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Abstract. In this paper we deal with high oscillatory systems and nu-
merical methods for the approximation of their solutions. Some classical
schemes developed in the literature are recalled and a recent approach
based on the expression of the oscillatory solution by means of the expo-
nential map is considered. Moreover we introduce a new method based
on the Cayley map and provide some numerical tests in order to compare
the different approaches.

1 Introduction

Let us consider an initial-value ordinary differential system

y′ = f(t,y), t ≥ 0, y(0) = y0

whose solution oscillates with a timescale much shorter than the integration
interval. We will refer to these kind of dynamical systems as highly oscillatory
ones. Indeed this concept is very generic; a more precise definition can be found
in a survey provided by L. R. Petzold et al. in 1997 (see [10]) where it was stated
that such equations are characterized by a fast solution varying regularly about
a slow solution.
High oscillatory systems arise in many applications such as vehicle simulations,
molecular dynamics, circuit simulations, flexible body dynamics. In order to
provide some examples of oscillatory differential problems, let us consider the
solution of

y′′ + ty = 0, t ≥ 0, (1)

given by y(t) = π[Ai(−t)Bi′(0) − Ai′(0)Bi(−t)], which satisfies the initial con-
ditions y(0) = 1, y′(0) = 0, where Ai(z) is the so-called Airy function and Bi(z)
represents the Airy function of the second kind. As another example, the Bessel
function of index ν = 0

J0(t) =
∞∑
k=0

(−1)k

(k!)2

(
t

2

)2k

(2)
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is the solution of the following equation

t2y′′ + ty′ + t2y = 0, t ≥ 0. (3)

In Figure 1 we plot the Airy function behaviour and the approximation of (2)
obtained by means of the Besselj built-in Matlab code.
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Fig. 1. Plot of the Airy (left) and the Bessel (right) functions.

Different approaches for the numerical solution of this kind of problems have
been developed in the literature. With the aim to investigate the stability fea-
tures of the classical numerical methods, such as multistep and Runge-Kutta
ones, applied to oscillatory systems, the scalar harmonic oscillator equation

y′′ = −ω2y, ω > 0

is usually chosen as standard test problem. In this respect, a suitable stability
definition is due to Lambert and Watson who originally introduced the concept
of P -stability (see [9]). We notice that, since the step length is constrained not
only by stability but also by accuracy, then a stepsize of the same magnitude
as the period of oscillation with highest frequency is required even for P -stable
methods. The form and structure of the effective numerical methods is strongly
application-dependent, so they vary according to specific classes of the consid-
ered applications. For instance, when the presence of forcing terms arises in
some applications, it is interesting to account for the following inhomogeneous
equation:

y′′ = A(t)y(t) + b(y).

In the case when A(t) = A, the solution can be obtained by means of the mollified
impulse method due to Garcia-Archilla, Sanz-Serna and Skeel [2]. Successively
in [3] Hochbruch and Lubich introduced the Gautschi-type methods that reduce
to solve exactly the equation with constant inhomogeneity.

Recently Iserles proposed a completely different approach based on the Mag-
nus expansion (see [5]). More precisely the solution of the linear system y′ =
A(t)y, y(0) = y0 is represented in terms of the exponential matrix y(t) = eΩ(t)y0

where Ω(t) satisfies a suitable differential equation, as we recall in Section 2. By
following this idea we propose to express the same solution in terms of the Cay-
ley transform y(t) = (I − 1

2Ω(t))−1(I + 1
2Ω(t))y0 with Ω(t) satisfying a related

equation, as shown in Section 3. We notice that these approaches arise in a
completely different field such as the numerical approximation of conservative
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differential problems (see e.g. [7]). The idea to apply the Cayley transform in the
framework of oscillatory systems is suggested by its competitiveness and cheap-
ness with respect to the exponential map. In Section 4 we compare these two
approaches verifying their effectiveness on the Airy and Bessel test problems.
Finally, conclusion and suggestions for further research are discussed in Section
5.

