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Abstract. Recently, Bridges and Reich introduced the concept of multi-
symplectic spectral discretizations for Hamiltonian wave equations with
periodic boundary conditions [5]. In this paper, we show that the 1D
nonlinear Schrodinger equation and the 2D Gross-Pitaevskii equation
are multi-symplectic and derive multi-symplectic spectral discretizations
of these systems. The effectiveness of the discretizations is numerically
tested using initial data for multi-phase solutions.

1 The Multisymplectic Approach

A Hamiltonian PDE with N space dimensions is said to be multisymplectic if it
can be written as

Mzt +
N∑
i=1

Ki zxi = ∇zS(z), z ∈ IRd, (1)

where M, Ki ∈ IRd×d are skew–symmetric matrices and S : IRd → IR is a
smooth function [1]. Associated with (1) are the N+1 two–forms

ω(U, V ) = V TMU, κi(U, V ) = V TKiU, U, V ∈ IRd (2)

which define a symplectic structure associated with time and the space direc-
tions xi, respectively. System (1) implies the existence of a multi–symplectic
conservation law

∂tω +
N∑
i=1

∂xiκi = 0, (3)

when U, V are any two solutions of the variational equation associated with (1)

Mdzt +
N∑
i=1

Ki dzxi = DzzS(z)dz.

One consequence of multi–symplecticity is that when the Hamiltonian S(z) is
independent of xi and t, the PDE has an energy conservation law (ECL) [4]

∂E

∂t
+

N∑
i=1

∂Fi

∂xi
= 0, E = S(z)− 1

2
zT

N∑
i=1

Ki zxi, Fi =
1

2
zTKi zt (4)
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as well as a momentum conservation law

N∑
i=1

∂Ii
∂t

+
N∑
i=1

∂G

∂xi
= 0, G = S(z)− 1

2
zTM zt, Ii =

1

2
zTM zxi . (5)

When the local conservation laws are integrated over the domain in IRN , using
periodic boundary conditions, we obtain the global conservation of the total
energy and total momentum.

Multi–symplectic integrators are approximations to (1) which conserve a dis-
cretization of the multi–symplectic conservation law (3). This newly emerging
class of integrators has proven very promising as it includes simple and fast
schemes with remarkable conservation properties for local as well as global in-
variants (cf. [1] - [5]).

The nonlinear Schrödinger (NLS) equation in two space dimensions with an
external potential models the mean-field dynamics of a dilute-gas Bose Einstein
condenstate (BEC) [7]. In this case the equation is referred to as the Gross-
Pitaevskii (GP) equation. Numerical experiments with the GP equation are
used to provide insight into BEC stability properties. The NLS equation and
the GP equation can be formulated as multi-symplectic systems. In order that
the numerical discretization reflects the geometric properties of the PDE, we
investigate the use of multi-symplectic spectral integrators for the NLS and GP
equations.

1.1 The multi-symplectic form of the 1D nonlinear Schrödinger
equation

The focusing one dimensional nonlinear Schrödinger (NLS) equation,

iut + uxx + 2|u|2u = 0, (6)

can be written in multisymplectic form by letting u = p+ iq and introducing the
new variables v = px, w = qx [2]. Separating (6) into real and imaginary parts,
the multi-symplectic form (eq. (1) with N=1) for the NLS equation is obtained
with

z =




p
q
v
w


 , M =




0 1 0 0
−1 0 0 0
0 0 0 0
0 0 0 0


 , K =




0 0 −1 0
0 0 0 −1
1 0 0 0
0 1 0 0




and Hamiltonian S(z) = 1
2

[(
p2 + q2

)2
+
(
v2 + w2

)]
. The multi-symplectic con-

servation law for the NLS equation is given by

∂t[dp ∧ dq] + ∂x[dp ∧ dv + dq ∧ dw] = 0. (7)

Implementing relations (4)-(5) for the NLS equation we obtain the energy con-
servation law (ECL)

1

2

[(
p2 + q2

)2 − (
v2 + w2

)]
t
+ [ptv + qtw]x = 0. (8)
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1.2 The multi-symplectic form of the 2D Gross-Pitaevskii equation

After rescaling the physical variables, the Gross-Pitaevskii (GP) equation is given
by

iut = −1

2
(uxx + uyy) + α|u|2u+ V (x, y)u (9)

where u(x, y, t) is the macroscopic wave function of the condensate and V (x) is
an experimentally generated macroscopic potential. The parameter α determines
whether (9) is repulsive (α = 1, defocusing nonlinearity), or attractive (α =
−1, focusing nonlinearity). Although in BEC applications both signs of α are
relevant, here we will concentrate on (9) with repulsive nonlinearity. As in [7],
we consider the family of periodic lattice potentials given by

V (x, y) = − (
A1sn

2
1 +B1

) (
A2sn

2
2 +B2

)
+ (m1k1sn1)

2
+ (m2k2sn2)

2
(10)

where sni = sn(mix, ki) denote the Jacobian elliptic sine functions, with elliptic
moduli ki. A nice feature of this potential is that it has some closed form solutions
which can be used for comparative purposes.

