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Abstract. We consider the application of symmetric Boundary Value
Methods to linear autonomous Hamiltonian systems. The numerical ap-
proximation of the Hamiltonian function exhibits a superconvergence
property, namely its order of convergence is p+2 for a p order symmetric
method. We exploit this result to define a natural projection procedure
that slightly modifies the numerical solution so that, without changing
the convergence properties of the numerical method, it provides orbits ly-
ing on the same quadratic manifold as the continuous ones. A numerical
test is also reported.

1 Introduction

Hamiltonian systems are not structurally stable against non-Hamiltonian per-
turbations, like those introduced by an ordinary numerical method during the
discretization procedure. As a consequence, loss of some peculiar properties, such
as the conservation of invariants or simplecticity, may be checked in the numerical
solution, unless suitable classes of numerical integrators are used. This problem
has led to the introduction of a number of methods and techniques to preserve
the features of the Hamiltonian structure (see for example [5]; recent results on
the subject may be found in [4] and references therein). We consider the linear
Hamiltonian problem

y′ = Ly, t ∈ [t0, t0 + T ] (1)

where L is a Hamiltonian matrix of the form L = JS, S is a square real sym-
metric matrix of dimension 2m and

J =

(
0 −I
I 0

)
(I is the identity matrix of dimension m). We solve this problem numerically us-
ing a symmetric Boundary Value Method (BVM). The existence of a symplectic
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generating matrix associated to a symmetric BVM has been shown in [3]. The
main result of the present paper is a superconvergence property those schemes
are proved to share. This will allow us to implement a trivial projection proce-
dure that provides orbits lying on the same quadratic manifold as the continuous
ones and preserving the order of the underlying method.

Introducing a uniform mesh t0, t1, . . . , tN over the integration interval [t0, t0+
T ] with stepsize h = T/N , a symmetric BVM applied to (1) is defined by the
linear multistep formula

r∑
j=0

αj(yn+j − yn−j−1)− h
r∑

j=0

βjL(yn+j + yn−j−1) = 0, (2)

that must be solved for n = r + 1, r + 2, . . . , N − r. The additional conditions

y0, . . . ,yr and yN−r+1, . . . ,yN

are obtained adding the initial condition y(t0) = y0 and 2r extra multistep for-
mulae called initial and final methods. The coefficients αj and βj are determined
imposing that yn is an approximation of order p of the continuous solution y(tn);
we will also assume

∑r2
j=−r1 βj = 1 as a normalization condition to avoid the

indetermination of the coefficients αj and βj . In matrix notation a symmetric
BVM takes the form

(A⊗ I − hB ⊗ L)Y = −a⊗ y0 + hb⊗ (Ly0). (3)

where Y = [yT0 ,y
T
1 , . . . ,y

T
N ]T is the solution vector, A and B are square matrices

of dimension N , and the right hand side contains a known term that accounts
for the initial condition. Apart from the initial and final blocks, each consisting
of r rows containing the coefficients of the additional initial and final methods
respectively, the matrices A and B have a Toeplitz structure defined by the r+1
coefficients of the main method; here is, for instance, how A looks like:

A =



coefficients of the initial methods
−αr−1 . . . −α0 α0 . . . αr
−αr . . . . . . −α0 α0 . . . αr

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

−αr . . . . . . −α0 α0 . . . αr
coefficients of the final methods


,

and analogously for B. The vectors a and b contain the coefficients of the for-
mulae in (3) that are combined with the initial condition y0; sometimes it is
useful to insert such vectors as extra-columns in the matrices A and B. This is
accomplished by defining the two extended matrices Ã = [a, A], B̃ = [b, B], of
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size N × (N +1) and the vector Ỹ = [yT0 , Y
T ]T ; in terms of these quantities, the

system (3) becomes (
Ã⊗ I − hB̃ ⊗ L

)
Ỹ = 0. (4)

The Extended Trapezoidal Rules of the first and second kind (ETRs and
ETR2s) and the Top Order Methods (TOMs) are three examples of classes of
symmetric schemes (see [3] for their definition and properties). ETRs are defined
as

yn − yn−1 − h
r∑

j=0

βjL(yn+j + yn−j−1) = 0, (5)

and have order p = 2r + 2. The formula of order 4 is used in the last section in
a numerical test.