2 The Magnus methods

In this section we sketch some basic idea about methods based on the Magnus
expansion adopting the same notations used in [7]. It is known that the solution
of

y′ = A(t)y(t) t ≥ 0, y(0) = y0 (4)

can be written in the form

y(t) = eΩ(t)y0 (5)

where Ω satisfies the following equation

Ω′ =
∞∑
k=0

Bk

k!
adk

Ω
A, t ≥ t0, Ω(t0) = O

being {Bk}k∈ZZ+ the Bernoulli numbers and

ad0
Ω
A = Ω

adk
Ω
A = [A, adk−1

Ω
A] = A adk−1

Ω
A− adk−1

Ω
A A, k > 0.

The solution of the previous system is the so-called Magnus expansion of Ω given
by

Ω(t) =

∫ t

0

A(ξ)dξ − 1

2

∫ t

0

∫ ξ1

0

[A(ξ2), A(ξ1)]dξ2dξ1

+
1

12

∫ t

0

∫ ξ1

0

∫ ξ1

0

[A(ξ3), [A(ξ2), A(ξ1)]]dξ3dξ2dξ1

+
1

4

∫ t

0

∫ ξ1

0

∫ ξ2

0

[[A(ξ3), A(ξ2)], A(ξ1)]dξ3dξ2dξ1 + . . . .

(6)

In order to discretize the solution (5), it is necessary to truncate the infinite
Magnus expansion (6) and to replace integrals by quadrature. Therefore the
Magnus numerical scheme consists of advancing the Magnus expansion by step
h > 0 and approximating y(tn+1) = eΩn(h)y(tn), by

yn+1 = eΩ̃n(h)yn

with Ω̃n(h) truncation of Ωn(h), where the integrals are replaced by quadrature.
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2.1 Modified Magnus methods

A modified version of the Magnus method can be designed explicitly for oscilla-
tory systems as in [5]. The algorithm advances from tn to tn + h by setting

y(t) = e(t−tn)A(tn+1/2)x(t), t ≥ tn

where tn+1/2 = tn + 1
2h and the function x(t) satisfies

x′ = B(t)x, t ≥ tn, x(tn) = y(tn) (7)

with B(t) = e(t−tn)A(tn+1/2)[A(t) − A(tn+1/2)]e
(t−tn)A(tn+1/2). The latter equa-

tion is discretized by the standard Magnus method so that x(t) = eΩ̃n(t)yn;
therefore the global approximation is given by

yn+1 = ehA(tn+1/2)eΩ̃n(h)yn, n ∈ ZZ+.

Remark 1. The idea which is the basis of this algorithm, is that the oscillatory
behaviour of (4) is locally well modelled by the linear equation with constant
coefficients

ỹ′ = A(tn+1/2)ỹ

whose solution is given by a matrix exponential.

3 The Cayley method

Following the same idea developed by Iserles, we apply a method based on the
Cayley map in order to solve an oscillatory system. As a counter part of (5), the
solution of (4) is given by

y(t) = cay(Ω(t))y0

where cay(Ω(t)) = [I− 1
2Ω(t)]−1[I+ 1

2Ω(t)] is the Cayley transform of the matrix
Ω(t) that satisfies the following equation (see [1], [4])

Ω′ = A− 1

2
[Ω,A] − 1

4
ΩAΩ, t ≥ t0, Ω(t0) = O. (8)

Notice that evaluating the Cayley transform is cheaper than computing a ma-
trix function exponential. It is possible to solve (8) by performing the Magnus
expansion of Ω (see [4])

Ω(t) =

∫ t

0

A(ξ)dξ − 1

2

∫ t

0

∫ ξ1

0

[A(ξ2), A(ξ1)]dξ2dξ1

−1

4

∫ t

0

[∫ ξ1

0

A(ξ2)dξ2

]
A(ξ1)

[∫ ξ1

0

A(ξ3)dξ3

]
dξ1

+
1

4

∫ t

0

∫ ξ1

0

∫ ξ2

0

[[A(ξ3), A(ξ2)], A(ξ1)]dξ3dξ2dξ1 + . . . .

