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Abstract. We consider the task of diagonalizing symmetric time vary-
ing matrices A(t). Based on the dynamic inversion technique developed
by Getz and Marsden, a differential equation is proposed, whose solutions
asymptotically track the diagonalizing transformation. In particular, one
does not need to perfectly match the initial conditions, as the solutions
converge exponentially towards the desired transformation. Thus, the
proposed method is robust under perturbations.

1 Introduction

The aim of this paper is to establish an efficient algorithm for the diagonalization
of time varying symmetric matrices. Thus we consider the task of determining
orthogonal matrices X (¢) such that X(¢)'A(¢)X(¢) is diagonal. This is done by
tracking a continuous time-dependent root of a suitable function Fy(;)(X), whose
roots X, (t) yield the desired solution. Therefore root finding methods, such
as the dynamic inversion technique ([5]), can be applied to solve the problem.
This approach leads to ordinary differential equations whose solutions converge
exponentially fast to the diagonalizing transformations.

There exist already methods, which are able to track the diagonalizing trans-
formation for a given symmetric matrix A(¢); see e.g. [1], [3], [4], [7].

These are given by the system of ODE’s for D and X:

D=XAX+DH-HD (1)
X = XH, (2)
. 0, i=j
with H defined as: H;; = { (XTAX)y .
a7

By solving this ODE, one obtains the diagonal matrix D and the correspond-
ing orthogonal transformation matrix X. However, this algorithm only produces
exact solutions, if it starts with perfect initial conditions. In particular, it does
not perform any error-correction. In contrast, the dynamic inversion method
achieves this purpose.

The paper is organized as follows. In the next section, a function F(X,¢) is
introduced, which enables us to reformulate the diagonalization task as a root
finding problem. Then, using the dynamic inversion technique, differential equa-
tions are proposed, that asymptotically compute the time-varying roots X, (1).
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Examples are given in Section 3, which illustrate the convergence-properties of
the new algorithms. Conclusions appear in Section 4.

2 Diagonalization of symmetric time-varying Matrices

Let A(t) € R™™™ ¢ € R, be a continuously differentiable family of real sym-
metric matrices, with eigenvalues A\q(t), ..., A, (¢). A(f) is supposed to satisly the
conditions:

1. |A(t)| and ||A(t)| are uniformly bounded on R.
2. There exists a constant m > 0 such that |A; — A;| > m (i # j) for all £.

Under these assumptions, there exists a continuously differentiable family of
real orthogonal transformations X, (¢), such that X, (¢)' A(¢) X.(¢) is diagonal for
all t € R ([6]). Our goal is to track such transformations by a suitable differential
equation.

2.1 Reformulation of the problem

Consider the function
F R xR — R™*"™ (3)

defined by
F(X,t)= [N, X' AH)X]|+ X'X — 1, (4)

where I is the identity matrix, N = diag(l,...,n) and [,] is the Lie-Bracket
product defined as [A, B] := AB — BA for A, B € R™*".

Lemma 1. F(X,t) = 0 if and only if X is an orthogonal matriz such that
X'A(t)X is diagonal.

Proof. Note that the first summand of F' is skew symmetric while the second
one is symmetric. Thus F’ vanishes if and only if the two summands vanish, i.e.
if and only if X is orthogonal and

[N, X'AX] =0.
Since N is diagonal with distinct eigenvalues, the result follows.

Using this function F, the task of finding an orthogonal transformation X
such that X’ A(¢)X is diagonal, is equivalent to that of finding a root of F/(X, ).
Thus, the eigenvalue and eigenvector-problem is reformulated as a root-finding-
problem.

To track those solutions X, (t), we apply the technique of dynamic inversion.
In order to do so, certain technical assumptions made in [5] have to be checked.
This is done in the next lemma.
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Lemma 2. Let A(t) be as above. There exists a continuously differentiable iso-
lated solution X,.(t) to F(X,t) = 0. F(X,t) is C*° in X and C* in t. There
exist constants M, My > 0 such that

() | DYF(X.(), )] < M,
(i) [|[D1F(Xu(t),8) | < M,

holds for allt € R.

Proof. The claim concerning the differentiability properties of F'(X, t) is obvious.
The first and second partial derivatives of F' w.r.to X are the linear and
bilinear maps D1 F(X,t) and D?F(X,t) respectively, given as

DyF(X,t)-H=[N,H'AX + X'AH] + H'X + X'H, (5)

D?F(X,t)- (H,H)— [N,H'AH + H'AH|+ H'H + H'H, (6)
and the partial derivative of FI(X,#) w.r.to ¢ is

DyF(X,t) = [N, X'A(t) X]. (7)
From this we deduce the operator norm estimates
[ D1F(X, )] < 2(1 4 2a| N[ X, (8)

and ||DIF(X,t)|| < 2(1+ 2a||N||), where a denotes the infinity-norm of A.

