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Abstract. In this paper we discuss approximation algorithms for the 2-
dimensional weighted regions optimal penetration problem and propose a
heuristic for speeding up the computation. The problem asks to �nd a ray
(direction, trajectory) to access a target region in a weighted subdivision,
such that some weighted distance function over the regions intersected
by the ray is minimized.

1 Introduction

Recent developments in medical imaging have made possible to provide precise
information on the anatomy of a 2-dimensional (2-D, planar) or 3-dimensional
(3-D, spatial, volumetric) region of the human body and on the anatomical lo-
calization and extent of \target" subregions, such as tumors, contained within
that region. For example, computed tomograph y and magnetic resonance imag-
ing can be used to provide 2-D and 3-D data, and powerful image processing
techniques can be employed to process the data for medical treatment planning
(e.g., surgical planning, minimally invasive surgical methods). In this paper we
assume that the planar or volumetric region has been preprocessed and par-
titioned into subregions, each of which has been associated a weight (based on
some weighting criterion), and that one subregion has been identi�ed as a target.
The goal is to �nd a ray (direction, trajectory) to access the target such that
some weighted distance function over the regions intersected by it is minimized.

More formally, we consider the weighted regions optimal penetration prob-
lem, introduced in [7]. The input is a subdivisionR in the 2-D space, composed of
r weighted regions Ri, i = 1; 2; : : : ; r, with a total of n vertices. The problem is to
�nd a ray L that originates from outside R and intersects a speci�ed target region

T 2 fR1; R2; : : : ; Rrg, such that the weighted sum S(L) =
P

L\Ri 6=�
wi�fi(L) is

minimized, where fi(L) is a function associated with the pair (Ri; L) and wi is a
positive integer weight associated with Ri. We will call L a penetrating ray with
respect to the target, or penetration for short. The regions Ri, i = 1; 2; : : : ; r, are
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Fig. 1. The penetration L: (a) goes through the target; (b) stops at the target

all convex polygons in the 2-D space, and the weights of T and the complement
R of R are zero (R is the free space outside R). Let RL denote the set of all
regions of R intersected by a penetration L and let di denote the Euclidean, L2

length of L within Ri 2 RL. Two versions of this problem have been introduced
in [7]. In the �rst version (P1), fi(L) = di for all Ri 2 RL. In the second version
(P2), the penetration stops when it hits the target. Thus, fi(L) is either di or
zero, depending on whether Ri is passed by L before or after L intersects the
target region T (see Figure 1 for an example). Since the solutions to P1 and P2
are similar, we will only discuss the second version of the problem.

The penetration problem arises in several medical areas, such as radiation
therapy, stereotactic brain surgery, minimally invasive computer assisted surgery
and telerobotics applications in surgery [6, 3, 10, 13, 7, 14, 11, 2, 4, 5, 9, 12]. For ex-
ample, in radiation therapy P1 is related to the use of a radiation ray (beam,
pencil) directed at the target from an external source (teletherapy) while P2 can
be used to model the process of delivering radiation by direct implantation of
a radiation source into the target (branchytherapy). In practice, �nding optimal
directions and trajectories is one of the most diÆcult problems of medical treat-
ment optimization.While there are quite a few 2-D and 3-D results on treatment
optimizationwith respect to other parameters, signi�cant progress on optimizing
directions has been made only recently [7,8].

In a companion paper, we have proved that the optimal penetration goes
through a vertex of the subdivision in the 2-D case and that it is de�ned by
a two dimensional set of lines in the 3-D case. In this paper, we make use of
those results to design approximation algorithms for the 2-dimensional weighted
regions optimal penetration problem. We also propose a heuristic for speeding
up the computation of the approximation algorithms.
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2 Previous 2-D Algorithms

A continuous ray space modeling for the 2-D optimal penetration problem have
been presented in [7], where it has been proved that the problem can be reduced
to solving O(n2) 2-D global optimization problems of the form

min
(x;y)2D

f(x; y) =
p
1 + x2

kX

i=1

aiy + bi

x+ ci
(1)

where D is a convex 2-D domain (a cell in an arrangement of lines), ai, bi and
ci are constants, the variables x and y are the de�ning parameters (slope and
intercept) for the penetration L and k is O(n) in the worst case.

