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Abstract. We investigate eigensolvers for the generalized eigenvalue
problem Ax = λMx with symmetric A and symmetric positive defi-
nite M that do not require matrix factorizations. We compare various
variants of Rayleigh quotient minimization and the Jacobi-Davidson al-
gorithm by means large-scale finite element problems originating from
the design of resonant cavities of particle accelerators.

1 Introduction

In this paper we consider the problem of computing a few of the smallest eigen-
values and corresponding eigenvectors of the generalized eigenvalue problem

Ax = λMx (1)

without factorization of neither A nor M . Here, the real n-by-n matrices A and
M are symmetric and symmetric positive definite, respectively.

It if is feasible the Lanczos algorithm combined with a spectral transfor-
mation [1] is the method of choice for solving (1). The spectral transformation
requires the solution of a linear system (A − σM)x = y, σ ∈ R, which may be
solved by a direct or an iterative system solver. The factorization of A − σM
may be impossible due to memory constraints. The system of equations can be
solved iteratively. However, the solution must be computed very accurately, in
order that the Lanczos three-term recurrence remains correct.

In earlier studies [2, 3] we found that for large eigenvalue problems the Jacobi-
Davidson algorithm [4] was superior to the Lanczos algorithm or the restarted
Lanczos algorithm as implemented in ARPACK [5]. While the Jacobi-Davidson
algorithm retains the high rate of convergence it only poses small accuracy re-
quirements on the solution of the so-called correction equation, at least in the
initial steps of iterations.

In this paper we continue our investigations on eigensolvers and their pre-
conditioning. We include block Rayleigh quotient minimization algorithms [6]
and the locally optimal block preconditioned conjugate gradient (LOBPCG) al-
gorithm by Knyazev [7] in our comparison.

We conduct our experiments on an eigenvalue problem originating in the
design of the new RF cavity of the 590 MeV ring cyclotron installed at the Paul
Scherrer Institute (PSI) in Villigen, Switzerland.
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2 The application: the cavity eigenvalue problem

After separation of time/space variables and after elimination of the magnetic
field intensity the Maxwell equations become the eigenvalue problem

curl curl e(x) = λe(x), div e = 0, x ∈ Ω, n× e = 0, x ∈ ∂Ω. (2)

where e is the electric field intensity. We assume that Ω, the cavity, is a simply
connected, bounded domain in R

3 with a polyhedral boundary ∂Ω. Its inside
is all in vacuum and its metallic surfaces are perfectly conducting. Following
Kikuchi [8] we discretize (2) as

Find (λh, eh, ph) ∈ R ×Nh × Lh such that eh &= 0 and

(a) (curl eh, curl Ψh) + (grad ph,Ψh) = λh(eh,Ψh), ∀Ψh ∈ Nh

(b) (eh,grad qh) = 0, ∀qh ∈ Lh
(3)

where Nh ⊂ H0(curl;Ω) = {v ∈ L2(Ω)3 | curl v ∈ L2(Ω)3,v × n = 0 on ∂Ω}
and Lh ⊂ H1

0 (Ω). The domain Ω is triangulated by tetrahedrons. In order to
avoid spurious modes we choose the subspaces Nh and Lh, respectively, to be the

Nédélec (or edge) elements N
(k)
h of degree k [9–11] and the well-known Lagrange

(or node-based) finite elements consisting of piecewise polynomials of degree ≤k.
In this paper we exclusively deal with k = 2. In order to employ a multilevel
preconditioner we use hierarchical bases and write [11]

N
(2)
h = N

(1)
h ⊕ N̄

(2)
h , L

(2)
h = L

(1)
h ⊕ L̄

(2)
h . (4)

Let {Φi}ni=1 be a basis of N
(2)
h and {ϕl}ml=1 be a basis of L

(2)
h . Then (3) defines

(a) (b)

Fig. 1. Example of matrices A (a) and M (b) for quadratic edge elements.
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the matrix eigenvalue problem[
A C
CT O

](
x
y

)
= λ

[
M O
O O

](
x
y

)
, (5)

respectively, where A and M are n-by-n and C is n-by-m with elements

ai,j = (curl Φi, curl Φj), mi,j = (Φi,Φj), ci,l = (Φi,grad ϕl).