2 Superconvergence of the numerical Hamiltonian
function

We denote by σ = (y(tn))TSy(tn) the value (independent of n) of the Hamilto-
nian function over the continuous solution and by σn = yTnSyn the approxima-
tion of such value, generated by the numerical method.

Since yn = y(tn) +O(hp), it follows that

σn = σ +O(hp). (6)

The rate of convergence of the Hamiltonian function evaluated over the numerical
solution, towards its limit value σ, is therefore (in general) inherited by the order
of the underlying method. Hereafter, we prove that symmetric BVMs of even
order p provide a two orders higher rate of convergence, that is σn = σ+O(hp+2).

Given a vector w, we will denote by wk the vector whose nth component is
(wn)k. Furthermore ẽ and e will be two vectors with components equal to one
and of lengthN+1 andN respectively, while u = [1, 2, . . . , N ]T and ũ = [0,uT ]T .
The order conditions on a BVM may be recasted in block form:

Ãẽ = 0, Ãũ− B̃ẽ = 0 (consistency conditions),

Ãũk − kB̃ũk−1 = 0, k = 2, . . . , p.
(7)

To begin with, we list some properties of the BVMs that will be exploited in
the sequel. The proof of Lemma 1 is trivial and will be omitted.

Lemma 1. For any BVM (3) the following relations hold true:

(a) B̃ẽ = e; (b) A−1a = −e;

(c) A−1b = u−A−1Be; (d) A−1e = u.

Lemma 2. A BVM of order p satisfies the following p− 1 conditions:

(A−1B)k−1u =
1

k!
uk, k = 2, . . . , p. (8)
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Proof. For k = 2, . . . , p the order conditions (7) are simplified as follows

Auk − kBuk−1 = 0,

the first element of ũ being zero. Multiplying on the left by A−1 yields

uk = kA−1Buk−1 = k(k − 1)(A−1B)2uk−2 = . . . = k!(A−1B)k−1u

and (8) follows. #%
Lemma 3. Given a symmetric BVM with 2r+ 1 steps and a vector ξ of length
N and all null entries except (possibly) the first and the last r, one has:

(a) A−1ξ = ge + ξ̂, (b) A−1ξ̂ = g1e + ξ̂1,

(c) Bu = u− 1

2
e + ξ, (d) A−1u =

1

2
(u2 + u)− ge− ξ̂,

where g and g1 are constant and ξ̂ and ξ̂1 are vectors whose components decrease
in modulus with an exponential rate when moving from the edge towards the
inside of the vector (in the sequel the vectors denoted by ξ and ξ̂ are assumed to
share the same kind of shape as described above).

Proof. The Toeplitz matrix associated to A has r + 1 lower and r upper off-
diagonals and is generated by the first characteristic polynomial of the basic
method. This polynomial has r roots inside, r outside and one on the boundary
of the unit circle (see [3]). It follows that, starting from the main diagonal, the
entries in each column of the matrix A−1 tend to a constant value when we move
downwards, and decrease exponentially in modulus when we move upwards [2].
From this consideration and the definitions of ξ and ξ̂, (a) and (b) immediately
follow.

The n-th component of the vector Bu is

(Bu)n =
r∑

j=0

βj [(n+ j) + (n− j − 1)] = (2n− 1)
r∑

j=0

βj = n− 1

2
,

which gives (c) (we notice that the non null elements of ξ depend on the initial
and final methods). Since a consistent symmetric method has order at least two,
we have that Au2 − 2Bu = 0 and exploiting in sequence (c), (d) of Lemma 1
and (a), we obtain (d). #%

Since our goal is the computation of σn, we first derive an expression for yn
in terms of y0. From (3) we obtain (for small h):

Y = (A⊗ I − hB ⊗ L)
−1

(−a⊗ y0 + hb⊗ (Ly0))

=
(
IN ⊗ I − hA−1B ⊗ L

)−1 (−A−1a⊗ y0 + hA−1b⊗ (Ly0)
)

