‖2
D] ‖bn∇dn‖2

D

≤ 2

3
. (23)

But, by Cauchy-Schwarz, [Re〈bn∇χn, bn∇dn〉D]
2
/(‖bn∇χn‖2

D‖bn∇dn‖2
D) ≤ 1.

Thus

δ2
n ≥ ‖bn∇χn‖2

D/(2 ‖bn‖2
D) (24)

is a sufficient condition for the cost functional to be a convex function with
one minimum. If the choice for the parameter δ2n of (11) is less than the right-
hand side of (24), we replace the value of δ2n by the right-hand side of (24) in

which we take bn =
[∫
Ddv(x) (|∇χn|2+δ2

n−1)
]−1/2

. We have refrained from using
this value for δ2n in the whole iteration procedure because from our numerical
observations it appears this value has a large variation at the beginning of the
optimization procedure.

After we have obtained a new estimate χRn for the contrast, we repeat again
the updating of Ws,n (if the value of the cost functional is not small enough)
starting with χn−1=χRn−1 of the previous iteration.

4 Numerical Examples

4.1 Two-Dimensional Inversion From TM Electromagnetic Data

We first consider inversion from the 2D-TM polarization measurement. For this
measurement there are experimental data available which have been measured
using a circular microwave scanner operating at 2.33GHz. The scanner consists of
a 12.5cm radius circular array of 64 water-immersed horn antennas [2]. Only the
vertical componenent of the electric field parallel to the array axis (the x3-axis)
is measured. The measurement procedure records the total electric field values
at the receiving antennas. If one antenna is transmitting, the fields are measured
only with the 33 antennas located in front of the active source. The scattered
fields are deduced from the total field by subtracting the incident field, measured
in the absence of any targets. Further, the measured scattered fields have been
calibrated so that a directed unit line source can be used as the model for the
incident fields, viz., Einc

3,s(x) = −0.25ωµ0H
(2)
0 (kb|x−xS

s |), where µ0 = 4π×10−7

is the permeability in vacuum.
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Fig. 1. Human arm phantom images: using back propagation (a) and MR-CSI (b).

In the inversion of experimental data we assumed that the unknown object
is entirely located within a test domain D with dimension of 6.4λ by 6.4λ where
λ is the wavelength in water. The permittivity of water is approximately εb =
77.3− j 8.66 at frequency f = 2.33GHz. Hence, the wavelength λ = 14.6mm. The
discrete form of the algorithm is obtained by dividing the test domain D into
64 by 64 subsquares. The discrete spatial convolutions are efficiently computed
using FFT routines. The lower and upper bounds of the reconstructed complex
permittivity in the inversion algorithm are enforced as 0 ≤ Re[ε(x)]/ε0 ≤ 80
and 0 ≤ − Im[ε(x)]/ε0 ≤ 20.

The first experimental data were obtained from a human arm phantom. The
external layer (supposed to model the skin) and bones of the human arm phan-
tom were made with PVC with complex permittivity 2.73−j 0.01 and the muscle
was 54.5− j 17.2. We show first the results obtained from the initial estimates
(back propagation). These results, approximately identical to those using the
spectral diffraction tomography technique, are given in the top-plots of Fig. 1a.
The results of the MR-CSI method after 1024 iterations are given in the bottom-
plots of Fig. 1b. Although the total number of iterations is large, the total com-
putation time is very limited. Note that we do not solve any forward problem
at each iteration of the algorithm. One iteration of the MR-CSI method takes
approximately 8 seconds on a personal computer with 600MHz Pentium III pro-
cessor. After 1024 iterations the normalized data error F S is already reduced to
6.33%, and adding more iterations does not change the result. From the results,
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Fig. 2. Human forearm images: using back propagation (a) and MR-CSI method (b).

we observe that the bones are clear and sharp. The only drawback is that the
reconstructed imaginary part of the complex permittivity for one of the bones
is completely wrong. This can be caused by the presence of the noise in the
experimental data.

For the second experiment we consider data that were taken from a human
forearm. The back propagation results are given in the top-plots of Fig. 2a.
The results of the MR-CSI method after 1024 iterations are given in Fig. 2b.
After 1024 iterations the value of FS is already reduced to 4.10%, and adding
more iterations does not change the result. The reconstructed images show the
positions of the two bones and the correct value of the muscle (approximately
54.5−i 17.2). Conversely, due to the water and tissue attenuation and the reduced
dynamic range of the available data, the complex permittivity values of the bones
are higher than the real ones (it should approximately be 5.5−i 0.59 at the present
frequency of operation).

