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Abstract. P-stability is an important requirement in the numerical in-
tegration of stiff oscillatory systems, but this desirable feature is not pos-
sessed by any class of numerical methods for v’ = f(x,y). It is known,
for example, that P—stable linear multistep methods have maximum or-
der two and symmetric one step polynomial collocation methods can’t
be P-stable (Coleman 1992). In this note we show the existence of P-
stable methods within a general class of two step Runge-Kutta-Nystrom
methods.

1 Introduction

Many physical problems arising from celestial mechanics, molecular dynamics,
seismology and so on are modeled by Ordinary Differential Equations having
periodic or oscillatory solutions of type

y'(t) = f(ty(t), wlto) =vo, ¥'(to) =wo, (), flt,y) €R", (1)

Although it may be reduced into a first order system, the development of numeri-
cal methods for its direct integration seems more natural. Many linear multistep,
hybrid and one step methods appeared in the literature: see for example [12, 4]
for an extensive bibliography.

When the system is stiff some special stability properties are required, no-
tably the P—stability. This concept was first introduced in [8], and it is of partic-
ular interest in the numerical treatment of periodic stiffness which is exhibited,
for example, by Kramarz’s system [7]. In this case two or more frequencies are
involved, and the amplitude of the high frequency component is negligible or it is
eliminated by the initial conditions. Then the choice of the step size is governed
not, only by accuracy demands, but also by stability requirements. P—stability
ensures that the choice of the step size is independent of the values of frequen-
cies, but it only depends on the desired accuracy [4,10]. Moreover a necessary
condition for a method to result P—stable is to be zero—dissipative. The prop-
erty of nondissipativity is of primary interest in celestial mechanics for orbital
computation, when it is desired that the computed orbits do not spiral inwards
or outwards [12].
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Only few numerical methods possess this desirable feature. It is worth men-
tioning that in the class of linear multistep methods for (1) P—stability can be
reached only by methods of the second order and that the stability properties
gradually deteriorate when the order increases. It is also known that symmetric
one step polynomial collocation methods can’t be P-stable [3], and no P—stable
methods were found in the special class of two step collocation methods consid-
ered in [11].

We consider now a simple family of two step Runge-Kutta methods (TSRK)
introduced in [6]:

Yirr = (1= )i + 0yi 1+ b3 (05 (i1 + ¢, Y7 ) +wif (mi + ¢;h, Y7)),
Efij_l :yi71+h27::1 ajsf(xifl‘I“cshaYvis—l)a J=1L...,m
Y =yt S aef (@it esh, Y2), j=1...,m,

(2)

for the not autonomous initial value problem

where f : R9 — RY is assumed to be sufficiently smooth. 8, v;, w;, ajs, bjs,
7,8,=1,...,m are the coeflicients of the methods.

It is known that the method is consistent if ZTzl(fvj +w;) =146, and it is
zero—stable if —1 < 6 <1 [6].

The method (2) belongs to the class of General Linear Methods introduced by
Butcher [1], with the aim of giving an unifying description of numerical methods
for ODEs. (2) can be represented by the following Butcher’s array:

C1 a11 ai12 s Q1m
C2 a1 a2 tee a2m
c A
Cm am1 Am?2 cre Amm
T
P A% 0 V1 Vg e Um,
wlh = w ws - W

where ¢; = >0 aij.

The reason of interest in this family lies in the fact that, advancing from x;
to x;4+1 we only have to compute Y;, because Y;_; have already been evaluated
in the previous step. Therefore the computational cost of the method depends
on the matrix A, while the vector v adds extra degrees of freedom.

