
Interactive Visualization of Particle Beams for
Accelerator Design

Brett Wilson1, Kwan-Liu Ma1, Ji Qiang2, and Robert Ryne2

1 Department of Computer Science, University of California,
One Shields Avenue, Davis, CA 95616
[wilson, ma]@cs.ucdavis.edu

2 Lawrence Berkeley National Laboratory,
One Cyclotron Road, Berkeley, CA 94720

[jQiang, RDRyne]@lbl.gov

Abstract. We describe a hybrid data-representation and rendering technique for
visualizing large-scale particle data generated from numerical modeling of beam
dynamics. The basis of the technique is mixing volume rendering and point ren-
dering according to particle density distribution, visibility, and the user’s instruc-
tion. A hierarchical representation of the data is created on a parallel computer,
allowing real-time partitioning into high-density areas for volume rendering, and
low-density areas for point rendering. This allows the beam to be interactively vi-
sualized while preserving the fine structure usually visible only with slow point-
based rendering techniques.

1 Introduction

Particle accelerators are playing an increasingly important role in basic and applied
sciences, such as high-energy physics, nuclear physics, materials science, biological
science, and fusion energy. The design of next-generation accelerators requires high-
resolution numerical modeling capabilities to reduce cost and technological risks, and to
improve accelerator efficiency, performance, and reliability. While the use of massively-
parallel supercomputers allows scientists to routinely perform simulations with hun-
dreds of millions of particles [2], the resulting data typically requires terabytes of stor-
age space, and overwhelms traditional data analysis and visualization tools.

The goal of beam dynamics simulations is to understand the beam’s evolution in-
side the accelerator and, through that understanding, to design systems that meet certain
performance requirements. These requirements may include, for example, minimizing
beam loss, minimizing emittance growth, avoiding resonance phenomena that could
lead to instabilities, etc. The most widely used method for modeling beam dynam-
ics in accelerators involves numerical simulation using particles. In three-dimensional
simulations each particle is represented by a six-vector in phase space, where each six-
vector consists of three coordinates (X,Y, Z) and three momenta (Px, Py , Pz). The
coordinates and momenta are updated as the particles are advanced through the compo-
nents of the accelerator, each of which provides electromagnetic forces that guide and
focus the particle beam. Furthermore, in high intensity accelerators, the beam’s own
self-fields are important. High intensity beams often exhibit a prounounced beam halo

P.M.A. Sloot et al. (Eds.): ICCS 2002, LNCS 2331, pp. 352−361, 2002.
 Springer-Verlag Berlin Heidelberg 2002



that is evidenced by a low density region of charge far from the beam core. The halo
is responsible for beam loss as stray particles strike the beam pipe, and may lead to
radioactiviation of the accelerator components.

2 Particle Visualization

In the past, researchers visualized simulated particle data by either viewing the parti-
cles directly, or by converting the particles to volumetric data representing particle den-
sity [4]. Each of these techniques has disadvantages. Direct particle renderings takes too
long for interactive exploration of large datasets. Benchmarks have shown that it takes
approximately 50 seconds to render 300 million points on a Silicon Graphics Infinite-
Reality engine, and PC workstations are unable to even hold this much data in their
main memory.

Volume rendering can provide interactive framerates, even for PC-based worksta-
tions with commercial graphics cards. In this type of rendering, the range covered by
the data is evenly divided into voxels, and each voxel value is assigned a density based
on the number of points that fall inside of it. This data is then converted into an 8-
bit paletted texture and rendered on the screen as a series of closely-spaced parallel
texture-mapped planes. Taken together, these planes give the illusion of volume. A fur-
ther advantage of volume-based rendering is that it allows realtime modification of a
transfer function that maps density to color and opacity, since only the palette for the
texture needs to be updated [5]. However, there are also limitations. In order to fit in
a workstation’s graphics memory, the resolution is typically limited to 256 3 (5123 for
large systems). This, as well as the low range of possible density values (256), can result
in artifacts, and can hide fine structures, especially in the low-density halo region of the
beam.

Ideally, a visualization tool would be able to interactively visualize the beam halo of
a large simulation at very high resolutions. It would also provide realtime modification
of the transfer function, and run on high-end PCs rather than a supercomputer. This tool
would be used to quickly browse the data, or to locate regions of interest for further
study. These regions could be rendered offline at even higher quality using a parallel
supercomputer.