(9)
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Again, we can achieve the numerical solution by truncating the infinite Mag-
nus expansion (9) and replacing integrals by quadrature. Therefore the Cayley
numerical scheme is

yn+1 = cay(Ω̃n(h))yn

with h > 0 and Ω̃n(h) the truncation of Ωn(h) obtained replacing the integrals
by quadrature.

3.1 Modified Cayley method

As a counterpart of the modified Magnus method, we consider again the algo-
rithm that advances from tn to tn + h by defining

y(t) = e(t−tn)A(tn+1/2)x(t), t ≥ tn

where x(t) satisfies (7). In this case, we discretize equation (7) using the standard
Cayley method; therefore we obtain the solution

yn+1 = ehA(tn+1/2)cay(Ω̃n(h))yn, n ∈ ZZ+.

4 Numerical schemes and results

We are going to list the methods described so far. More precisely, we consider
the fourth order schemes for Magnus and Cayley methods already presented in
[7]. In the sequel we will denote for each n

Ai = A(tn + cih) i = 1, 2 (10)

with c1 = 1
2 −

√
3

6 , c2 = 1
2 +

√
3

6 . Concerning the fourth order Magnus scheme
(Magnus4), we compute yn+1 = exp(Ωn)yn where Ωn is given by

Ωn =
h

2
(A1 + A2) −

√
3

12
h2[A1, A2].

As a counterpart, the fourth order method based on the Cayley expansion (Cay-
ley4) provides the approximation yn+1 = cay(Ωn)yn by evaluating

Ωn = hB0 +
1

12
h2[B1, B0] − 1

12
h3B3

0

where B0 = 1
2 (A1 + A2) and B1 =

√
3(A2 − A1). We implement the modified

versions of the previous methods by following the same schemes given in [5].
Our aim is to validate the effectiveness of the Cayley approach in the field

of oscillatory systems by applying it on the Airy and Bessel equations which
we consider as test problems. Moreover, we are interested in the comparison
between the different schemes based on the exponential and the Cayley maps.
In each figure we plot, on different timescales, the errors in the solution of the
test problems (1) and (3) by using Magnus and Cayley approaches with time

480 F. Diele and S. Ragni 



0 10 20 30 40 50 60 70 80 90 100
−2

−1

0

1

2
x 10

−6

h=
1/

8

Fourth order Magnus method

0 10 20 30 40 50 60 70 80 90 100
−2

−1

0

1

2
x 10

−7

h=
1/

16

0 10 20 30 40 50 60 70 80 90 100
−1

−0.5

0

0.5

1
x 10

−8

h=
1/

32

0 10 20 30 40 50 60 70 80 90 100
−1

−0.5

0

0.5

1

h=
1/

8

Fourth order Cayley method

0 10 20 30 40 50 60 70 80 90 100
−0.1

−0.05

0

0.05

0.1

h=
1/

16

0 10 20 30 40 50 60 70 80 90 100
−0.01

−0.005

0

0.005

0.01

h=
1/

32

Fig. 2. The error in the solution of the Airy equation (1) by Magnus4 (left) and
Cayley4 (right) in the time interval [0, 100].
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Fig. 3. The error in the solution of the Airy equation (1) by Magnus4 (left) and
Cayley4 (right) in the time interval [0, 1000].

