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Abstract. A numerical method for the direct simulation of the axisym-
metric Vlasov equation is introduced. It is based on a modified formu-
lation of the Vlasov equation using the invariance of the canonical an-
gular momentum. This leads in particular to a straightforward and very
efficient parallel algorithm. Then it is applied to simulations of a RMS-
matched semi-Gaussian beam and a perturbed thermal equilibrium.

1 Introduction

Eulerian direct Vlasov simulation of space charge dominated beams has proven to
be an efficient alternative to PIC methods as it is completely devoid of numerical
noise. It enables in particular to get a better insight into phenomena happening
at the edge of the beam where the distribution function is very small. These
regions are generally described by too few particles in PIC simulations.

We shall describe a three-dimensional r, vr, vθ axisymmetric transverse solver
involving fewer dimensions than a comparable cartesian solver, which would be
four dimensional in phase space, enabling us to use a larger number of grid
points.

The method is based on the use of the canonical angular momentum which is
invariant, and thus only appears as a parameter in the equations. Thanks to the
use of this invariant, a straightforward very efficient parallelization is achieved.

The code is then validated on two test-cases involving heavy ions, the evolu-
tion of a transverse space-charge wave in a RMS-matched semi-Gaussian beam
and the formation of a halo in a beam where a perturbation from a Maxwell-
Boltzmann thermal equilibrium is introduced.

The outline of the paper is as follows : We shall first recall the axisymmetric
Vlasov equation and its properties. Then, we present the discretization of the
axisymmetric Vlasov equation. And finally we present numerical results for the
cases of a semi-Gaussian beam and a perturbed thermal equilibrium.
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2 The axisymmetric Vlasov equation

We consider an axisymmetric beam uniform in the longitudinal direction. It
can be represented by the axisymmetric Vlasov equation, which describes the
evolution of a species of charged particles under applied and self-consistent fields,
and reads
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(1)
where the distribution function f is a function of radial position r, velocity
(vr, vθ) and time t. We assume here that the applied magnetic field is longitu-
dinal and uniform, i.e. B = (0, 0, Bz), where Bz(t) only depends on time. The
associated vector potential then has only a non vanishing Aθ component the
value of which is Aθ = r

2Bz . The self-consistent electric field Es(t, r), deriving
from a scalar potential φs is given by the axisymmetric Poisson equation which
reads
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The characteristic curves of the axisymmetric Vlasov equation are the solu-
tions of the following differential system
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Classical invariants of the axisymmetric Vlasov equation (1) are the Hamil-
tonian
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and the canonical angular momentum
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Let us make use of this last invariant, as suggested in [3], to simplify equation
(1). Denoting by I = P

m and making the change of variable (r, vr, vθ) → (r, vr , I)
with
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This new formulation of the axisymmetric Vlasov equation is particularly well
adapted to parallelization as the variable I only plays the role of a parameter.
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3 Discretization of the axisymmetric Vlasov equation

We use a grid in phase space (r, vr, I). Yet it is necessary to take particular care
of the I direction. Indeed, when the self consistent electric field is linear, as for
the K-V distribution function, the characteristic curves associated to Eq. (6),
along which the distribution function is constant, are of the form

ω2

2
r2 + v2

r +
I2

r2
= const.

Hence it is necessary to control the ratio I/r, therefore we discretize the I di-
rection so that

I = ±ω r2.
We then use the conservation of the distribution function along the charac-
teristics to devise the numerical algorithm which will be based on the semi-
Lagrangian methodology [5]. The new values are computed at the grid points in
two steps: (i) compute the origin of the characteristic ending at the grid point
one time step back, (ii) interpolate the value of the distribution function there,
which is also the new value at the grid point, from the old values at the sur-
rounding grid points. This method is not subject to a Courant condition on the
time step which would be very restrictive near the axis r = 0.