To address these needs, our system uses a combined particle- and volume-based
rendering approach. The low-density beam halo is represented by directly rendering its
constituent particles. This preserves all fine structures of the data, especially the lowest-
density regions consisting of only one or two particles that would be invisible using
a volumetric approach. The high-density beam core is represented by a low-resolution
volumetric rendering. This area is of lesser importance, and is dense enough so that in-
dividual particles do not have a significant effect on the rendering. The volume-rendered
area provides context for the particle rendering, and, with the right parameters, is not
even perceived as a separate rendering style.

353Interactive Visualization of Particle Beams for Accelerator Design



3 Data Representation

To prepare for rendering, a multi-resolution, hierarchical representation is generated
from the original, unstructured, point data. The representation currently implemented
is an octree, which is generated on a distributed-memory parallel computer, such as the
PC cluster shown in Figure 1. This pre-processing step is performed once for each plot
type desired (since there are six values per point, many different plots can be gener-
ated from each dataset). This data is later loaded by a viewing program for interactive
visualization.

Host computer

Fig. 1. The data is distributed to a parallel computer, such as a PC cluster, each processor of
which is responsible for one octant of the data. After being read, the points are forwarded to the
appropriate processor, which creates the octree for that section of data. Viewing is performed on
one of the nodes with a graphics card.

The hierarchical data consists of two parts: the octree data, and the point data. At
each octree node, we store the density of points in the node, and the minimum density
of all sub-nodes. At the leaf octree nodes (the nodes at the finest level of subdivision),
we store the index into the point data of the node’s constituent points. The leaf nodes
should be small enough so that the boundary between point-rendered nodes and volume-
rendered nodes appears smooth on the screen. Simultaneously, the nodes need to be big
enough to contain enough points to accurately calculate point density.

Since the size of the point data is several times the available memory on the work-
station used for interaction, not all of the points can be loaded at once by the viewing
program. Having to load points from disk to display each frame would result in a loss
of interactivity. Instead, we take advantage of the fact that only low-density regions are
rendered using the point-based method. High-density regions, consisting of the majority
of points in the dataset, are only volume rendered, and the point data is never needed.
Therefore, the points belonging to lower-density nodes are stored separately from the
rest of the points in the volume. The preview program pre-loads these points from disk

354 B. Wilson et al.



when it loads the data. It can then generate images entirely from in-core data as long as
the display threshold for points does not exceed that chosen by the partitioning program.
For this reason, the partitioning program generates approximately as much pre-loaded
data as there is memory available on the viewing computer.

4 User Interaction

The preview program is used to view the partitioned data generated by the parallel
computer. As shown in Figure 2, it displays the rendering of the selected volume in the
main portion of the window, where it can be manipulated using the mouse. Controls
for selecting the transfer functions for the point-based rendering and the volume-based
rendering are located on the right panel.

Fig. 2. The user interface, showing the volume transfer function (black box in the top right of the
window) and the point transfer function (below it) with the phase plot (x, Px, z) of frame 170
loaded. This image consists of 2.7 million points and displays in about 1 second on a GeForce 3.

The volume transfer function maps point density to color and opacity for the volume-
rendered portion of the image. Typically, a step function is used to map low-density
regions to 0 (fully transparent) and higher density regions to some low constant so that
one can see inside the volume. The program also allows a ramp to transition between
the high and low values, so the boundary of the volume-rendered region is less visible.

The point transfer function maps density to number of points rendered for the point-
rendered portion of the image. Below a certain threshold density, the data is drawn

355Interactive Visualization of Particle Beams for Accelerator Design



rendered as points; above that threshold, no points are drawn. Intermediate values are
mapped to the fraction of points drawn. When the transfer function’s value is at 0.75
for some density, for example, it means that three out of every four points are drawn
for areas of that density. This allows the user to see fewer points if too many points are
obscuring important features, or to make rendering faster. It also allows a smooth tran-
sition between point-rendered portions of the image and non-point-rendered portions.
Point opacity is given as a separate control, a feature that can be useful when many
points are being drawn.

By default, the two transfer functions are inverses of each other. Changing one re-
sults in an equal and opposite change in the other. This way, there is always an even
transition between volume- and point-rendered regions of the image. In many cases,
this transition is not even visible. The user can unlink the functions, if desired, to pro-
vide more or less overlap between the regions.