The GP equation can be reformulated as a multisymplectic PDE by letting
u = p+ iq and v1 = px, v2 = py, w1 = qx, w2 = qy. Then, with the state vector
z = (p, q, v1, w1, v2, w2), the skew-symmetric matrices

M =




0 1 0 0 0 0
−1 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0




, K1 =




0 0 −1
2 0 0 0

0 0 0 −1
2
0 0

1
2 0 0 0 0 0
0 1

2 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0




, K2 =




0 0 0 0 −1
2 0

0 0 0 0 0 −1
2

0 0 0 0 0 0
0 0 0 0 0 0
1
2
0 0 0 0 0

0 1
2 0 0 0 0




and HamiltonianS(z) = − 1
4

[(
p2 + q2

)2
+ 2V

(
p2 + q2

)− (
v2
1 + w2

1 + v2
2 + w2

2

)]
,

the system can be written in the canonical form (1).
The multi–symplectic conservation law

∂tω + ∂xκ1 + ∂yκ2 = 0 (11)

where ω and κi are given by (2).
The energy conservation law is

∂e

∂t
+

∂f1

∂x
+

∂f

∂y
= 0 (12)

with energy density

e = −1

4

[(
p2 + q2

)2
+ 2V

(
p2 + q2

)− (pv1x + qw1x + pv2y + qw2y)
]

(13)

and the two energy fluxes

f1 = −1

4
(pv1t + qw1t − ptv1 − qtw1) , f2 = −1

4
(pv2t + qw2t − ptv2 − qtw2) .
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In this case the ECL for the GP equation becomes

[(
p2 + q2

)2
+ 2V

(
p2 + q2

)
+

(
v2
1 + w2

1 + v2
2 + w2

2

)]
t

−2
[
(ptv1 + qtw1)x + (ptv2 + qtw2)y

]
= 0.(14)

2 The Spectral Discretization

Bridges and Reich [5] have shown that using the Fourier transforms leaves the
multi–symplectic nature of a PDE unchanged and that the discrete Fourier sys-
tem recovers the standard spectral discretizations leading to a system of Hamil-
tonian ODEs which can be integrated by standard symplectic integrators. We
briefly summarize these results.

Consider the space L2(I) of L-periodic, square integrable functions in I =
[−L/2, L/2] and let U = Fu denote the discrete Fourier transform of u ∈ L2(I).
Here F : L2 → l2 denotes the Fourier operator which gives the complex–valued
Fourier coefficients Uk ∈ C, k = −∞, . . . ,−1, 0, 1, . . . ,∞, which we collect in the
infinite–dimensional vector U = (. . . , U−1, U0, U1, . . .) ∈ l2. Note that U−k = U∗

k .
We also introduce the L2 inner product, which we denote by (u, v) and the l2
inner product, which we donote by 〈U, V 〉. The inverse Fourier operator F−1 :
l2 → L2 is defined by 〈V,Fu〉 = (F−1V, u). Furthermore, partial differentiation
with respect to x ∈ I simply reduces to ∂xu = F−1ΘU where Θ : l2 → l2 is the
diagonal spectral operator with entries θk = i2πk/L.

These definitions can be generalized to vector–valued functions z ∈ Ld
2(I). Let

F̂ : Ld
2(I) → ld2 be defined such that Z = (Z1, . . . , Zd) = F̂z = (Fz1, . . . ,Fzd).

Thus with a slight abuse of notations and after dropping the hats, we have
Z = Fz, z = F−1Z, and ∂xz = (∂xz

1, . . . , ∂xz
d) = (F−1ΘZ1, . . . ,F−1ΘZd) =

F−1ΘZ
Applying these operators to the multi–symplectic PDE (1), one obtains an

infinite dimensional system of ODEs

M∂tZ +KΘZ = ∇ZS̄(Z), S̄(Z) =

∫ L

−L

S(F−1Z) dx. (15)

This equation can appropriately be called a multi–symplectic spectral PDE with
associated multi–symplectic and energy conservation laws

∂tΩk + θkKk = 0, Ω = Fω, K = Fκ, (16)

∂tEk + θkFk = 0, E = Fe, F = Ff. (17)