In the axisymmetric Vlasov equation the I2/r3 factor acts like a repulsion
potential with respect to the total electric field. This potential is largest near the
axis, where the electric field is negligible. As usual for axisymmetric problems,
the major difficulty in the discretization of the Vlasov equation in cylindrical
coordinates lies in the handling of the equation near the axis r = 0. The most
natural method would consist in separating the free transport part which can be
solved explicitly from the self-consistent part. However, numerical errors would
be generated near the axis and propagate inside the domain, and our goal here is
to devise a very precise numerical method for which this is unacceptable. So, we
shall go with a classical operator splitting method, and split between advection
in r and advection in vr.

On the time interval [tn, tn+1] we proceed as follows: the distribution function
at time tn is given by fn(r, vr, I), we first compute f∗ such that


∂f∗
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+ vr
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(7)

We then compute the self-consistent electric field Es from the intermediate ap-
proximation f ∗(∆t, r, vr, I). Then f∗∗ such that,
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(8)

307Direct Axisymmetric Vlasov Simulations of Space Charge Dominated Beams



Finally, fn+1(r, vr, I) = f∗∗(∆t, r, vr, I).
The discretization of equation (7) requires to apply artificial boundary con-

ditions. Actually, for this equation, at r = 0 and for vr > 0, the particle flux
is incoming, whereas particles with velocity vr < 0 leave the computational do-
main. Thus, we need to model how the particles cross the axis r = 0. This can
be done by imposing specular reflection conditions:

f(0, vr, I) = f(0,−vr, I), ∀ vr > 0.

The numerical resolution of transport equations (7) and (8) is then performed
using a semi-Lagrangian method with a cubic Hermite interpolation, using the
values of the function and its derivative at the end points of the interval. Let us
describe it in details for equation (7). On an interval [ri, ri+1], we approximate
the derivative of the distribution function at each grid point by a fourth order
finite difference scheme:
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The polynomial reconstruction is then given on each interval [ri, ri+1] by the
cubic polynomial interpolating the distribution function and its derivatives on
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fn(r) = fni + (r − ri) ∂rf
n
i + (r − ri)

2
[
3[fni+1 − fni ]−∆r [2∂xf

n
i + ∂xf

n
i+1]

]
+ (r − ri)

3
[
∆x [∂rf

n
i+1 + ∂xf

n
i ]− 2 [fni+1 − fni ]

]
.

This formula allows to evaluate the distribution function anywhere on the grid.
It only remains to use the characteristic curves which can be solved explicitly on
each split step to compute the distribution function at the grid points at time
tn+1.

4 Numerical results

4.1 Semi-Gaussian beam

We want to study here the evolution of an axisymmetric semi-Gaussian beam.
Therefore we solve the Vlasov-Poisson in cylindrical coordinates, with an ap-
plied uniform and constant longitudinal magnetic field Bz . Then the distribu-
tion satisfies the Vlasov equation 6. The initial distribution function describing
a semi-Gaussian beam in is given by

f0(x, y, vx, vy) =
n0

(2π v2
th) (π a2)

exp

(
− (vx − q Bz

2m y)2 + (vy + q Bz
2m x)2

2 v2
th

)
,

for x2 + y2 ≤ a2 and f0(x, y, vx, vy) = 0, if x2 + y2 > a2. The magnetic field
Bz and the thermal velocity vth are computed from RMS quantities, so that the
beam is equivalent to a matched K-V beam.
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The beam particles are singly ionized potassium (Z = 1, m = 39.1 amu).
The density n0 is computed from the current I=0.2 A and the beam velocity
along the z-axis

vz = c

√
γ2 − 1

γ2
, γ = 1 +

q

m c2
K,

where K is the beam kinetic energy K = 8. 104 eV. Finally the beam radius is
a=0.02 m and the tune depression is ω/ω0 = 1/4.

We observe a space charge wave starting from the edge of the beam, prop-
agating inwards and finally being reflected on the axis r = 0. The initial self-
consistent field is linear within the beam. The variations are relatively weak
but sufficient to strongly perturb the density (Fig. 1). Solving the axisymmet-
ric equation allows us to eliminate one direction and thus to use a finer mesh
than in the cartesian case and describe the distribution function more precisely.
Moreover our new formulation of the Vlasov equation conserves the invariant
I = r vθ + q Bz

2m r2.