=

 ∞∑
j=0

hj(A−1B)j ⊗ Lj

(e⊗ y0 + hA−1b⊗ (Ly0)
)
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=
∞∑
j=0

hj(A−1B)je⊗ Ljy0 +
∞∑
j=0

hj+1(A−1B)jA−1b⊗ Lj+1y0

= e⊗ y0 +
∞∑
j=1

hj
[
(A−1B)je + (A−1B)j−1u− (A−1B)je

]⊗ Ljy0

= e⊗ y0 +
∞∑
j=1

hj(A−1B)j−1u⊗ Ljy0

(property (b) and (c) of Lemma 1 has been exploited to derive the third and
fifth equalities). Denoting by en the n-th vector of the canonical basis on IRN ,
we obtain

yn = (eTn ⊗ I)Y = y0 +
∞∑
j=1

hj(eTn ⊗ I)
[
(A−1B)j−1u⊗ Ljy0

]
= y0 +

∞∑
j=1

hj
(
eTn (A−1B)j−1u

)
Ljy0.

For the computation of σn we will make use of the relation ∞∑
j=1

vj

T  ∞∑
j=1

wj

 =
∞∑
j=1

j∑
k=1

vTk wj−k+1.

where {vj} and {wj} are two sequences of vectors whose related series are
supposed to converge. We have

σn = yT0 Sy0 + 2yT0 S

 ∞∑
j=1

hj
(
eTn (A−1B)j−1u

)
Ljy0


+

∞∑
j=1

j∑
k=1

[
hk
(
eTn (A−1B)k−1u

)
yT0 (LT )kShj−k+1

(
eTn (A−1B)j−ku

)
Lj−k+1y0

]
= σ + 2

∞∑
j=1

hj
(
eTn (A−1B)j−1u

) (
yT0 S(JS)jy0

)
+

∞∑
j=1

hj+1

j∑
k=1

[(
eTn (A−1B)k−1u

) (
eTn (A−1B)j−ku

) (
yT0 (LT )kSLj−k+1y0

)]
= σ + 2

∞∑
j=1

hj
(
yT0 S(JS)jy0

) (
eTn (A−1B)j−1u

)
+

∞∑
j=1

hj+1
(
yT0 S(JS)j+1y0

) j∑
k=1

(−1)k
(
eTn (A−1B)k−1u

) (
eTn (A−1B)j−ku

)

433Conservation Properties of Symmetric BVMs



= σ + 2h(yT0 SJSy0)(e
T
nu) + 2

∞∑
j=2

hj
(
yT0 S(JS)jy0

) (
eTn (A−1B)j−1u

)
+

∞∑
j=2

hj
(
yT0 S(JS)jy0

) j−1∑
k=1

(−1)k
(
eTn (A−1B)k−1u

) (
eTn (A−1B)j−k−1u

)
.

For any vector z ∈ IR2m one has zTJz = 0, which gives zTS(JS)jz = 0 for
any positive and odd integer j. A consequence is that the second term in the
above expression of σn vanishes and both series will contain only terms with
even powers in h:

σn = σ +
∞∑
j=1

h2j
(
yT0 S(JS)2jy0

)2
(
eTn (A−1B)2j−1u

)
+

2j−1∑
k=1

(−1)k
(
eTn (A−1B)k−1u

) (
eTn (A−1B)2j−k−1u

)]
.

From (6) we realize that the series cannot contain terms of order lower than hp.
Indeed we show that the first p/2 terms of the series vanish. For j = 1, . . . , p/2,
considering the relations (8) (that can be extended to p = 1) we have

2
(
eTn (A−1B)2j−1u

)
+

2j−1∑
k=1

(−1)k
(
eTn (A−1B)k−1u

) (
eTn (A−1B)2j−k−1u

)
=

2

(2j)!
eTnu2j +

2j−1∑
k=1

(−1)k
1

k!(2j − k)!

(
eTnuk

) (
eTnu2j−k)

=
2

(2j)!
n2j +

2j−1∑
k=1

(−1)k
1

k!(2j − k)!
nkn2j−k

= n2j

2j∑
k=0

(−1)k
1

k!(2j − k)!
=

n2j

(2j)!

2j∑
k=0

(−1)k
(

2j
k

)
= 0.

The first non null term in the series is the one of order p+ 2:

hp+2
(
yT0 S(JS)p+2y0

)2
(
eTn (A−1B)p+1u

)
+

p+1∑
k=1

(−1)k
(
eTn (A−1B)k−1u

) (
eTn (A−1B)p−k+1u

)]
.

