Generic Large Scale 3D Visualization of
Accelerators and Beam Lines

Andreas Adelmann and Derek Feichtinger

Paul Scherrer Institut (PSI),
CH-5323 Villigen, Switzerland
{Andreas.Adelmann, Derek.Feichtinger}@psi.ch
http://www.psi.ch

Abstract. We report on a generic 3D visualization system for acceler-
ators and beam lines, in order to visualize and animate huge amount of
multidimensional datasets.

The phase space data on together with survey information obtained from
MADIP runs, are post-processed and then translated into colored ray-
traced POV-Ray movies. We use HPC for the beam dynamic calculation
and for the trivially parallel task of ray-tracing a huge number of anima-
tion frames.

We show various movies of complicated beam lines and acceleration
structure, and discuss the potential use of such tools in the design and
operation process of future and present accelerators and beam transport
systems.

1 Introduction

In the accelerator complex of the Paul Scherrer Institut the properties of the
high intensity particle beams are strongly determined by space charge effects.
The use of space charge effects to provide adequate beam matching in the PSI
Injector IT and to improve the beam quality in a cyclotron is unique in the
world. MADI9P (methodical accelerator design version 9 - parallel) is a general
purpose parallel particle tracking program including 3D space charge calculation.
A more detailed description of MAD9P and the presented calculations is given in
[1]. MAD9P is used at PSI in the low energy 870 keV injection beam line and
the separate sector 72 MeV isochronous cyclotron (Injector II), shown in Fig. 1,
to investigate space charge dominated phenomena in particle beams.

2 The mad9p Particle Tracker

2.1 Governing Equations

In an accelerator/beam transport system, particles travel in vacuum, guided
by electric or magnetic fields and accelerated by electric fields. In high-current
accelerators and transport systems the repulsive coulomb forces due to the space

P.M.A. Sloot et al. (Eds.): ICCS 2002, LNCS 2331, pp. 362-371, 2002.
© Springer-Verlag Berlin Heidelberg 2002

Generic Large Scale 3D Visualization of Accelerators and Beam Lines 363

Fig. 1. PSI Injector II 72 MeV cyclotron with beam transfer lines

charge carried by the beam itself play an essential role in the design of the
focusing system, especially at low energy. Starting with some definitions, we
denote by 2 € R? the spatial computational domain, which is cylindrical or
rectilinear. I = 2 x R3 is the six dimensional phase space of position and
momentum. The vectors q and p denote spatial and momentum coordinates.

Due to the low particle density and the 'one pass’ character of the cyclotron, we
ignore any collisional effects and use the collisionless Vlasov Maxwell equation:

O f + % 0qf — (0qU + €0q9) - Op f = 0. (1)

Here the first term involving U represents the external forces due to electric and
magnetic fields

U=E(qt)+ % x B(q;t) (2)
and from Maxwell’s equation we get:
0B
VxE+ - =0V -B=0. (3)

The external acting forces are given by a relativistic Hamiltonian He,;, where all
canonical variables are small deviations from a reference value and the Hamilto-
nian can be expanded as a Taylor series. This is done automatically by the use

364 A. Adelmann and D. Feichtinger

of a Truncated Power Series Algebra Package [2], requiring no further analytical
expansion.

The self-consistent Coulomb potential ¢(q;t) can be expressed in terms of
the charge density p(q;t), which is proportional to the particle density

n(q;t) = / dpf(q,p;t) using p(q, p;t) = en(q; 1) (4)

and we can write:

o(a;t) = /Q dq' Pl t) (5)

la—d|

The self-fields due to space charge are coupled with Poisson’s equation

V.E= / f(a, p; t)dp. (6)

2.2 Parallel Poisson Solver

The charges are assigned from the particle positions in continuum onto the grid
using one of two available interpolation schemes: cloud in cell (CIC) or near-
est grid point (NGP). The rectangular computation domain §2 := [—L,, L] %
[—Ly, Ly] X [—L¢, L], just big enough to include all particles, is segmented into
a regular mesh of M = M, x M, x M, grid points. Let 2P be rectangular and
spanned by [x n xm withl =1...M,, n=1...M, and m = 1...M;. The
solution of the discretized Poisson equation with k = (I, n,m,) reads

p" (k)
€0

V27 P (k) = — ke nP. (7)