5 Rendering

The octree data structure allows efficient extraction of the information necessary to
draw both the volumetric- and point-rendered portions of the image. Volumetric data
is extracted directly from the density values of all nodes at a given level of the octree.
Most graphics cards require textures to be multiples of powers of two, and the octree
contains all of these resolutions pre-computed up to the maximum resolution of the
octree, so extraction is very fast. These density values are converted into 8-bit color
indices and loaded into textures. One texture is created for each plane along each axis
of the volume [1]. So, a 643 texture would require 64 × 3 = 192 two-dimensional
textures at a resolution of 64× 64.

To draw the volume, a palette is loaded that is based on the transfer function the
user specified for the volumetric portion of the rendering. This palette maps each 8-bit
density value of the texture to a color and an opacity; regions too sparse to be displayed
for the given transfer functions are simply given zero opacity values. Then, a series
of planes is drawn, back-to-front, along the axis most perpendicular to the view plane,
each mapped with the corresponding texture. The accumulation of these planes gives the
impression of a volume rendering. While often the highest possible resolution supported
by the hardware is used for rendering, we found that relatively low resolutions can
be used in this application. This is because the core of the beam is typically diffuse,
rendered mostly transparent, and is obscured by points. All images in this paper were
produced using a volume resolution of 643.

In contrast to the volume rendering, in which only the palette is changed in response
to user input, point rendering requires that the appropriate points from the dataset be
selected each time a frame is rendered. Therefore, we want to quickly eliminate regions
that are too dense to require point rendering. When displaying a frame, we first calculate
the maximum density a node must have to be visible in the point rendering, based on
the transfer function given by the user. Since each octree node contains the minimum
density of any of its sub-nodes, only octree paths leading to renderable leaf nodes must
be traversed; octree nodes leading only to dense regions in the middle of the beam need
never be expanded.

356 B. Wilson et al.



Once the program decides that a leaf node must be rendered, it uses the point transfer
function to estimate the fraction of points to draw. Often, this value is one, but may be
less than one depending on the transfer function specified by the user. It then processes
the list of points, drawing every n-th one. The first point drawn is selected to be a
random index between 0 and n. This eliminates possible visual artifacts resulting in
the selection of a predictable subset of points from data that may have structure in the
order it was originally written to disk. Figure 3 illustrates the two regions of the volume
regarding to the image generation process.

Volume-rendered portion

Particle rendered portion

Original octree representing
particle density Result

Fig. 3. The image is created by classifying each octree node as belonging to a volume-rendered
region or a point-rendered region, depending on the transfer functions for each region (the regions
can overlap, as in this example). The combination of the two regions defines the output image.

6 Results

The system was tested using the results from a self-consistent simulation of charged
particle dynamics in an alternating-focused transport channel. The simulation, which
was based on an actual experiment, was done using 100 million particles. Each par-
ticle was given the same charge-to-mass ratio as a real particle. The particles moving
inside the channel were modeled, including the effects of external fields from mag-
netic quadrupoles and self-fields associated with the beam’s space charge. The three-
dimensional mean-field space-charge forces were calculated at each time step by solv-
ing the Poisson equation using the charge density from the particle distribution. The
initial particle distribution was generated by sampling a 6D waterbag distribution (i.e.

357Interactive Visualization of Particle Beams for Accelerator Design



a uniformly filled ellipsoid in 6D phase space). At the start of the simulation, the dis-
tribution was distorted to account for third-order nonlinear effects associated with the
transport system upstream of the starting point of the simulation. In the simulation, as
in the experiment, quadrupole settings at the start of the beamline were adjusted so as
to generate a mismatched beam with a prounounced halo. The output of the simulation
consisted of 360 frames of particle phase space data, where each frame contained phase
space information at one time step.

Several frames of this data were moved onto a PC cluster for partitioning, although
the data could have been partitioned on the large IBM SP that was used to generate
the data. We used eight PCs, each was a 1.33 GHz AMD Athlon with one GB of main
memory. A typical partitioning step took a few minutes, with most of the time being
spent on disk I/O. The resulting data was visualized on one of the cluster computers
equipped with an nVidia GeForce 3.

Figure 4 shows a comparison of a standard volumetric rendering, and a mixed point
and volumetric rendering of the same object. The mixed rendering is able to more
clearly resolve the horizontal stratifications in the right arm, and also reveals thin hori-
zontal stratifications in the left arm not visible in the volume rendering from this angle.

Figure 5 shows how the view program can be used to refine the rendering from a
low-quality, highly interactive view, to a higher-quality less interactive view.