The non-zero structures of A and M are depicted in Fig. 1. The block of zero

columns / columns in A corresponds to those curl-free basis functions of N̄
(2)
h

that are the gradient of some ϕ ∈ L̄
(2)
h . The non-zero block in the upper-left

corner of A corresponding to the basis functions of N
(1)
h is rank-deficient. The

deficiency equals dimL
(1)
h . The reason for approximating the electric field e by

Nédélec elements and the Lagrange multipliers by Lagrange finite elements is
that [9, §5.3]

grad L
(k)
h =

{
vh ∈ N

(k)
h | curl vh = 0

}
. (6)

By (3)(b), eh is in the orthogonal complement of grad L
(k)
h . On this subspace

A in (5) is positive definite. Notice that eh is divergence-free only in a discrete
sense. Because of (6) we can write grad ϕl =

∑n
j=1 ηjlΦj , whence

(Φi,grad ϕl) =
n∑

j=1

(Φi,Φj)ηjk or C = MY, (7)

where Y = ((ηjk)) ∈ Rn×m . In a similar way one obtains

H := CTY = Y TMY, hkl = (grad ϕk,grad ϕl). (8)

H is the system matrix that is obtained when solving the Poisson equation with

the Lagrange finite elements L
(k)
h . Notice that Y is very sparse. We have already

mentioned that the gradient of a basis function ϕk ∈ L̄
(2)
h is an element of the

first set of basis functions of N̄
(2)
h . So, m1 rows of Y have a single entry 1. The

gradient of the piecewise linear basis function corresponding to vertex k, say, is

a linear combination (with coefficients ±1) of the basis functions of N
(1)
h whose

corresponding edge has vertex k as one of its endpoints.
Equation (7) means that CTx = 0 is equivalent to requiring x to be M -

orthogonal to the eigenspace N (A) = R(Y ) corresponding to the eigenvalue 0.
Thus, the solutions of (5) are precisely the eigenpairs of

Ax = λMx (9)

corresponding to the positive eigenvalues. We could therefore compute the de-
sired eigenpairs (λj ,xj) of (5) by means of (9) alone. The computed eigenvectors
corresponding to positive eigenvalues would automatically satisfy the constraint
CTxj = 0. This is actually done if the linear systems of the form (A−σM)x = y
that appear in the eigensolver can be solved by direct methods. Numerical exper-
iments showed however that the high-dimensional zero eigenspace has a negative
effect on the convergence rates if preconditioned iterative solvers have to be used.
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3 Positive definite formulations of the eigenvalue problem

In this section we present two alternative formulations for the matrix eigenvalue
problem (5) that should make its solution easier. The goal is to have generalized
eigenvalue problems with both matrices positive definite.

3.1 The nullspace method

We can achieve this goal in a straightforward way by performing the computa-
tions in the space that is spanned by the eigenvectors corresponding to the pos-
itive eigenvalues. This space is R(Y )⊥M = R(C)⊥ = N (CT ), i.e. the nullspace
of CT whence its name. Formally, we solve

A|N (CT )x = λM |N (CT )x. (10)

In the iterative solvers, we apply the M -orthogonal projector PN (CT ) = I −
Y H−1CT onto N (CT ) whenever a vector is not in this space, i.e. for generat-
ing starting vectors and after solving with the preconditioner. The eigenvalue
problem (10) has dimension n − m. However, the vector x ∈ N (CT ) has n
components.

3.2 The approach of Arbenz-Drmač [12]

Let P be a permutation matrix and

Ŷ = PY =

[
Ŷ1

Ŷ2

]
, Ŷ2 ∈ Rm×m nonsingular. (11)

Let

Â = PTAP =

[
Â11 Â12

Â21 Â22

]
, M̂ = P TMP =

[
M̂11 M̂12

M̂21 M̂22

]
, Ĉ = PTC =

[
Ĉ1

Ĉ2

]
.

Then the n−m eigenvalues of the eigenvalue problem

Â11x̂ = λ(M̂11 − Ĉ1H
−1ĈT

1 )x̂ (12)

are precisely the n−m positive eigenvalues of (5). The matrix on the right-hand
side of (12) must not be formed explicitely as it is full.