The serial PM Solver Algorithm is summarized in the following algorithm:

PM Solver Algorithm
> Assign particle charges ¢; to nearby mesh points to obtain p”
> Use FFT on p? and GP (Green’s function) to obtain 2 and GP
> Determine (ZD on the grid using ¢” = p? x GP.
> Use inverse FFT on ;b\D to obtain ¢
> Compute EP = —V¢P by use of a second order finite difference method
> Interpolate E(q) at particle positions q from EP

The parallelization of the above outlined algorithm is done in two steps: first
0P is partitioned into subdomains Q,CD , k=1...p where p denotes the number
of processors. On each processor there are N/p particles using a spatial particle
layout. The spatial layout will keep a particle on the same node as that which
contains the section of the field in which the particle is located. If the particle
moves to a new position, this layout will reassign it to a new node when necessary.

Generic Large Scale 3D Visualization of Accelerators and Beam Lines 365

This will maintain locality between the particles and any field distributed using
this field layout, and it will help keep particles which are spatially close to each
other local to the same processor as well.
The second important part is the parallel Fourier Transformation, which allows
us to speed up the above described serial PM solver algorithm. For more details
on the implementation and performance see [3] [1].

To integrate the particle motion, we use a second order split-operator scheme
[4]. This is based upon the assumption that one can split the total Hamiltonian
in two solvable parts: Hez: and the field solver contribution Hg.. For a step in
the independent variable T one can write:

H(T) = Heat (7/2)H86(7)Hezt (7/2) + 0(73) (8)

2.3 Design or Reference Orbit

In order to describe the motion of charged particles we use the local coordinate
system seen in Fig. 2. The accelerator and/or beam line to be studied is described
as a sequence of beam elements placed along a reference or design orbit. The

reference
orbit

center of
curvature radius

Fig. 2. Local Reference System

global reference orbit (see Fig. 3), also known as the design orbit, is the path of a

366 A. Adelmann and D. Feichtinger

charged particle having the central design momentum of the accelerator through
idealized magnets with no fringe fields.

The reference orbit consists of a series of straight sections and circular arcs. It
is defined under the assumption that all elements are perfectly aligned along the
design orbit. The accompanying tripod (Dreibein) of the reference orbit spans a
local curvilinear right handed system (z,y, s).

2.4 Global Reference System

The local reference system (z, y, s) may thus be referred to a global Cartesian co-
ordinate system (X,Y, 7). The positions between beam elements are numbered
0,...,4,...n. Thelocal reference system (x;, y;, s;) at position , i.e. the displace-
ment and direction of the reference orbit with respect to the system (X,Y, 7)
are defined by three displacements (X;,Y;, Z;) and three angles (0;,®;, ;).

pitch angle ‘

projection of s
onto (Z, X)-plane

intersection of
(z,y) and (Z, X) planes

Fig. 3. Global Reference System

The above quantities X, Y and Z are displacements of the local origin in the
respective direction. The angles (©, @, ¥) are not the Euler angles. The reference
orbit starts at the origin and points by default in the direction of the positive

Generic Large Scale 3D Visualization of Accelerators and Beam Lines 367

Z-axis. The initial local axes (x,y, s) coincide with the global axes (X,Y, Z) in
this order. The displacement is described by a vector v and the orientation by a
unitary matrix WW. The column vectors of VW are unit vectors spanning the local
coordinate axes in the order (z,y, s). v and W have the values:

X
v=|Y], W=8TuU 9)
A
where
cos® 0 —sin® 1 0 0
S= 0 1 0 , T=10 cos® sind |, (10)
sinf 0 cos® 0 —sin® cos®
cos¥ —sin¥ 0
U= sin¥ cos¥ 0]. (11)
0 0 1

Let the vector r; be the displacement and the matrix S; be the rotation of the
local reference system at the exit of the element ¢ with respect to the entrance
of the same element.