(9)

Since the dimension N of both matrices A and B is proportional to 1/h, it is
not possible to deduce so easily that such term is O(hp+2). Such circumstance
does hold true for symmetric methods (of even order). Theorem 1 will show that
the term in square brackets in the above expression is indeed O(1).
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We begin with two lemmas.

Lemma 4. A BVM of order p satisfies

Aup+1 − (p+ 1)Bup = cp+1e + ξp+1, (10)

Aup+2 − (p+ 2)Bup+1 = dp+2u + cp+2e + ξp+2, (11)

with dp+2 = (p + 2)cp+1 and ξp+1 and ξp+2 with non null entries only in cor-
respondence of the initial and final methods. If furthermore the basic method is
symmetric, one has also dp+2 = −2cp+2.

Proof. We denote by α and β the vectors of length k that contain the coefficients
αi and βi of the main method. We consider the vector w(t) = [t − r + 1, t −
r, . . . , t+ r]T , with t ∈ IR. Since the method has order p, it follows that

αTwp(t)− pβTwp−1(t) = 0.

Integrating with respect to t yields

1

p+ 1
αTwp+1(t)− βTwp(t) = c̃p+1, (12)

from which (10) follows with cp+1 = (p+ 1)c̃p+1. Integrating (12) once again we
obtain

1

p+ 2
αTwp+2(t)− βTwp+1(t) = cp+1(t+ ν) + c̃p+2, (13)

with ν an arbitrary integer. Choosing suitably values of t and ν, the above
expression is seen to be equivalent to the generic component of (11), with dp+2 =
(p + 2)cp+1. In particular, if the main method is symmetric with 2r + 1 steps,
one has α = −Pα and β = Pβ, with P the permutation matrix having unitary
elements on the secondary main diagonal. In such a case, to obtain (11) we must
choose ν = 0. Let us set

w0 = w(0) = [−(r + 1), . . . ,−1, 0, . . . , r]T ,

w1 = w(1) = [−r, . . . , 0, 1, . . . , r + 1]T ;

from (13) we have

dp+2 + cp+2 = αTwp+2
1 − (p+ 2)βTwp+1

1 ,

cp+2 = αTwp+2
0 − (p+ 2)βTwp+1

0 .

From the relation wj
0 = (−1)jPwj

1, that holds for any integer j we obtain

cp+2 = αTPwp+2
1 + (p+ 2)βTPwp+1

1 = −αTwp+2
1 + (p+ 2)βTwp+1

1

= −(dp+2 + cp+2),

and hence the assertion. #%
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Lemma 5. The extension of (8) to the indices k = p + 1 and k = p + 2 are
respectively

(A−1B)pu =
1

(p+ 1)!

(
up+1 + c12u + c11e + ξ̂1

)
, (14)

and

(A−1B)p+1u =
1

(p+ 2)!

(
up+2 + c23u

2 + c22u + c21e + ξ̂2

)
, (15)

where the constants cij satisfy the following relations:

c12 = −cp+1, c23 = −(p+ 2)cp+1, c22 = (p+ 2)c11. (16)

Proof. Multiplying (10) on the left by the inverse of A and using (d) of Lemma
1 and (a) of Lemma 3 we obtain

(A−1B)up =
1

p+ 1
(up+1 − cp+1u + c11e + ξ̂1),

and considering Lemma 2 for k = p, we deduce

(A−1B)pu = (A−1B)(A−1B)p−1u =
1

p!
(A−1B)up

=
1

(p+ 1)!
(up+1 − cp+1u + c11e + ξ̂1),

that coincides with (14), putting c12 = −cp+1. With an analogous argument on
formula (11) we derive

(A−1B)up+1 =
1

p+ 2
(up+2 − dp+2A

−1u− cp+2u− g1e− ξ̂p+2),

and using (14), Lemma 2 for k = 1 and (b)-(c) of Lemma 1,

(A−1B)p+1u = (A−1B)(A−1B)pu

=
1

(p+ 1)!
(A−1B)

(
up+1 + c12u + c11e + ξ̂1

)
=

1

(p+ 2)!

[
up+2 − dp+2A

−1u− cp+2u− g1e− ξ̂p+2

−(p+ 2)
cp+1

2
u2 + (p+ 2)c11(u−A−1b) + (p+ 2)A−1Bξ̂1

]
.