Since the optimal penetration has been proved to go through a vertex of the
subdivision R (i.e., the optimal solution lies on the boundary of some feasible
domain D), the O(n2) 2-D global optimization problems can be reduced to
solving O(n2) 1-D global optimization problems of the form

min
x2Dx

fx(x) =
p
1 + x2(d0 +

kX

i=1

di

x+ ci
) (2)

where d0, ci and di, i = 1; 2; : : : ; k, are constants, Dx is an interval on the X-axis
de�ned by some bounding edge of D and k is O(n) in the worst case.

When using general purpose global or local optimization software as in [7],
the reduction above could result in orders of magnitude speed-up for solving the
2-D penetration problem. However, for computer based medical planning systems
that require fast planning algorithms (e.g., on-line surgical planning) such speed-
up may not be suÆcient. In the next two sections, we use the knowledge that
the optimal solution goes through a vertex of the subdivision and present simple
and fast algorithms for �nding an approximate solution.

3 Approximation Algorithms

In this section we present two approximation algorithms for the 2-D optimal
penetration problem. Our algorithms are based on simple, yet eÆcient, edge and
angle subdivision methods and can be re�ned to attend a user speci�ed precision
at an expense in computing time.

As mentioned in the previous section, a solution for the optimal penetration
problem can be found by solving a number of global optimization problems. In [7,
8] it has been proved that the feasible domains for the 2-D global optimization
problems can be generated using line (or line segment) arrangement traversal
(construction) algorithms. Each 2-D feasible domain corresponds to a cell in the
arrangement.

Lemma 1. The 1-D global optimization problems can be generated in a total of

O(n logn+ k + km) time, where m is the maximum number of terms in any of

the 1-D objective functions and k is the complexity of the arrangement.
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Proof. The boundary of each feasible domain is constructed and maintained by
the arrangement traversal algorithm and thus the O(k) 1-D feasible domains can
be obtained in O(k) time by traversing the corresponding arrangement structures
(usually doubly-connected edge lists). For each boundary edge e, the objective
function can be updated in linear time in the number of fractional terms in the
body of the function. Thus, if m is the maximumnumber of terms in any of the
1-D functions, each update requires at most O(m) time. 2

Alternatively, the following simple and practical algorithm can be used:

1. For each vertex v 2 R, compute the two tangent lines to the target region
T . Let W (v; T ) be the double wedge de�ned by v, T , and the tangents. This
computation takes O(n logn) time.

2. For eachW (v; T ), �nd the set of vertices VW (v; T ) of R that are inW (v; T ),
which takes O(n2) time overall (a range searching data structure adapted
from triangle range searching can be used for better theoretical bounds [1]).

3. For each vertex v 2 R, sort the set VW (v; T ) around v and compute the
intersection of the lines de�ned by v and V W (v; T ) with the boundary of T .
This takes a total of O(nl log l) time, where l is the maximum size of any set
V W (v; T ). Observe that this set of lines includes those de�ned by v and the
vertices of T . Thus, we have obtained a set of O(l) double wedges at v.

4. For each vertex v 2 R, compute the objective function associated with the
leftmost double wedge at v, then traverse the double wedges at v while
updating the objective function. The overall computation in this step can
be done in O(nlm) time, where m is the maximum number of terms in any
of the O(nl) objective functions.

Lemma 2. The algorithm above constructs the global optimization problems for

�nding an optimal penetration in O(n2 + nlm + nl log l) time, using O(nlm)
space.

Proof. Follows from the algorithm description. 2

Some of the advantages of this algorithm are that it avoids using duality
transforms and (line segment) arrangement computation for generating the op-
timization problems, which may lead to more robust implementations, and it can
be easily adapted to generate only a subset of the optimization problems (e.g.,
only a subset of vertices of R may be considered; that subset can be speci�ed
by the user or it can be selected based on some vertex weighting criteria).

Both algorithms above have the following two features besides simplicity.
First, they allow for easy, scalable, parallel computation of the optimization
problems (e.g., they can be adapted for a coarse-grain parallel model of compu-
tation as in [8]). Second, as we will show bellow for the second algorithm, they
can be easily modi�ed to produce incrementally better approximations of the
optimal solution.