When advancing through a beam element i, one can compute v; and W; by
the recurrence relations

vi = Wi_1r; +vi_1, Wi = W1 Ss. (12)

This relation (12) is used in the generation of ray-tracing movies.

3 Architecture of mad9p and accelVis

Today we use Linux Farms (also known as Beowulf clusters) with up to 500 Pro-
cessors (Asgard ETHZ) as well as traditional symmetric multiprocessor (SMP’s)
machines like IBM SP-2 or SGI Origin 2000. Having such a wide variety of plat-
forms available put some non negligible constraint on the software engineering
part of a simulation code. MAD9P is based on two frameworks:' CLASSIC [6]
and POOMA [3], shown schematically in Fig. 4. cLASSIC deals mainly with the
accelerator physics including a polymorphic differential algebra (DA) package
and the input language to specify general complicated accelerator systems. In
order to ease the task of writing efficient parallel applications we rely on the
POOMA framework which stands for Parallel Object-Oriented Methods and
Applications. POOMA provides abstraction for mathematic/physical quantities

! We use the notion of framework in the following sense: a framework is a set of co-
operating classes in a given problem frame. On this and other software engineering
concepts see [5]

368 A. Adelmann and D. Feichtinger

y____
MADSp

FFT/ Tree D-Operators nterpolators

Fig. 4. Architectural overview on MAD9P

Survey MADYP

Volumetric and scalar data

MATLAB
\/ Isosurface
accelVis Interpolated POV-Ray

frame information | frame rendering

interactive user input

Fig. 5. Data flow between MADI9P

like particles, fields, meshes and differential operators. The object-oriented ap-
proach manages the complexity of explicit parallel programming; it encapsu-
lates the data distribution and communication among real or virtual processors.
POOMA and all the other components are implemented as a set of templated
C++ classes. The computing nodes can be a single (real) cpu or a virtual node

Generic Large Scale 3D Visualization of Accelerators and Beam Lines 369

(VNODE). Usually MADIP uses the message passing interface MPI [7] in order
to interconnect the individual nodes.

ACCELVIS is currently implemented using ANSI C. The program interfaces to
the OpenGL graphics library and it’s GLU and GLUT extensions to render the
interactive 3D graphics. These libraries (or the compatible Mesa library) as well
as POV-Ray [8] and MATLAB [9] are available on a wide range of platforms.
Therefore, although the application was developed on a Red-Hat Linux System,
only very minor modifications are necessary to transfer it to a variety of other
architectures. The data-flow, involving MAD9P is shown schematically in Fig. 5.

3.1 Program capabilities

The ACCELVIS application enables the user to view a graphical interpretation
of volumetric and scalar data provided by a MAD9P run. The reference tra-
jectory and ISO-surfaces illustrating the particle density can be investigated
interactively by gliding with a virtual camera through a representation of the
accelerator (Fig. 6). By defining a trajectory for the camera the user is able to
produce high quality animations for teaching and illustration purposes.

Fig. 6. ACCELVIS view of the particle cloud ISO-surface, the beam trajectory (red line),
the camera trajectory (yellow line), and the camera viewing orientation (white lines)

370 A. Adelmann and D. Feichtinger

Fig. 7. Animation frames generated from the ACCELVIS setup shown in Fig. 6. Two
ISO-surfaces for cloud core (red) and halo (yellow) are used in visualizing the particle
density

3.2 Program Input

The reference trajectory is read in as a sequence of displacement vectors v; and
the matching rotation angles ©;, ®;,¥; defining origin and orientation of the
local coordinate systems. The particle density data ¢, or other scalar data like
rms quantities (beam size, emittance), is taken from a MADI9P run.