In this family A-stable methods exist [6], while no P—stable methods were
found in [11] in the class of indirect collocation methods derived within family
(2). We prove that P—stable methods, which are not collocation—based, can be
constructed within the family (2) for the special second order ODEs (1).
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2 Construction of the indirect method

To derive the method for the special second order system (1), from (2), following
[5], we transform the system y” = f(xz,y) into a first order differential equation
of double dimension:

(5'>, - (f(g:y)> o) =wis Y (@) =y (3)

By making the interpretation
K] = f(zi + ¢;h, YY),

which is usually done for Runge-Kutta methods, the following equivalent form
of (2) is more convenient to our purpose:

Yirr = (1—0)yi +0yi1 + hZ}”zl(ijfq + ijij),
Kijfl = f(ivifl +thayi71 +h2;n:1 a’jst_l)a j = 1a"'am7 (4)

K] = flai + cih,yi + R0 ajoKF), j=1...,m

3

The application of the method (4) to the system (3) yields

Kij:fl =yio1 +hY 0 ai K2y,

K] =yl +h>L a5 KpP,

Kllj—l = flzi—1 + cih,yi1 + hz:; ajsKi 1), (5)
K7 = f(xi+cihys + YL asK7), ,

Yirr = (1—0)yi +Oyi1 + hz;‘nﬂ(%’K@?ﬂ + ijf)?

Yier = (1 =0y +0y;_ + hZ}”zl(?ijﬁl + ijz{])

If we insert the first two formulas of (5) into the others, we obtain

K7y = f(mia+cihyyi 1+ hegyl_y + B2 S0 6. K0),
K7 = f(xi + ¢jhyi + hejy; + B2 Y0 a5 KP°),

Yirr = (1= 0)y; +0yi—1 + (371, vi)yioq + (37, wi)yi+ (6)
W2 (0l Tk + @, K))

y1{+1 = (1 - O)y: + 9%{—1 + hZZL(?JsKéL + wus{S)

Qjs = E jkAks, Vs = E Vklgs, Ws = E W As- (7)
% % &

From (7), setting A = A2, ¢ =vTA, W =wTA, the direct method (6) for
the second order system (1) takes the following form

where
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Y7 =y Fheyi A B2 agaf(mica + e Y ), G=1,...,m,
Y7 =i+ hejy + B2 Y0 dgaf (i + csh, Vi), J=1...,m,
Yir1 = (1= 0)ys +0yi—1 +h 37 viyi_q + B35 wiyi+
W2 ST (0 (i + e, Vi) + a8 f i + ¢;h, YY),
Yigr = (L= 0)yi+ 0y;_y + BT (vif (i1 + cih, Y1) +wif (@i + cih, V7)),

(8)
and it is represented by the Butcher array

c A2
vTA
wTA
0 v
9)

Likewise to the one-step case, we call the method (8)—(9) two-step Runge-
Kutta—Nystrom (TSRKN) method.

3 Linear stability analysis

The homogeneous test equation for the linear stability analysis is

y'=-w'y, weR (10)

Following the analysis which has been performed in the one—step case (see
[13]), the application of (8) to (10) yields the recursion

Y1 =N"'(y,_1e+ hy_,c)

Y; =N'(ye+ hyc)

Yirr = (1= 0y + 0y +h(viey_ +wley)) — 22(VYi1 + w'Y))
hyiy, = (1= 0)hy, + 0hy}_, — 22 (v Y1 + wTY5)

where z = wh, e=(1,....,1)T, N =1T1+22A.
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Elimination of the auxiliary vectors Y;_1, Y; yields
Yir1 =1 =0y +0yi 1 +h(viey_, +wley))—
2@ I'N"te y;_1 + ¥IN"tc hy!_; + WI'N~le y; + W N~1c hy))
hyl = (1—0)hy] + 0hy] | — 22 (vVIN e y;_1 + vIN tc hy] |+
wIN~te y; + wIN~1c hyl).

The resulting recursion is

Yi Yi—1
Yi+1 Yi
= M(zQ)
h y; by 4
h yil'+1 h y;
with
0 1 0 0
0 — 22vTN—1le 1—6— vlie — 22¥TN—1¢ wle—
22wTN-le 2wTN-1¢
M(zz) =
0 0 0 1
—22vTN-le —22wTN-1le 0— 1—6-—
22vIN-1¢ 2wIN-1c¢

(11)
M(2?) in (11) is the stability or amplification matrix for the two—step RKN
methods (8). The stability properties of the method depend on the eigenvalues of
the amplification matrix, whose elements are rational functions of the parameters
of the method. Then the stability properties depend on the roots of the stability

polynomial
T(A) = det(M(2?) — \I). (12)

For the sake of completeness, we recall now the following two definitions.

