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Abstract. In the last years several numerical methods have been d e  
veloped to integrate matrix differential equations which preserve certain 
features of the theoretical solution such as orthogonality, eigenvalues, 
first integrals, etc. In this paper we approach the numerical solution of 
a second order matrix differential system whose solution evolves on the 
Lie- group of the orthogonal matrices 0,. We study the orthogonality 
properties of classical Runge Kutta Nystrom methods and non standard 
numerical procedures for second order ordinary differential equations. 

1 Introduction 

Recently, there has been an increasing interest in conservative numerical met hods 
for solving ordinary differential equations which preserve certain features of the 
theoretical solution such as orthogonality, symplecticness, isospectrality, first 
integrals, etc. ([I], [2], [3], [lo]). In this paper we shall concern with a system 
of special second order ordinary differential equations (ODES) of dimension n, 
whose solutions remain for all t on the Lie group of the orthogonal matrices 

where In is the unity matrix of dimension n. 
Particularly, we are interested in solving differential equations of the following 

form: 

where B is a skew-symmetric matrix (i.e. B~ = -B) and the matrix function 
C : IR x IRnXn + IRnXn is such that Y(t) t On, for all t > 0. 

Second order ordinary differential equations evolving on On arise in several 
applications, for example in computation of embedded geodesics curve (see [5]). 
If we set P ( t )  = ~ ( t )  the differential system (1) can be transformed into the 
equivalent first order system of twice the dimension 
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thus usual methods for first order ODEs may be applied. However orthogonal 
preserving methods applied to (2) do not preserve the orthogonality of Y(t). 
Moreover, it is well known that a direct solution of (2) may give computational 
advantages and standard numerical methods for second order ODEs are often 
considered to be more efficient for systems of the form (1) (see [6], [9]). In this 
paper after recalling some concepts on the geometrical structure of the Lie group 
On, we particularize the second order differential equation we are interested in. 
In Section 3 we study when a general s-stage Runge Kutta Nystrom method 
(hereafter abbreviated as RKN) is an orthogonal integrator for equation (1). In 
Section 4, we discuss the Cayley approach applied to second order orthogonal 
equations. Finally, we present some numerical tests to illustrate the behavior of 
the algorithms. 

2 Background 

In this section we review some concepts from differential geometry and provide 
the geometrical structure of the group of orthogonal matrices, which will be used 
throughout the rest of the paper. We also characterize a kind of second order 
ODEs on On. 

To begin with, assume Y(t) t On for all t and denote by 7y(t)On the tangent 
space at  Y(t). The equation defining a tangent vector to On at the point Y is 
easily obtained by differentiating the constraint Y Y ~  = I, i.e. 

hence: 
ryon = {A t w X n l ~ y T  + YAT = o}, 

Clearly, the Lie algebra on of On (i.e. the tangent space at  the identity) is the 
set of all skew symmetric matrices: 

Furthermore, by differentiating twice the constraint, we get 

YyT + 2irirT + y Y T  = 0. 

that is Y belongs to the set: 

NyOn = {O t l R n x n l O ~ T  + y O T  + + A d T  = 0, with A t TyOn). 

Theorem 1. Let Y(t) be the solution of (1). Then Y(t) belongs to On for all 
t > 0, if and only if there exists A : lR x lRnxn + on continuous and locally 
Lipschitx skew-symmetric matrix function such that 

with A(0, Y(0)) = B,  where A denotes the derivative with respect to t and 
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Proof. Suppose that C(t ,  Y) in (1) is given by (3), then being A(t, V) a skew- 
symmetric matrix function, the first order differential system 

has a solution V(t) which is an orthogonal matrix for all t > 0. Moreover, by 
differentiating (4), we obtain that V(t) satisfies the second order differential 
system: 

~ ( t )  = [ ~ ( t ,  V) + Av(t, V) + A(t, V)A(t, V)]V(t), 
V(0) = In,  V = B. ( 5 )  

From the uniqueness of the solution of (1) and (4), it follows that V(t) = Y (t), 
for all t > 0. Now we assume that the solution of (1) is orthogonal. Then it 
satisfies a ordinary differential equation of the form 

where A : lR x lRnXn + On is continuous and locally Lipschitz skew-symmetric 
matrix function. Then the results follows by differentiating (6). 

Now the following result may be easily proved. 

Lemma 1. Suppose that the unique solution Y(t) of ( l ) . i s  orthogonal and the 
matrix function C(t)  i s  independent on Y. Then C(t) = A(t) + A(t)A(t) for all 
t > 0, with A(t) the skew-symmetric matrix function given by 

Proof. From the Theorem 1 it follows that there exists a skew-symmetric matrix 
function A(t) such that: 

Hence 
-cT( t )  = -AT(t) - ~ ~ ( t ) ~ ~ ( t ) .  (9) 

Adding (8) to (9) and using the skew-symmetry of A and A, then (7) follows. 