3.3 Information Processing

To obtain a fluid animation of the particle clouds, it is necessary to interpolate
between displacements as well as between rotations yielding the local coordi-
nate systems along the reference trajectory. A simple spline interpolation was
chosen for the displacement vectors of the reference particle. The rotations were
interpolated through a spline interpolation of their quaternion representations
since this provides smoother interpolation and avoids some of the problems that
appear if the defining angles ©;,®;,¥; or elements of the rotation matrix are
directly used [10].

The particle density is processed by interfacing to a MATLAB [9] script which
transforms the data into a series of connecting triangles representing a density
ISO-surface. To increase the smoothness of the generated graphics, the surface
normal vectors at every triangle corner are also calculated (This information
is customarily used by 3D visualization surface lighting models). Currently two
ISO-surfaces are used in each frame of the animation to provide more insight into
the density distribution. The surface gained from the higher iso value is termed
the cloud core, the other the cloud halo. The halo is rendered translucent (Fig.
7).

The camera view is represented by yet another local coordinate system. For
the production of the high quality animations a number of camera views are

Generic Large Scale 3D Visualization of Accelerators and Beam Lines 371

defined by interactively moving the camera to the desired position for the re-
spective simulation frame. The camera views are then interpolated over the
whole course of the simulation using the same procedure as described above for
the interpolation of the reference trajectory orientations.

3.4 Generation of the Animations

The application creates input and command files for the free and commonly
used POV-Ray [8] ray-tracing program. If desired a series of command files are
produced where each one assigns a subset of the frames to be rendered to the
nodes of a computing cluster. This trivially simple parallelization scheme enabled
us to compile the 1600 frames (320 x 240 pixels each, 24 bit color depth) of this
current animation in a rendering time of about 20 minutes on the 64 node Merlin
Linux cluster at PSI. By using standard software the frames can be converted
to one of the common movie formats (usually MPEG).

4 Application to the PSI Injector II Cyclotron

The use of high level visualization is one of the key aspects in interpretation
of multi-dimensional datasets. In the presented approach, it was attempted to
tightly couple large scale accelerator system simulations (using MADI9P) with ad-
vanced visualization techniques (ACCELVIS). Using principles of generality in the
design of both components, one can easy adapt ACCELVIS to other accelerator
system simulation frameworks.

First simulations of complicated structures, as shown in Fig. 1, were suc-
cessful. The application area of such visualization ranges from education to the
(re)design phase of existing or new machines. This might evolve into an indis-
pensable tool for the use in the accelerator control-room.

References

1. Adelmann, A.: 3D Simulations of Space Charge Effects in Particle Beams. PhD
thesis, ETH (2002)
2. Berz, M.: Modern Map Methods in Particle Beam Physics. Academic Press (1999)
3. Cummings, J., Humphrey, W.: Parallel particle simulations using the
POOMA framework. In: 8th STAM Conf. Parallel Processing for Scientific Com-
puting. (1997)
4. J.M. Sanz-Serna, M.C.: Numerical Hamiltonian Problems. Chapman and Hall
(1994)
E. Gamma, et.al.: Design Patterns. Addison Wesley (1995)
Iselin, F.: The classic project. Particle Accelerator Vol. 54,55 (1996)
William Gropp, et.al.: Using MPI : portable parallel programming with the
message-passing interface. Cambridge, Massachusetts : MIT Press (1999)
the POV-Team: Pov-ray 3.1 (1999) ray-tracing software.
MathWorks: MATLAB 6.1. URL: http://www.mathworks.com (2001)
. E. B. Dam, M. Koch, M.L.: Quaternions, interpolation and animation. Technical
Report DIKU-TR-98/5, Department of Computer Science, University of Copen-
hagen, Universitetsparken 1, DK-2100 Kbh, Denmark (1998)

No o

Sw©ow

	1 Introduction
	2 The mad9p Particle Tracker
	2.1 Governing Equations
	2.2 Parallel Poisson Solver
	2.3 Design or Reference Orbit
	2.4 Global Reference System

	3 Architecture of mad9p and accelVis
	3.1 Program capabilities
	3.2 Program Input
	3.3 Information Processing
	3.4 Generation of the Animations

	4 Application to the PSI Injector II Cyclotron
	References