4.2 Three-Dimensional Inversion from Vectorial Data

As a test case for our full-vectorial 3D inversion algorithm we use the 3D neck
model which is immersed in water with permittivity εb = 78− j 3.6 at 1GHz.
The original profile of this neck model is given in Fig. 3a. The neck model
consists of fat tissue with permittivity 28− j 13.5, cartilage with 25− j 10.78,
veins/arteries with 63−j 20, bone with 6.4−j 2.16, trachea 1, marrow 5.5−j 0.59,
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(a)
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Fig. 3. Neck model: original 3D images (a) and reconstructed 3D images (b).

and muscle with 50−j 23.37. The size of the domain D in Fig. 3a is 3.1λ by 3.1λ
by 1.55λ where λ = 1/30 is the wavelength in water. The measurement setup is
similar to the one used by Bulyshev et al. [3]. We have three rings containing 30
transmitter antennas and six rings containing 90 receiver antennas. All receivers
operate simultaneously while the transmitters operate one after another. Thus,
in total we have 2700 data points. The receiver records all the components of the
scattered electric field Esct

s . The transmitter is modeled using a point magnetic
dipole directed in the x3-direction, viz., Einc

s (x) = jωµ0 exp(−jkb|x−xS
s |)/4π|x−

xS
s |3(−jkb|x−xS

s | − 1)[(x2−xS
2,s)i1−(x1−xS

1,s)i2]. The vertical positions of the

transmitter rings are xS
3 = ±0.35λ and 0, and of the receiver rings are xS

3 = ±λ,
±0.5λ and ±0.25λ.

The original profile is given in Fig. 3a. These plots are the volume slices at
x1 = 0 and x3 = 0. After generation of synthetic data a 5% random additive
white noise is added. In the inversion we discretize the test domain D into 31
by 31 by 15 cells, hence, the total number of unknowns is equal to 14415. The
reconstruction results after 1024 iterations are given in Fig. 3b. Note that one
iteration takes approximately 22 seconds on a personal computer with a 600MHz
Pentium III processor. We observe that the results are quite satisfactory in spite
of the use of very limited data.
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5 Conclusions

The presented results for biomedical data using a 2D-TM polarization measure-
ment and 3D vectorial data show that the contrast source inversion method
using multiplicative regularization leads to an effective inversion technique. The
algorithm is fully iterative and does not solve any forward problem in each itera-
tion. This makes the method suitable for large scale computations. Furthermore,
the artificial tuning process with a weighting parameter of the regularization to
obtain the “cosmetically best” results seems superfluous.

References

1. Bolomey, J., Pichot, C.: Some applications of diffraction tomography to electro-
magnetics - the particular case of microwaves in: Inverse Problems in Scattering
and Imaging, M. Bertero and E.R. Pike, Eds., London, U.K.: Adam Hilger (1982)
319–344

2. Broquetas, A., Romeu, J., Rius, J.M., Elias-Fuste, A.R., Cardama, A., Jofre, L.:
Cylindrical geometry: A further step in active microwave tomography. IEEE Trans.
Microwave Theory Tech. 39 (1991) 836–844

3. Bulyshev, A.E., Souvorov, A.E., Semenov, S.Y., Svenson, R.H., Nazarov, A.G.,
Sizov, Y.E., Tatsis, G.P.: Three-dimensional microwave tomography. Theory and
computer experiments in scalar approximation. Inverse Probl. 16 (2000) 863-875

4. Chew, W.C., Wang, Y.M.: An iterative solution of two-dimensional electromagnetic
inverse scattering problem. Int. J. Imag. Syst. Technol. 1 (1989) 100–108

5. Chew, W.C., Wang, Y.M.: Reconstruction of 2D permittivity distribution using
the distorted Born iterative method. IEEE Trans. Med. Imag. 9 (1990) 218–225

6. Franchois A., Pichot, C.: Microwave imaging - complex permittivity reconstruction
with a Levenberg-Marquadt method. IEEE Trans. Microwave Theory Tech. 46
(1997) 133–141

7. Harada, H., Wall, D., Takenaka, T., Tanaka, T.: Conjugate gradient method ap-
plied to inverse scattering problem. IEEE Trans. Antennas Propagat. 43 (1995)
784–792

8. Joachimowicz, N., Mallorqui, J.J., Bolomey, J.Ch., Broquetas, A.: Convergence
and stability assessment of Newton-Kantorovich reconstruction algorithms for mi-
crowave tomography. IEEE Trans. Med. Imag. 17 (1998) 562–569

9. Kleinman, R.E., van den Berg, P.M.: An extended range modified gradient tech-
nique for profile inversion, Radio Sci. 28 (1993), 877–884

10. Meaney, P.M., Paulsen, K.D., Hartov, A., Crane, R.K.: Microwave imaging for
tissue assessment: Initial evaluation in multitarget tissue equivalent phantoms.
IEEE Trans. Biomed. Enq. 43 (1996) 878–890

11. Souvorov, A.E., Bulyshev, A.E., Semenov, S.Y., Svenson, R.H., Nazarov, A.G.,
Sizov, Y.E., Tatsis, G.P.: Microwave tomography: A two-dimensional Newton iter-
ative scheme. IEEE Trans. Microwave Theory Tech. 46 (1998) 1654–1659

12. van den Berg, P.M., Kleinman, R.E.: A contrast source inversion method. Inverse
Probl. 13 (1997) 1607–1620

13. van den Berg, P.M., van Broekhoven, A.L., Abubakar, A.: Extended contrast source
inversion. Inverse Probl. 15 (1999) 1325–1344

14. van den Berg P.M., Abubakar, A.: Contrast source inversion method: State of art.
Prog. in Electromag. Research 34 (2001) 189–218

216 A. Abubakar and P.M. van den Berg


	Introduction
	Problem Statement
	Inversion Algorithm
	Numerical Examples
	Two-Dimensional Inversion From TM Electromagnetic Data
	Three-Dimensional Inversion from Vectorial Data

	Conclusions
	References