Bridges and Reich show that the truncated Fourier series,

Uk =
1√
N

N∑
l=1

ul e
−θk(l−1)∆x, ul = u(xl), xl = −L

2
+ (l − 1)∆x, ∆x =

L

N
,
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with

θk =




i 2π
L (k − 1) for k = 1, . . . , N/2,

0 for k = N/2 + 1
−θN−k+2 for k = N/2 + 2, . . . , N

gives a multi–symplectic spatial discretization [5]. Therefore to mantain the
multi–symplecticity a discrete integrator that is symplectic in time should be
used, such as the implicit midpoint method.
The 1D NLS equation The beauty of the spectral multi–symplectic scheme
(15) is that in many cases, such as those considered in this paper, one can recover
the standard spectral discretization of the original equation in complex form.
That is, using a spectral discretization of the spatial derivatives one obtains a
multi–symplectic Hamiltonian system of ODEs which can be integrated using
standard symplectic methods such as the implicit midpoint rule.

Let Dn(u) be the spectral discretization of ∂nu
∂xn , Dn(u) = F−1{ΘnFu}, and

C(u) = 2|u|2u. Then the multi–symplectic spectral method for the 1D NLS,
using the implicit midpoint rule in time, is given by

i
u1 − u0

∆t
+D2(u1/2) + C(u1/2) = 0, (18)

where u1/2 = (u1 + u0)/2 and uj = u(x, j∆t). Scheme (18) is denoted as MS-S
in the numerical experiments.

The numerically induced residual Ri of the ECL is given by

Ri =
E1

i −E0
i

∆t
+D1(F

1/2
i ), (19)

where En = 1
2

(|un|4 − |D1(un)|2) and F 1/2 = Re
{(

u1−u0

∆t

)∗
D1(u1/2)

}
. This

residual of the ECL is due to local non–conservation of energy under numerical
discretization, and it can be compared with the global energy error

∆Ej = |Ej −E0|.
Note the relation

Ej −Ej−1

∆t
=

∑
i

Rj
i

.
The 2D GP equation As before, we let Dn

i (x) be the spectral discretization of
∂nu
∂xn

i
, Dn

i (u) = F−1{Θn
i Fu} and C(u) = |u|2u− V (x, y)u. Then the multi–sym-

plectic spectral method for the 2D GP equation, using the second order implicit
midpoint rule in time, is given by

i
u1 − u0

∆t
+D2

1(u
1/2) +D2

2(u
1/2) + C(u1/2) = 0, (20)

where u1/2 = (u1 + u0)/2 and uj = u(x, y, j∆t). Scheme (20) is denoted as
GP-MS in the numerical experiments.
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The numerically induced residual Ri of the ECL is given by

R =
E1 −E0

∆t
− 2

(
D1

1

(
F

1/2
1

)
+D1

2

(
F

1/2
2

))

with
Ej =

(|uj|4 + 2V |u|2 + |D1
1(u

j)|2 + |D1
2(u

j)|2) , (21)

and

F
1/2
i = Re

{(
u1 − u0

∆t

)∗
D1

i (u
1/2)

}
. (22)

We are interested in simulatingmulti-phase quasi-periodic (in time) solutions
to the NLS and GP equations under periodic boundary conditions.

3 Numerical Experiments

The 1D NLS equation: We consider initial conditions of the form

u0(x) = a(1 + ε cosµx) (23)

where a = 0.5, ε = 0.1, µ = 2π/L and L is either (a) L = 2
√

2π or (b) L = 4
√

2π
[2]. Initial data (a) and (b) correspond to multi-phase solutions, near the plane
wave, which are characterized by either one or two excited modes, respectively.
We refer to these cases as the one mode and two mode case.

In [2], a multi-symplectic centered cell discretization (obtained by concate-
nating two implicit midpoint schemes) as well as an integrable-symplectic dis-
cretization (an integrable spatial discretization with symplectic integrator in
time) were developed for the NLS equation. The multi-symplectic centered cell
discretization is denoted as MS-CC in the subsequent discussion. The geometric
integrators were shown to be more efficient than standard integrators in preser-
vation of geometric features of the system such as local and global conserved
quantities, quasiperiodic character of the motion and qualitative features of the
waveform. However, among the geometric integrators, performance varied. The
integrable-symplectic scheme reproduced more faithfully the qualitative features
of the wave profile than the MS-CC scheme.