7 Conclusions

The mixed point- and volume-based rendering method proved far better at resolving
fine structure and low-density regions than volume rendering or point rendering alone.
Volume rendering lacks the spatial resolution and the dynamic range to resolve regions
with very low density, areas which may be of significant interest to researchers. Point-
based rendering alone lacks the interactive speed and the ability to run on a desktop
workstation that the hybrid approach provides.

Point-based rendering for low-density areas also provides more room for future
enhancements. Because points are drawn dynamically, they could be drawn (in terms
of color or opacity) based on some dynamically calculated property that the researcher
is interested in, such as temperature or emittance. Volume-based rendering, because it
is limited to pre-calculated data, can not allow dynamic changes like these.

8 Further Work

We plan to implement this hybrid particle data visualization method using the massively
parallel computers and high-performance storage facility available at the Lawrence
Berkeley National Laboratory. Through a desktop graphics PC and high-speed net-
works, accelerator scientists would be able to conduct interactive exploration of the
highest resolution particle data stored.

As we begin to study the high resolution data (up to 1 billion points), the cost of
volume rendering is not negligible any more. 3D texture volume rendering [6] will be
thus used which offers better image quality with a much lower storage requirement.

358 B. Wilson et al.



Fig. 4. Comparison of a volume rendering (top) and a mixed volume/point rendering (bottom) of
the phase plot (x, Px, y) of frame 170. The volume rendering has a resolution of 2563. The mixed
rendering has a volumetric resolution of 643, 2 million points, and displays at about 3 frames per
second. The mixed rendering provides more detail than the volume rendering, especially in the
lower-left arm.

359Interactive Visualization of Particle Beams for Accelerator Design



(a) (b)

(c) (d)

(e) (f)

Fig. 5. A progression showing how exploration is performed. (a) Shows the initial screen, with
a volume-only rendering. (b) The boundary between the high-density volume rendering and the
low-density particle rendering has been moved to show more particles. (c) The transfer functions
have been unlinked to show more particles while keeping the volume-rendered portion relatively
transparent. (d) The point opacity has been lowered to reveal more structure. (e) The volume has
been rotated to view it end-on. (f) A higher-resolution version similar to (d).

360 B. Wilson et al.



We will also investigate illumination methods to improve the quality of point-based
rendering.

Acknowledgements

This work was performed under the auspices of the SciDAC project, “Advanced Com-
puting for 21st Century Accelerator Science and Technology,” with support from the
Office of Advanced Scientific Computing Research and the Office of High Energy and
Nuclear Physics within the U.S. DOE Office of Science. The simulated data were gen-
erated using resources of the National Energy Research Scientific Computing Center,
which is supported by the Office of Science under Contract No. DE-AC03-76SF00098.
This work was also sponsored in part by the National Science Foundation under con-
tracts ACI 9983641 (PECASE Award) and ACI 9982251 (LSSDSV).

References

1. B. Cabral, N. Cam, and J. Foran. Accelerated Volume Rendering and Tomographic Recon-
struction using Texture Mapping Hardware. In 1994 Workshop on Volume Visualization, Oc-
tober 1994, pp. 91–98.

2. J. Qiang, R. Ryne, S. Habib, V. Decyk, ”An Object-Oriented Parallel Particle-In-Cell Code for
Beam Dynamics Simulation in Linear Accelerators,” J. Comp. Phys. vol. 163, 434, (2000).

3. J. Qiang and R. Ryne, ”Beam Halo Studies Using a 3-Dimensional Particle-Core Model,”
Physical Review Special Topics - Accelerators and Beams vol. 3, 064201 (2000).

4. P. S. McCormick, J. Qiang, and R. Ryne. Visualizing High-Resolution Accelerator Physics.
Visualization Viewpoints (Editors: Lloyd Treinish and Theresa-Marie Rhyne), IEEE Com-
puter Graphics and Applications, September/October 1999, pp. 11–13.

5. M. Meissner, U. Hoffmann, and W. Strasser. Enabling Classification and Shading for 3d Tex-
ture Mapping Based Volume Rending Using OpenGL and Extensions. In IEEE Visualization
’99 Conference Proceedings, October 1999, 207–214.

6. A. Van Gelder, and U. Hoffman. Direct Volume rendering with Shading via Three-
Dimensional Textures. In ACM Symposium on Volume Visualization ’96 Conference Pro-
ceedings, October 1996, pp. 23–30.

361Interactive Visualization of Particle Beams for Accelerator Design


	1 Introduction
	2 Particle Visualization
	3 Data Representation
	4 User Interaction
	5 Rendering
	6 Results
	7 Conclusions
	8 Further Work
	Acknowledgements
	References