3.3 Discussion

These approaches have in common that they require the solution of a system
of equations involving the matrix H . In the present application this is the dis-

cretized Laplace operator in W
(2)
h . The order of H is about the same as the

dimension of the ‘coarse’ space V
(1)
h . Therefore, we solve systems with H by a

direct method. The method of Arbenz-Drmač has the advantage that the order
of the eigenvalue problem is smaller by at least 1/8. Thus, less memory space is
required.
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4 Solving the matrix eigenvalue problem

Factorization-free methods are the most promising for effectively solving very
large eigenvalue problems

Ax = λMx. (13)

The factorization of A or M or a linear combination of them which is needed if
a spectral transformation like shift-and-invert is applied requires way too much
memory. If the shift-and-invert spectral transformation in a Lanczos type method
is solved iteratively then high accuracy is required to establish the three-term
recurrence. This is very time consuming even if the conjugate gradient method
is applied with a good preconditioner. In most of our experiments the Jacobi-
Davidson algorithm was much more effective than the implicitly restarted Lanc-
zos algorithm as implemented in ARPACK [5] for solving the cavity and other
eigenvalue problems [2, 3].

In this study we investigate three factorization-free algorithms for solving (13)

– The symmetric Jacobi-Davidson algorithm (JDSYM)
The Jacobi-Davidson algorithm has found considerable attention in recent years.
It has been introduced by Sleijpen and van der Vorst [4]. There are variants
for all types of eigenvalue problems [13]. Here, we use a modification of the
algorithm JDQZ adapted to the generalized symmetric eigenvalue problem (13)
as described in [2, 14].
In every step of JD, the search space is expanded by the solution of the so-called
correction equation. This solution is closely related to the Newton correction
of grad ρ(x) = 0 where ρ(x) = xTAx/xTMx is the Rayleigh quotient. The
correction equation need not be solved to high accuracy. A few steps of MINRES
is adequate except close to convergence (of the eigensolver) where high accuracy
is required to get a decent convergence rate. By introducing a restart procedure
the memory requirements can be bounded. Typically, besides the storage for the
matrices A and M and the preconditioner, (p + 3jmax)n memory locations are
needed where jmax is the maximal dimension of the search space.
– Block Rayleigh Quotient minimization (BRQMIN)
BRQMIN is a proper subspace method. In the k-th iteration step the actual
approximations of the eigenvectors corresponding to the p smallest eigenvalues
of (13) are stored in Xk. Xk+1 is obtained through the Rayleigh-Ritz procedure

in the 2p dimensional space spanned by the columns x
(k)
j of Xk and Pk, the

so-called search directions. The latter are obtained as Pk = K−1Gk + Pk−1Bk.
Bk is determined such that PT

k−1APk = O, K is a preconditioner, and Gkej =

grad ρ(x
(k)
j ). This is a cg-type algorithms for minimizing the Rayleigh quotient

as proposed (but not implemented) 20 years ago by Longsine and McCormick [6]
– The locally optimal block PCG method (LOBPCG)
The locally optimal block preconditioned conjugate gradient algorithm has been
introduced by Knyazev [7] as an improvement over BRQMIN. Local optimal-
ity is obtained by executing the Rayleigh-Ritz procedure in the 3p dimensional
subspace R(Xk,K

−1Gk, Pk−1) ⊃ R(Xk, Pk). For large eigenvalue problems, the
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overhead introduced by the larger subproblem is negligible. The memory require-
ment is 10pn floating point numbers which is bearable as long as p is small.

5 The preconditioners

In the eigensolvers that we have discussed in the previous section a precondi-
tioner, say K, is required to get a good convergence behavior. K should be a
good approximation of A or A − θM for some fixed or variable θ. For ease of
presentation we set θ = 0.

Let A in (5) be partitioned according to (4),

A =

[
A11 A12

A21 A22

]
, Aij ∈ Rni×nj , (14)

where the (1, 1)-blocks correspond to the bilinear forms involving basis functions

in N
(1)
h . Proceeding as Bank [15] we approximate the inverse of A in (14) by

K−1 =

[
A−1

11 O

O Ã−1
22

]
, (15)

where Ã−1
22 corresponds to a few (usually one) step of a stationary iteration

method. K has similar properties as A. In particular,KY = O. This is important
as it allows us to get a preconditioner K̂11 for Â11 in (12) by choosing the (1,1)-
block of PTKP , where P is the permutation in (11).