In particular, D?F(X,t) is uniformly bounded with respect to (X,¢). This
shows (i).

We next show, that the partial derivative operator D F(X,,t) is invertible
for any solution (X,,t) of F(X,t) = 0. In particular, X, is orthogonal and

DiF(X,,t)-H=|N,HAX, + X_AH)+ HX, + X_H. (9)
Substituting H = X, - £, for £ € R™*™ arbitrary, we obtain
DiF(X.t) - (Xu8) = [N, X AX, + XL AXE) + XX, + X[ XE (10)

=|N,&D+DE|+ ¢ +¢,

where D = X AX, is diagonal. Thus X,¢ is in the kernel of D1 F(X,,t) if and
only if £ is skew symmetric and [N, [D,£]] = 0. Hence [D, £] must be diagonal
and since D has distinct diagonal entries we conclude that £ = 0. This shows
that D1 F(X.,t) is invertible for any root of F'. By the implicit function theorem
it follows that for every orthogonal X, with X§A(0)X, diagonal, there exists a
unique C'-curve X, () of orthogonal matrices with X, (0) = Xo. This shows the
first claim.

To prove (ii), we derive a lower bound for the eigenvalues of D4 F(X,,t). Let
&pg denote the entry of & with the largest absolute value. Assuming that the
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norm of £ is equal to one, the absolute value of &,, is at least ;lg The smallest,
eigenvalue of D1 F(X,,t) is lower bounded by the sum of squares

(€parp(p — @) + EgpAg(p — q))2 + (€pg + §q;v)2

of the pg-entries of [N, &' D + DE] and &' + &. For p = ¢ this is lower bounded
by 2, while otherwise it is lower bounded by (£,0Ap + &gpAq)? + (Epg + Eqp) %
The latter is a quadratic function in &, with minimum:

zq()‘P — M)’ > (Ag—Ap)°
T4+22  ~ (14 A2)

This is the desired lower bound for the eigenvalues of Dy F(X,,t). Thus (ii)
follows with

11
M’:anax(i, ta

).

The next result follows from a straight forward perturbation argument; see
e.g. [6].

Proposition 1. Let X.(t) be a continuously differentiable orthogonal transfor-
mation, such that X.(t)A(t)X.(t) is diagonal for all t. Let X(t) converge to
X.(t) exponentially as t goes to infinity. Then X' (t)A®)X (t) — X.()A() X (¥)
exponentially for t — oo.

Main Results

A direct consequence of the Dynamic Inversion Theorem with vanishing error
([5], Theorem 2.3.5),which is applicable due to Lemma 2, can now be formulated
as follows.

Theorem 1. Let A(t) be as above and Xo be any orthogonal transformation that
diagonalizes A(0). Let X.(t) be the unique continuously differentiable solution
to F(X,t) =0 with X.(0) = Xo. For any u > 0 sufficiently large, and any X (0)
sufficiently close to Xy, the solution X (t) to

DIF(X, )X = —u([N,X'AX]| + X'X — I) — [N, X' AX|

converges exponentially to X.(t) as t goes to infinity. Le. there exist some
k,b > 0 such, that || X(t) — X.(t)|| < ke™b. Moreover, any solution X(t) is
orthogonal for all t, provided X (0) is orthogonal.

Remark 1. The constant p in the previous theorem influences the rate of con-
vergence of X (1) to X, (¢).

One difficulty with the above approach is that the differential equation is in
an implicit form. In the following we show how to circumvent this problem by
designing suitable explicit forms.
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2.2 Dynamic Inversion using matrix representations of D, F(X,t)~!

Recall the function
F(X,t) =[N, X'AX]+ X'X - I. (11)
and its partial derivative given by
DF(X,t)-H=[N,H'AX + X"AH|+ H'X + X'H. (12)

Let B(X,t) € R"* %" denotes the matrix representation of Dy F(X,t). Thus
to compute the inverse of D1 F(X,t), we have to invert a n? x n? matrix. This
difficulty can be avoided by augmenting a differential equation for the inverse of
B.