In this paper, we show that the MS spectral discretization captures the qual-
itative features of the waveform better than the MS centered cell discretization.
We begin with initial data (a) for the one mode case. Figures 1 show the con-
servation of the residual energy R(x, t) using the MS-S and the MS-CC dis-
cretizations, respectively, with N = 64, ∆t = 2.5 × 10−3, T = 450 − 500. The
error in the ECL obtained using the spectral scheme is several orders of mag-
nitude smaller than the ECL obtained with the centered cell scheme (similarly
for the corresponding error in the global energy, not shown). The surfaces of the
one-mode case obtained with MS-S and MS-CC are essentially identical and the
global momentum and norm are conserved exactly by both schemes, up to the
error criterion of 10−14 in the iteration procedure in these implicit schemes (not
shown).
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Fig. 1. The residual ECL, R(x, t), of the NLS one mode case obtained using a) the
MS-S scheme and b) the MS-CC sceme with N = 64, ∆t = 2.5× 10−3, T = 450− 500.
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Fig. 2. The surface |u(x, t)| of the NLS two mode case obtained using a) the MS-S
scheme and b) the MS-CC sceme with N = 64, ∆t = 5× 10−3, T = 0 − 50.
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Figures 2 show the surfaces |u(x, t)| of the waveform obtained using MS-
S and MS-CC, respectively for initial data (b) with discretization parameters
N = 64, ∆t = 5 × 10−3, T = 0 − 50. The MS-S scheme correctly captures
the quasiperiodic motion and produces results which are comparable to those
obtained using the integrable-symplectic scheme (see [2]). On the other hand,
using the MS-CC integrator, the onset of numerically induced temporal chaos
is observed at approximately t = 25. The temporal chaos is characterized by
a random switching in time of the location of the spatial excitations in the
waveform, see Figure 2(b). However, for the duration of the simulation 0 < t <
500, switching in the spatial excitations does not occur using the MS-S scheme.
As in the one mode case, the ECL is preserved better by the MS-S scheme. Since
a significant improvement in the qualitative features of the solution is obtained
with the MS-S scheme in 1D, MS spectral schemes should prove to be a valuable
tool in integrating multi-dimensional PDEs.
The 2D GP equation: In the following experiments periodic boundary condi-
tions in x and y are imposed and we use a fixed N×N spatial lattice withN = 32.
The time step used throughout is ∆t = 2× 10−3. We begin by considering solu-
tions of (9) with an elliptic function potential (10) that has the following choice
of constants: k1 = k2 = 1/2, m1 = m2 = 1, A1 = A2 = −1, B1 = B2 = −A1/k

2
1

and the initial condition

u0(x, y) =
√

B1

√
B2dn(m1x, k1)dn(m2x, k2). (24)

This is initial data for a linearly stable stationary solution of the GP equation.

Fig. 3. Stable periodic potential with constants k1 = k2 = 1/2, m1 = m2 = 1, A1 =
A2 = −1, B1 = B2 = −A1/k

2
1 and initial condition (24): a) Surface; b) Fourier

spectrum.

The evolution of the solution obtained using the GP-MS scheme (20) is shown
in Figure 3. The surface |u(x, y, t)| is given in the first column and the fourier
spectrum is given in the second column. The plots are at t = 0 and t = 60, top
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and bottom figures respectively. As analytically determined in [7], this solution
is clearly stable. In further numerical simulations (not shown) for 0 < t < 1000,
the solution obtained with GP-MS (20) remains stable with no growth in the
Fourier modes. The ECL is preserved on the order of 10−3 and the error in the
global energy oscillates in a bounded fashion as is typical of the behavior of a
symplectic integrator.

Next, we examine the solution obtained using the elliptic function potential
(10) with the values of the constants now specified to be k1 = k2 = 1/2, m1 =
m2 = 1, A1 = A2 = 1, B1 = B2 = −A1 and the initial condition

u0(x, y) =
√

B1

√
B2cn(m1x, k1)cn(m2x, k2). (25)

Figure 3 shows the surface of the waveform |u(x, y, t)| and the fourier spectrum
obtained using the GP-MS scheme (20) at t = 0 and t = 60, in the same order
as before.

Obviously, this solution is unstable, as reported in [7]. The onset of the
instability occurs between t = 15 and t = 20 and by t = 60 a significant number
of additional Fourier modes have become excited. The ECL, as well as the global
invaariants are well preserved by the GP-MS discretization. Even working with
this coarse lattice, we are able to recover the main qualitative features of the
solution. As for the 1D NLS equation, for two dimensional systems we already
see the power of multi-symplectic spectral integrators. A more detailed study of
the performance of the GP-MS scheme, relative to standard integrators, with
respect to the local conservation of energy and momentum as well as the global
invariants, will be presented elsewhere.

Fig. 4. Unstable periodic potential with constants k1 = k2 = 1/2, m1 = m2 = 1, A1 =
A2 = 1, B1 = B2 = −A1 and initial condition (25): a) Surface; b) Fourier spectrum.
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