In the nullspace method the inverse of the preconditioner has the form

K−1 = (I − Y H−1CT )(A1 − θM1)
−1 (16)

where K is given in (15).

6 Numerical experiments

6.1 MATLAB experiments with a rectangular cavity

We first report on experiments that were executed in the Matlab 6 (R12)
environment on a Intel Pentium III (500 MHz, 512kB Cache, 512 MB RAM)
running the Linux 2.2 operating system.

The test problem, a rectangular cavity, had the size n = dim(N
(2)
h ) = 6292.

The number of constraints was m = dim(L
(2)
h ) = 1155. We used both the

nullspace method and the Arbenz-Drmač approach. In the latter the problem
size was n−m = 5137. The timings for computing p = 8 and p = 16 eigenpairs
are listed in Table 1. The four columns give the execution times for the nullspace
and Arbenz-Drmač (AD) approaches with the two-level preconditioner discussed

in section 5 where Ã−1
22 in (15) was chosen to be one step of the Jacobi or sym-

metric Gauss-Seidel iteration (which is SSOR with relaxation parameter ω=1).
Approximate eigenvectors x are considered converged if ‖Ax−ρ(x)Mx‖ ≤ 10−8.
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nullspace Arbenz-Drmač
solver Jacobi SSOR(1) Jacobi SSOR(1)

p = 8

LOBPCG 78.3 49.6 63.4 37.3
JDSYM (MINRES) 373.8 287.4 193.0 129.0
BRQMIN 78.5 51.7 63.4 40.0

p = 16

LOBPCG 184.9 115.1 170.9 83.8
JDSYM (MINRES) 859.0 612.6 440.0 308.3
BRQMIN 172.2 119.3 144.2 100.2

Table 1. Matlab timings for computing 8 and 16, respectively, eigenvalues of a prob-
lem of size n = 6292 with m = 1155.

The AD approach proved to be faster than the nullspace approach. LOBPCG
is slightly faster than block Rayleigh quotient minimization in most cases. LOB-
PCG needs fewer iteration steps than BRQMIN until convergence, however a
single step is more expensive as the dimension of the trial space has 1.5 times
the dimension. Jacobi-Davidson does not perform so well. It is about three times
slower than the other two solvers. JDSYM performs slightly better for p =
16. This conforms with the observation that it takes JDSYM a large number
of iterations steps until it finds the first eigenpair. In these computations the
dimension of trial spaces in JDSYM varied between p and 2.5p. The correction
equation was solved very inaccurately initially. Close to convergence the accuracy
requirements are increased to obtain the high convergence rate [2]. The subspace
dimension in LOBPCG and BRQMIN were p. There were no significant gains or
losses if the subspace dimensions were chosen slightly bigger than p. It is however
crucial for the performance that converged eigenvectors are locked.

6.2 The small model of the copper cavity

The next experiment concerned a coarse model of the future design of the copper
cavity. Here, we computed p = 10 eigenpairs of a problem of size n = 45′040
with m = 7824 constraints. We used our C programs that make extensive use
of the BLAS. The compute platform was a Sun Enterprise E3500 with 336 MHz
UltraSPARC-II processors and 3 GB of main memory which was running the
Solaris 2.6 operating system. We only used the nullspace method. The purpose
of this experiment is to compare the two 2-level preconditioners used above with
diagonal and no preconditioning. Timings are given in Table 2

For the three solvers teig gives the time spent for computing the 10 eigen-
pairs to the desired accuracy of ‖Ax − ρ(x)Mx‖ ≤ 10−8. teig does not include
preparatory work like grid handling, matrix assembly etc. t11 gives the time that
is spent for system solving by direct solvers. This concerns the (1, 1) block of the
preconditioner (16) and the matrix H that appears in the projector in (16) in the
nullspace method or in the matrix M in the AD approach, cf. (12). Notice that
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Jacobi-Davidson

preconditioner itint itout teig t11
none 55 89 3680
diagonal 19 86 1289
hierarchical/Jacobi 8 82 900 237
hierarchical/SSOR(1) 4 76 593 137