Remark 1. From Theorem 1 it follows that the orthogonal solution of the second 
order differential equation (1) with C(t)  depending only on t,  is equivalent to 
the solution of the first order differential equation of the same dimension. This 
leads to a computational advantage. 

3 RKN methods and orthogonality 

Let h > 0 be the step-size, i t k )  the set of the step points and Yk+l, ~ k + l  denote 
the numerical approximat ion of Y (tk+l) and Y (tk+l), respectively. A s-stage 
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RKN method for (1) is given by: 

with 

where aij, bi, ci, for i ,  j = 1, .  . . , s are real coefficients. Furthermore, introducing 
the s x s matrices A = (aii), A = (aij), and the s-dimensional vectors bT = 

(bl,. . . , bs), 6T = (61,. . . ,6s) and c = (cl, .  . . , c , ) ~ ,  the RKN scheme (10) can 
also be represented by the Butcher array 

The method is said explicit if aij  = 0 for i 5 j and implicit otherwise. 
If the coefficients A, bT, c of the RKN method are equal to those of a Runge- 

Kutta method for first order ODE, then the Nystrom method is said to be 
induced by this RK scheme and its coefficients satisfy 

= C aikak j and 6, = C bjaji. 

Moreover, a RKN method is said to be a collocation scheme if it is obtained by 
applying collocation methods for first order differential equation (2). 

We now investigate the properties a RKN scheme has to satisfy to be an 
orthogonal preserving scheme when applied to (1). We start with the following 
matrix differential system: 

where the matrix C = B~ is symmetric seminegative definite and B is skew- 
symmetric. 

Theorem 2. The implicit R K N  methods induced by the Gauss Legendre Runge 
Kutta schemes of order 2s are orthogonal integrators for diflerential systems 

(1 3). 

Proof. We give the proof for the Runge Kutta Nystrom Gauss Legendre method 
with stage s = 1 and Butcher array 
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Applying the numerical scheme (14) to (13) we get: 

K; = C(Yo+ $yo+ +K;), 
Yl = Yo + hy0 + +h2K;, 
~1 = yo + hK;. 

Hence 

Y?K= =:yo + h(yTyO + y:y0) + ~ ( Y F K ;  + K ; ~ Y ~  + 2yoTyo)+ 

Substituting the expression of K; we get: 

By the initial conditions and observing that C = B ~ ,  the terms in h2 and 
. T $ ( Y ~ ~ c Y ~  + Yo CYo) vanish. Hence, substituting ricorsively the expression of 

K; all the powers of h vanish and so the result follows. 

However, the positive result obtained by Theorem 2, are not still valid for 
more general second order nonlinear differential system. 

Theorem 3. The RKN Gauss Legendre schemes are not orthogonal integrators 
for the diflerential system (1). 

Proof. For the sake of simplicity we will give the proof in the linear nonau- 
tonomous case. Let us consider the differential system 

~ ( t ) = C ( t ) Y ( t ) ,  t > O ,  Y(0) = I,, Y(o )=  B(O), (16) 

where C( t )  = ~ ( t )  + B(t)B(t)  and B(t)  is a skew-symmetric matrix. Applying 
the RKNGL scheme with s = 1 to (16), we get 

Yl = Yo + hy0 + 
y1 = yo + h ~ ; .  

Hence 

YTY~ = YFY~ + h(yTy0 + YFY~)  

Now, observe that the term in h2, substituting the expression of c($) and the 
values of Yo and of yo, we get: 

which, in general, does not vanish and so Y?Y1 = Y:Yo + 0(h2 ) .  
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4 Non standard RKN schemes 

In this section we generalize to RKN methods some approaches uses to solve 
orthogonal first order differential equations. 

4.1 Projected RKN methods 

Following the ideas proposed in [3] for first order ODEs on On, we describe here 
a projected integrators for equation (1). 

A projected methods consists of a two steps procedure: 

- firstly, an approximation pk+l of the solution of ( I ) ,  provided by any explicit 
s-stage RKN method, is computed using (10); 

- then, the QR factorization of pk+l by the modified Gram-Schmidt process 
is performed, that is 

Fk+1 = Q*+lRk+l, 

and then the factor Q of the QR factorization is assumed as the approxima- 
tion of the solution at  tk+l, i.e., 

Proposition 1. The projected R K N  schemes preserve the order of accuracy of 
the R K N  method they are based on. 

4.2 Cayley methods for second order ODEs 

Another approach used for solving first order orthogonal systems is based on the 
transformation of the original system into a skew-symmetric one, obtained by 
continously applying the Cayley transform (see [4]). 

Proposition 2. If Y(t) i s  an  orthogonal matrix having for any t all eigenval- 
ues diflerent from -1, then there exists a unique smooth skew-symmetric matrix 
function A(t) such that 

The previous transformation is known as the Cayley transform of Y(t). 
An interesting remark is that for second order differential equations this 

approach does not lead to orthogonal schemes. In fact using (19), equation (1) 
can be transformed as in the following theorem. 