In the following theorem let I'(¢) denote an approximation for the inverse of
B(X,1), i.e. of the matrix representation for D1 F(X, )~}

Theorem 2. Let
E(I',X,t) = —T'vec([N, X' A(t) X)),
FI(I, X, t) .= B(X,t)[ -1,
d
EF(Fa X,t) = _Fd_B(X7 t)‘X:vec(E(F,X,t))F'

Then the solution (I'(t), X (t)) of the ODE

] =

converges exponentially to (B(X.(t),t), X.(t)), assuming that (I'(0), X(0)) is
sufficient close to (B(X.(0),0), X.(0)).

g

2.3 Dynamic Inversion by solving the Sylvester equation

We derive an explicit formula for the Sylvester equation associated with Dy F'.

DyF(X,t)-H=[N,HAX + X'AH|+ X'H+ H'X ==K +Y, (13)

where K,Y are given skew-symmetric and symmetric matrices, respectively.
Equation (13) is equivalent to the following equations

X'H+HX =Y, (14)

[N, H'AX + X'AH| = K. (15)
According to [2], a general solution to (14) is given by



424 M. Baumann and U. Helmke

1
H=P(Z+ §Q'YQ)Q71. (16)
Here Z is skew-symmetric and arbitrary, and P, () are arbitrary matrices satis-
fying PXQ = 1.
For X sufficiently close to the orthogonal matrix X, X ! exists, and we can
choose P = X~ and Q = I. Hence (16) is equivalent to

H=(X"Y(Z+ %Y),

where Z = — 7’ is the only remaining variable. We plug this equation for H into
(15) and obtain

1
[N,Z’X TAX + X'A(X Y Z]=K + §[Y’X*1AX + X' AXYHY,N] (17)
We replace X ! by the approximation X’ and X’ AX by D := diag(X'AX) =:
diag(dy, ..., dy). For X = X, + ¢, these approximations are O(e). With this, (17)
is equivalent to

1
NZ'D+ NDZ~Z'DN — DZN = K + [5(Y'D + DY), N],

which enables us to obtain Z;;:

(K +[5(Y'D + DY), N|);;

Zii = .
J n;d; — ’I”Lidj + djnj — dm]-

Using simple algebraic manipulations we arrive at the following tracking al-
gorithm. Note that the proposed algorithm differs from [3], [4] by an additional
feedback term, which is necessary for the tracking property.

Theorem 3. Let Y = p(X'X — I), D = diag(X'AX), d; := Dy; and {2 :=
2+ 12, where

- XA oy
1. Qij{ di—d; L7

0,i=j.

R (,uX’AX—YD)i- . .

2. 92{# i#
J IY' .
9tigs =7

The solution to _

X=-X1
converges exponentially to X, (t), if X(0) is sufficiently close to X, (0) and >0
is sufficiently large.

Solving this ODE is considerably cheaper than solving the coupled system of
theorem 2, as there is no need to compute matrices of size n? x n2. Of course,
this also has a stabilizing impact on the numerical aspects of the algorithm.
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3 Examples

We consider some numerical examples to demonstrate the new approach. In
all subsequent figures the solid lines represent the theoretically exact solutions,
while the dashed lines show the solutions of the ODE of Theorem 2 computed
via a standard Runge-Kutta method.

Ezample 1. Let A(t) = (1081211(t) 3co2s(t)>

Fig. 1. Entries of the first column of X (t) (dashed) and X.(t) (solid).

The figure shows a good approximation of the true eigenvectors/eigenvalues. This
is to be expected, as the eigenvalues are well separated. In the next example, we
will bring the eigenvalues very close together.

t 0.01
0.014—1¢
reacts sensitively, if the eigenvalues get too close. Nevertheless, after a short
period of time, the algorithm is stabilizing again.

For the same example, but using the last algorithm from Theorem 3 instead
of the first one, the sensitivity problems are eliminated. Thus the last algorithm
appears to be preferable.

Ezample 2. Let A(t) = ( ) This example shows, that the algorithm
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Fig. 2. Diagonal entries of X (¢)’ A(t)X (¢).

Fig. 3. Diagonal entries of X (t)" A(¢)X (¢).
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Fig. 4. Entries of the first column of X (¢) (dashed) and X.(t) (solid).

051

Fig. 5. Diagonal entries of X ()" A(t) X (¢).
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Conclusions

A new algorithm is proposed for tracking eigenvalues and eigenvectors of a time-
varying symmetric matrix A(t). The method depends on the technique of dy-
namic inversion previously introduced by Getz. A solution formula for Sylvester-
equations leads to an explicit form of a differential equation that achieves ro-
bustly the tracking task.

5
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