LOBPCG

preconditioner teig t11
none 6135
diagonal 1707
hierarchical/Jacobi 644 163
hierarchical/SSOR(1) 413 95

BRQMIN

preconditioner teig t11
none 5862
diagonal 1667
hierarchical/Jacobi 502 129
hierarchical/SSOR(1) 384 89

Table 2. Timings for computing 10 eigenvalues of the problem of size n = 45′040 with
m = 1155 constraints. Times are in seconds.

the critical operation is not the factorization of these matrices but the forward
and backward substitution in each iteration step. For JDSYM we also give the
quantities itint and itout. The latter is the number of correction equations that
had to be solved. The number itint provides the average number of inner itera-
tions, i.e., the steps until MINRES solver the correction equation to the desired
accuracy. This number is quite low as the accuracy requirements is initially very
loose and becomes more stringent as the outer iteration converges [2]. In this
example we let the subspace dimensions in JDSYM vary between p and 2p.

The Jacobi-Davidson performs best with the simple preconditioners while
the simpler eigensolvers profit most from the more sophisticated precondition-
ers. With the two-level preconditioners the execution times of BRQMIN and
LOBPCG are shorter than those of JDSYM by a factor of about 1.5.

With all three eigensolvers higher sophistication in the preconditioner de-
creases not only the iteration counts but also the execution times. This is in
contrast to the experiments that we conducted with node elements in the box
shaped cavity [16].

Numbers not given here show that with the hierarchical basis preconditioner
itint does not increase with the problem size as the analysis predicts. In fact,
here it even decreased substantially.

Notice that t11 takes a considerable fraction of the solution of the eigenvalue
problem. It is clear, that the present two-level preconditioner will not suffice for
very problem sizes. A multi-level method will have to replace the direct solver
that is used for solving systems involving the matrices A11 and H .
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6.3 The big model of the copper cavity

Finally we discuss is a bigger model of the copper cavity with n = 119′758
and m = 23′400. We computed 10 eigenpairs with the nullspace method as
well as with the Arbenz-Drmač approach. The convergence criterion was ‖Ax−

method, preconditioner JDSYM LOBPCG BRQMIN

null space, 2-level/SSOR(1) 1803 849 1124
AD, 2-level/SSOR(1) 1024 668 990

Table 3. Timings for computing 10 eigenvalues of the problem of size n = 119′758
with m = 23′400 constraints. Times are in seconds.

ρ(x)Mx‖ ≤ 10−4. The best preconditioner of the previous examples was chosen.
Timings are given in Table 3.

LOBPCG turns out to be the fastest solver. In this example it is clearly supe-
rior to BRQMIN. The AD approach is much faster that the nullspace method. In
the AD approach, JDSYM needs to solve (approximately) itout = 80 correction
equations with altogether itinner = 326 iteration steps to extract the ten eigen-
pairs. This means that in the average four iteration steps are used per system
of equations. LOBPCG in turn executes 33 block iteration steps which requires
251 calls of the preconditioner. This ratio explains to a large extent the ratio of
the execution times. Notice that there are less than 33p = 330 invocations of the
preconditioner as converged eigenvectors are locked, i.e. kept fixed.

The main portions of the execution time of 1024 seconds of JDSYM are
matrix-vector products (152” or 15%), applying the preconditioner (294” or
29%) and applying the projector (465” or 45%). The bulk of the latter is solving
system involving H . The corresponding numbers for LOBPCG are 88” (13%)
for matrix-vector products, 134” (20%) for the projector and 326” (49%) for

matrix-vector product with M̂11 − Ĉ1H
−1ĈT

1 .

7 Conclusions

Jacobi-Davidson is in general a very powerful method that can be applied to
every kind of eigenvalue problems. For the special class of symmetric matrices it
can be outperformed by Rayleigh quotient minimization-type algorithms. Good
preconditioners are needed to get fast eigensolvers. In the cavity eigenvalue prob-
lems diagonal preconditioning was not satisfactory. Hierarchical preconditioning
makes iteration numbers insensitive to problem size. But our two-level approach
turns out to be ineffective with large problem sizes as the ‘coarse’ systems are
getting too big. We intend to replace the direct solvers by a conjugate gradient
method with a algebraic multilevel preconditioner.
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