steps h = 1
8 , h = 1

16 and h = 1
32 . In Figures 2 and 3, it is evident that the

Magnus method performs better than the Cayley one on both timescales, when
applied to the Airy equation; anyway, notice that it loses accuracy for the longer
integration interval. Concerning the modified versions, as shown in Figures 4
and 5, both the approaches behave similarly. However, the Cayley approach
takes a sharp improvement when implemented in modified version. Otherwise,
this does not hold for the Magnus schemes. We notice that in [5] and in [6]
a remarkable advantage is get out of the modified approach performing the
Magnus expansion with exact integrals. We can make similar considerations
regarding the performances of the considered schemes for the solution of the
Bessel equation. Even if the results in Figures 6 and 7 obtained by applying
Cayley4 are acceptable, they are not competitive with respect to the Magnus4
ones. Again, as shown in Figures 8 and 9, a clear improvement is achieved when
the modified version of the Cayley method is used.
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Fig. 4. The error in the solution of the Airy equation (1) bymodified Magnus4 (left)
and modified Cayley4 (right) in the time interval [0, 100].
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Fig. 5. The error in the solution of the Airy equation (1) bymodified Magnus4 (left)
and modified Cayley4 (right) in the time interval [0, 1000].
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Fig. 6. The error in the solution of the Bessel equation (3) by Magnus4 (left) and
Cayley4 (right) in the time interval [1, 100].
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Fig. 7. The error in the solution of the Bessel equation (3) by Magnus4 (left) and
Cayley4 (right) in the time interval [1, 1000].
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Fig. 8. The error in the solution of the Bessel equation (3) by modified Magnus4
(left) and modified Cayley4 (right) in the time interval [1, 100].
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Fig. 9. The error in the solution of the Bessel equation (3) by modified Magnus4
(left) and modified Cayley4 (right) in the time interval [1, 1000].

483Numerical Comparison between Different Lie-Group Methods



5 Conclusions and further research

To solve highly oscillatory differential systems, we proposed a numerical ap-
proach which is based on the solution expression by means of the Cayley trans-
form. We performed several numerical tests in order to show the effectiveness of
this approach with respect to the Magnus methods.

A modified version of the considered methods, explicitly designed for oscil-
latory problems, is taken into account. We point out the cheapness and good
performance of the modified scheme based on the Cayley transform with respect
to ones based on the exponential map.

Further research will intend to provide theoretical results which justify the
good performance of the proposed method. Moreover, we will extend the present
approach to the non homogeneous case. It might be advantageous to use the
Cayley method for the oscillatory part and following an approach like Gautschi-
type to treat the non oscillatory term.
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Appendix: MATLAB code

For the sake of completeness, herewith a MATLAB code for the fourth order
modified Cayley method:
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function [t,Y]=MCayley4(N, t0, tN, y0, h);

% Modified Cayley4

% Input:

% N: the spacing of solution points (typically N=1)

% t0: initial point

% tN: endpoint

% y0: initial value

% h: step size

% Output:

% t = [t0:Nh:tN]

% Y = [y(t0), y(t0+Nh), y(t0+2Nh), ..., y(tN)]

c1 = (1/2 - sqrt(3)/6)*h;

c2 = (1/2 + sqrt(3)/6)*h;

h2 = h/2;

t = t0;

Y = y0;

I = eye(length(y0));

M = floor((tN - t0)/h + eps);

for n = 1:M

A0 = Afun(t0 + h2);

Th = expm(h*A0);

T1 = expm(c1*A0);

T2 = expm(c2*A0);

A1 = Afun(t0 + c1);

A2 = Afun(t0 + c2);

U1 = T1\(A1 - A0)*T1;

U2 = T2\(A2 - A0)*T2;

B0 = 1/2*(U1 + U2);

B1 = sqrt(3)*(U2 - U1);

C = B1*B0 - B0*B1;

Theta = h*B0 + h^2/12*C - 1/12*h^3*B0^3;

I1 = (I - 1/2*Theta);

I2 = (I + 1/2*Theta);

U = I1\I2;

y0 = Th*U*y0;

t0 = t0 + h;

if floor(n/N)*N == n

Y = [Y,y0];

t = [t,t0];

end

end

where the function Afun.m provides the values of the matrix A(t): for instance,
for the Airy equation (1) it reads

function A = Afun(t) A = [0, 1; -t,0]
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