Theorem 4. Let Y(t) be the solution of the diflerential systems (I), with all 
eigenvalue diflerent from -1, for any t, then A(t) given by (19) satisfies the 
second order diflerential system: 

A = H(A, A), t > 0, A(O) = 0, A(0) = $B,  (20) 

where H(A, A) = ;(I - A)C((I  - A ) - ~ ( I  + A))( I  - A) - ~ A ( I  - A)-'A. 
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Proof. From (19) it follows that (I - A)Y = (I + A); then differentiating twice 

A = Y - A Y - A Y ,  (21) 

and 

Hence (I - A)Y - ~ A Y  = A(I + Y) and by (1) 

Moreover, from (19) we also obtain 

1 
(I + Y)-I = -(I - A), 

2 (23) 

and from (21) 
Y = 2(1- A ) - ~ A ( I  - A)-'. 

Thus, substituting equality (23) and (24) into (22) and using the initial condition 
for equation (1) the statement follows. 

Observe that a restarting procedure is required if there exists a T such that Y(T) 
has an eigenvalue equal to -1 (see [4]). (20). 

Remark 2. We have to observe that the solution of (20) is not a skew-symmetric 
matrix function, because H(A, A) is not a skew-symmetric. Indeed, this result 
was expected, in fact from (21), A is not a curve on o(n) and therefore, when we 
consider its derivative with respect to time, i.e. A, this does not belong to o(n). 
Hence, the Cayley approach does not lead to orthogonal schemes. 

5 Numerical Tests 

In this section we present some numerical tests in order to illustrate the proper- 
ties of the geodesics based methods. All the numerical results have been obtained 
by Matlab codes implemented on a scalar computer Alpha 200 51433 with 512 
Mb RAM. We compare the considered methods in terms of accuracy, deviation 
of the numerical solution from orthogonal structure and CPU time. The devia- 
tion from the orthogonal manifold is measured by 1 1  Ik - YTY~ IF, the accuracy 
by IIY(tk) - Yk IIm, where 1 1  . 1 1  and 1 1  . 11, denote respectively the Frobenius 
and the infinity norm on matrices and Yk is the numerical approximation of the 
solution at  the instant t = tk .  

Example 1. As first example we solve the constant linear second ordinary differ- 
ential system 

Y = C Y ,  Y ( 0 ) = 1 2 ,  Y ( 0 ) = B ,  
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Table 1. Example 1 performance at  T = 1. 

h Method Global error Orthogonal error CPU time 

0.01 RKNGLl 
PRKN2 
RKN2 
RKNGL2 
PRKN4 
RKN4 

0.005 RKNGLl 
PRKN2 
RKN2 
RKNGL2 
PRKN4 
RKN4 

0 1 -3 -4 

where B - 1  0 2 2 )  and C = B ~ .  Table 1 summerizes the results ob- 
3 -2 0 -3 

\ 4 - 2 3  0 )  
tained solving the problem with constant step, on the interval [O, 11. All the 
error are estimated at the final point of the integration interval. 

As shown in Table (1) both projective and Gauss Legendre RKN schemes 
preserve the orthogonality with a machine accuracy. Furthermore, the direct 
application of an explicit RKN to the system provides an orthogonal error of the 
same order of the scheme. 

Example 2. As second example we solve the nonautonomous second ordinary 
differential system 

- sin2 (t) cos(t) 
Y ,  Y(0) = I,, ~ ( 0 )  = 0, 

- cos(t) - sin2 (t) 

cos(1 - cos(t)) sin(1 - cos(t)) 
whose solution is Y(t) = 

- sin(1 - cos(t)) cos(1 - cos(t)) ), (PI)-  
As proved in Lemma 3, for generally nonautonomous orthogonal second order 

systems, the collocation RKNGL schemes do not preserve the orthogonality of 
the solution. 

Conclusion 

With the aim of solving second ordinary differential systems preserving the or- 
thogonal structure, we have investigated the properties of Runge Kutta Nystrom 
Gauss Legendre methods. These schemes are orthogonal preserving only for lin- 
ear constant second order ODES. To tackle the problem, we have also proposed 
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Table 2. Example 2 performance at  T = 5. 

h Method Global error Orthogonal error CPU time 

0.01 RKNGLl 
PRKN2 
RKN2 
RKNGL2 
PRKN4 
RKN4 

0.005 RKNGLl 
PRKN2 
RK2 
RKNGL2 
PRKN4 
RK4 

a semi-explicit projection procedure based on the Gram-Smith factorization and 
we have pointed out that the good performance of the Cayley approach for first 
order differential orthogonal systems are not showed for second order one. 

For further research, we intend to extend the study of orthogonal behavior 
to other RKN schemes, as for instance symplectic RKN, and investigate the 
exponential map approach. 
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