This method gives very satisfying results for the present test case. The results
are comparable to those obtained with a cartesian code, as presented in [6], for
the same resolution and the code is much faster. Moreover it is possible to go to
much finer resolutions and then diminish the numerical damping.

Number of processors 2D Cartesian solver PFC Axisymmetric Solver

4 processors 178 min 59 min

8 processors 89 min 27 min

Table 1. Computational time for a 2D× 2D cartesian and axisymmetric solvers.

4.2 Perturbed thermal beam

We start now from a dimensionless Maxwell-Boltzmann distribution (q = m = 1)

f0(r, vr , vθ) =
α

2π
exp (−H) , (9)

where H is the dimensionless Hamiltonian obtained from (4), coupled with the
Poisson equation

−1

r

∂

∂r

(
r
∂φs
∂r

)
= α exp(−φs − r2

4
). (10)

When α is different from zero or one, there are no analytical solutions of Pois-
son’s equation (10). Therefore, we approximate the potential φs using a finite
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Fig. 1. Semi-Gaussian beam. Snapshots of slices of: (1) density N(t, r), (2) first mo-

ment in vr, (3) first moment in vθ, (4) total force field Es(t, r)−
ÿ
q Bz
2m

þ2
r inside the

beam at times z=0, 0.32, 0.48, 0.64, 0.96 m.
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difference method : let (ri)i≥0 be a mesh of ]0, rmax]

φ0 = 0,

φ1 = α∆r2/4,

φi =
ri−1

ri−1/2

(
2φi−1 − φi−2

(
ri−3/2

ri−1
− α∆r2 exp(−φi−1 − r2i−1/4)

))
.

The parameter α is then determined by the tune-depression. Thus, we obtain a
steady-state solution of the self-consistent Vlasov-Poisson system. The density
is then increased by 50%. The beam parameters are the following : particles are
singly ionized potassium (Z = 1, m = 39.1 amu), current is I = 0.2 A, energy K
= 8. 104 eV and radius rmax = 0.01 m. We first display snapshots of the RMS
quantities

rrms = (r2)
1
2 , vrrms = (v2

r )
1
2 , vθrms = (v2

θ)
1
2 ,

and the RMS emittance εx, given by

εx = (x2v2
x − x vx

2)
1
2 .

As, x = r cos θ
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∫
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)
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θ).

Finally, x vx = r vr(cos θ)2 − r vθ(sin θ)
2,

x vx =

∫
R4

x vx f(t, x, y, vx, vy)dx dy dvx dvy

= π r vr.

which allows us to compute the emittance in cylindrical coordinates.

εx = π

√
r2 (v2

r + v2
θ)− r vr

2.
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Fig. 4 displays the evolution of the beam density, through slice plots on a log-
arithmic scale. It appears that, for a tune depression ω/ω0 = 1/2, a plateau is
formed at a density of around one thousandth of the core density. The snapshots
are taken at times when the RMS value vrrms is at an extremum as it is there
where the halo can be best observed [4]. Our beam has a radius of 0.01 m and
the dimension of the plateau is approximatively of 0.025 m, which corresponds
to the maximal radius predicted by the empirical formula given in T.P. Wangler
et al. [7] which is 0.0241 m.
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Fig. 2. (1) rrms for an axisymmetric Maxwell-Boltzmann
beam.

, (2) vrrms , (3) vθrms (4) εx

5 Conclusion

In this paper, we propose a new axisymmetric solver for the Vlasov equation. The
formulation using invariants allows us to do staighforward and efficient parallel
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Fig. 3. Axisymmetric Maxwell-Boltzmann beam. Snapshots of the isolines correspond-
ing to: (1) one two thousandth of the total density, (2) one five hundredth of the total
density.
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computations. The accuracy of the scheme is such that it is possible to observe
halo formations and to get a good description of the distribution function in
the phase space. These results are promising to treat more complex problems in
accelerator physics.
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