Let W (v; e) be one of the double wedges at v, where e is the line segment
on the boundary of T de�ned by the double wedge (see Figure 2). Let � be an
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Fig. 2. The wedges at v and W (v; e).

input parameter of the problem and let � be the maximum length of any of
the segments on T de�ned by double wedges at the vertices of R. Let jej be
the Euclidean length of e. We propose two strategies for re�ning the quality of
an optimal solution. The �rst one is a basic subdivision method for e: compute
jej
�

� �

�
evenly spaced points on e and the corresponding double wedges. Let

Æ = �

�
. Thus, we obtain O(Æ) double wedges and need to compute O(Æ) values

of the penetration at evenly spaced points (on the line segment e). Note that
for the 1-D optimization problem associated with e we use the slope of a line
through v as a parameter, and thus the corresponding feasible points are not
evenly spaced, in general. The second strategy we propose is a discretization of
the continuum of orientations at v that fall in the range of W (v; e), resulting in
Æ = O(1

�
) evenly spaced directions at v, de�ning O(Æ) double wedges. As before,

this requires computing O(Æ) values of the penetration at evenly spaced points
(on the feasible domain).

Lemma 3. Using the edge or angle subdivision methods, an approximate solu-

tion can be computed in O(nl(m + Æ) log2m+ nl log l + n2) time.

Proof. The last two terms in the time expression follow from steps 2 and 3 of
the algorithm above. A double wedge computed by the algorithm is partitioned
into O(Æ) double wedges, each corresponding to the same objective function.
Observe that an objective function is the product of two terms and the time
to compute its value at a given point is dominated by the computation of the
second one (see expression (2) in the previous section). That term is a sum of
O(m) 1-D linear fractional functions and can be expressed as the quotient of two
polynomials of degree at mostm. Thus, it can be evaluated at Æ points in a total
of O((m+ Æ) log2m) time, using divide and conquer and Fast Fourier Transform
(FFT). 2

231Computing Optimal Trajectories for Medical Treatment Planning and Optimization



R i W(v,e)

T

e

Qi

d 1
i

v d 2
i

Fig. 3. A quadrilateral Qi at v and its sides d1i and d2i .

4 Making Good Choices

In this section we introduce a heuristic to help eliminate some of the optimiza-
tion problems or reduce the number of approximate values computed by the
approximation algorithms described earlier. The heuristic is used to guide the
computation for approaching the optimal solution and can be easily incorpo-
rated into a recursive scheme for improving the quality of the approximation.
More details are given bellow.

Before describing the method, we bound the quality of the approximation
over a double wedge. Consider an optimization problem associated with some
double wedge W (v; e). Without loss of generality, let RL = fR1; R2; : : : ; Rjg be
the set of regions of R intersected by any ray L 2 W (v; e). For a quadrilateral
Qi = W (v; e) \Ri, where Ri 2 fR1; R2; : : : ; Rjg, let d1i and d2i be the two sides
of Qi that are on on the supporting lines of W (v; e) (see Figure 3). Let dmin

i be
the minimum length of any line segment s with endpoints on the other two sides
of Qi such that the supporting line of s goes through v. Similarly, let dmax

i be
the maximum length. Then, we have the following Lemma.

Lemma 4.
Pj

i=1 wid
min
i � Lopt �

Pj

i=1wid
max
i , where Lopt is the value of an

optimal penetration in double wedge W (v; e).

Let Lmin
v =

Pj

i=1 wid
min
i and Lmax

v =
Pj

i=1wid
max
i . We refer to Lmin

v and
Lmax
v as the lower bound and upper bound at v, respectively. The heuristic we

propose maintains the minimumLmin of the upper bounds over all optimization
problems generated so far. A new optimization problem at some vertex v is
accepted if Lmin

v � Lmin and rejected otherwise.

Lemma 5. The heuristic above rejects only optimization problems that cannot

lead to the overall optimal solution.
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We say that an optimization problem is active if its lower bound is no larger
than Lmin. Optimization problems that have been accepted are maintained in
a priority queue based on the value of the lower bound. Note that some of the
accepted problems that are in the queue may become inactive as the computation
progresses. Such problems can be eliminated from the queue by inspecting it each
time the number of queued problems exceeds some prede�ned bound. Finally, the
algorithm terminates when an optimization problem for someW (v; e) is selected
from the queue, such that Lmin � Lminv is smaller than some user speci�ed
approximation error.

Currently, we are in the process of implementing our approximation algo-
rithms and heuristic. Simulation results will be presented in the full paper.
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