Using (d), (a) and (c) of Lemma 3 for the terms A−1u, A−1b and A−1Bξ̂1

respectively, we have
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(A−1B)p+1u =
1

(p+ 2)!

[
up+2 − 1

2
(dp+2 + (p+ 2)cp+1)u

2

−
(
dp+2

2
+ cp+2 − (p+ 2)c11

)
u + c21e + ξ̂2

]
,

with c21 a suitable constant. Finally (15) follows exploiting the expressions for
dp+2 obtained in Lemma 4. #%

Now we proceed with the proof of the superconvergence property.

Theorem 1. The solution of a symmetric BVM with 2r+1 steps and even order
p satisfies σn = σ +O(hp+2).

Proof. It is enough to prove that the term in square brackets in (9) is O(1).
Considering once again the order conditions (8) and the extensions (14) and
(15), this term is simplified as follows

[
2
(
eTn (A−1B)p+1u

)
+

p+1∑
k=1

(−1)k
(
eTn (A−1B)k−1u

) (
eTn (A−1B)p−k+1u

)]

=
2

(p+ 2)!
eTn (c23u

2 + c22u + c21e + ξ̂2)−
2

(p+ 1)!
(eTnu)eTn (c12u + c11e + ξ̂1)

=
2

(p+ 1)!

[(
c23
p+ 2

− c12

)
n2 +

(
c22
p+ 2

− c11

)
n+O(1)

]
.

We arrive at the assertion considering that the coefficients of the terms in u2

and u vanish because of (16). #%
The superconvergence property allows us to modify the numerical solution

in order to obtain a new one preserving the value of the Hamiltonian function.
Starting from the numerical solution yn, we define z0 = y0 and

zn =

(
yT0 Sy0

yTnSyn

)1/2

yn, n = 2, . . . , N. (17)

Obviously now we have zTnSzn = σ. The projection (17) together with formula
(3) describes a new method sharing exactly the same convergence properties
(order and error constants) of the original one. In fact, denoting by gn(h) =
yn−y(tn) the error function at step n (gn(h) = O(hp)), from yTnSyn = yT0 Sy0+
O(hp+2) it follows that

zn =

(
σ

σ +O(hp+2)

)1/2

(y(tn) + gn(h))

= (1 +O(hp+2))(y(tn) + gn(h)) = y(tn) + g̃n(h),

where g̃n(h) and gn(h) share the same O(hp) term.
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3 A numerical test

We use the ETR of order 4 (see formula (5)) to solve the linear pendulum
problem ẍ+ω2x = 0, ω = 10 with initial condition x(0) = 1, ẋ(0) = −2, in the
time interval [0, 2π]. At each run we halve the stepsize h, starting from h = 2π/5
(this will cause the doubling of the dimension N of the system). In the columns
of Table 1 we report

- the maximum errors in the numerical solutions yn and zn:

E(yn) = max
1≤n≤N

||y(tn)− yn||∞, E(zn) = max
1≤n≤N

||y(tn)− zn||∞,

where y(tn) = [x(tn), ẋ(tn)]T ;
- the computed order of convergence of zn;
- the maximum error in the approximation of the Hamiltonian function ob-

tained by yn:
H(yn) = max

1≤n≤N
|σ − σn|;

- the computed order of convergence of σn towards σ.

As shown at the end of the last section due to the superconvergence (see last
column in the table), E(yn) and E(zn) become eventually identical.

Table 1. Convergence properties of the solution of the linear pendulum problem ob-
tained by the ETR of order 4

N E(yn) E(zn) ord. zn H(yn) ord. H(yn)

5 4.06103 · 100 5.39728 · 100 1.83 · 101

10 9.95836 · 10−1 1.01165 · 100 2.41 1.52 · 100 3.59
20 7.19667 · 10−2 7.19312 · 10−2 3.81 3.17 · 10−2 5.58
40 4.72723 · 10−3 4.72622 · 10−3 3.93 5.25 · 10−4 5.92
80 4.16611 · 10−4 4.16615 · 10−4 3.50 8.32 · 10−6 5.98

160 2.62860 · 10−5 2.62860 · 10−5 3.99 1.30 · 10−7 6.00
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