Definition 1. (0, H?) is the interval of periodicity for the two step RKN method
if, V22 € (0, HE), the roots of the stability polynomial w(\) satisfy:

1=y =7 gyl <1,
with ¢(z) real.

Definition 2. The two step RKN method is P—stable if its interval of periodicity
is (0, +00).
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For an A—stable method the eigenvalues of the amplification matrix are within
the unit circle for all stepsizes and any choice of frequency in the test equations,
and this ensures that the amplitude of the numerical solution of the test equation
does not increase with time. If, what is more, there is no numerical dissipation,
that is if the principal eigenvalues of the amplification matrix lie on the unit
circle, then the method is P—stable [13].

4 One stage P-stable TSRKN method

Let us consider now the one stage TSRKN method (8) represented by the fol-
lowing Butcher array

w (13)
The characteristic polynomial (12) of the method (13) is symmetric when,

if \ is an eigenvalue of M(z?), then also — is an eigenvalue; in this case every

stability interval is also an interval of periodicity. Therefore, to obtain a P—stable
TSRKN method, it must be required that the characteristic polynomial (12) of
the method is symmetric, and the periodicity interval is unlimited.

We can perform an analytical study of the inequalities representing the sta-
bility conditions for one stage two step RKN method (13). The TSRKN method
(13) has order 1 if (see [6])

v+w=1460, —-1<6<1.
The stability polynomial (12) of (13) can be written in the following way:
T(A) = X'+ B(z*)A? + C(z°)A° + D(z*)A + E(2%),

with ) )
B(:2) (2a%(0 — 1) + w(a +¢))z* +2(0 — 1)’

1+ az?

C(2) = 1—40 + 02 + 2%(a® + a?0> + (v — w)(a + ¢) + w? + 0(a(w — 4a) + cw))
1+ az? ’

D(2) = 2(1 — )0 + 22(2a%0(1 — 0) +v(6 — 1)(a+ ¢) + w(2v — 8(a + ¢)))
1+ az? ’
B(:2) — 02 + 22(a%0? — (a + c)fv + 1,'2).

1+ az?

It is symmetric if and only if

E(z*) =1, B(2?) = D(2%).
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The TSRKN method (13) has order 2 if the following conditions are satisfied [6]:
v+w=1+89, 20(a—1)+2wa=1-6. (14)
If we ask now that w(\) is symmetric, then
EH) =1 +— 6*=1,

from which 6 = 1 follows; indeed 8 = —1 violates the zero-stability of the method.
From (14), we must set

U:Qa,7 w=2—2aqa.

Moreover B(z?) = D(2?) if and only if c = a or a = 1.

We can choose a as free parameter and compute a value for it in such a
way that the inequalities representing the stability conditions are satisfied (for
example by using the Routh-Hurwutz criterion). In this way we conclude that
the following method

a a2
o] 2a?
2a0(1 —a
. ( )
2a
2(1—a) ,

1
with a > 3 is an order 2, one stage, P—stable two step RKN method.

5 Concluding remark.

In [11] we did not find any P—stable method in the class of indirect collocation
two step RKN methods. The result obtained in this note encourage us to proceed
in our investigation on two—step Runge-Kutta—Nystrom methods. Indeed it is
certainly possible to derive P—stable methods within this family, as we have
just shown, and we are hopeful that it is also possible to obtain high order
P-stable methods within the class of two—step RKN methods, if we do not
consider indirect collocation based methods. To derive P—stable methods with
an increased number of stages the usage of symbolic computation will be very
useful, as already done successfully in [2] in the one—step case.
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