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Abstract. A component of a new environment for the numerical solu-
tion of ordinary differential equations in Mathematica is outlined. We
briefly describe how special purpose integration methods can be con-
structed to solve structured dynamical systems. In particular we focus
on the solution of orthogonal matrix differential systems using projection.
Examples are given to illustrate the advantages of a projection scheme
over conventional integration methods.
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1 Features of the framework

The Mathematica function NDSolve can be used to find numerical solutions of a
wide range of ordinary as well as some partial differential equations. A drawback
with the current function is that the design and implementation are in the form
of a ‘black-box’ and there is only a single one-step numerical method available,
an outdated explicit Runge-Kutta pair of Fehlberg. Since the function is not
modular, it cannot be used to take advantage of new research developments.

One of the aims of an ongoing overhaul is to make a number of differential
equations solvers available in a uniform, integrated and extensible environment.
Many one-step integrators are being developed: explicit, implicit, linearly im-
plicit Euler and Midpoint; embedded explicit Runge Kutta pairs of various or-
ders; Gauss, Lobatto (IIIA, IIIB, IIIC), Radau (IA, IIA) implicit Runge Kutta
methods; extrapolation methods.

In recent years there has been a considerable growth of interest in study-
ing and numerically preserving a variety of dynamical properties, leading to so
called geometric integrators (see for example [9], [10], [17], [18], [21]). The new
NDSolve allows built-in methods to be exploited as building blocks for the effi-
cient construction of special purpose (compound) integrators. The framework is
also hierarchical, meaning that one method can call another at each step of an
integration. These features facilitate the construction of geometric integrators
and the implementation of one specific method is given here as demonstration.

This paper is organized as follows. Section 2 describes the class of problems of
interest and various strategies for their numerical solution. Amongst the possible
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choices, an iterative method is selected and an algorithm for the implementa-
tion is discussed together with appropriate stopping criteria. Section 3 describes
the implementation of a projected integration method, OrthogonalProjec-
tion, written in top-level Mathematica code. Examples of improved qualitative
behavior over conventional integrators are given by considering the solution of
square and rectangular orthogonal matrix differential systems in Section 4 and
Section 5. Some issues relating to potential extensions are given in Section 6
together with a motivating example.

2 Orthogonal projection

Consider the matrix differential equation:

y′(t) = f(t, y(t)), t > 0 , (1)

where the initial value y0 = y(0) ∈ Rm×p is given and satisfies yT0 y0 = I, where
I is the p×p identity matrix. Assume that the solution preserves orthonormality,
yT y = I, and that it has full rank p < m for all t ≥ 0.

From a numerical perspective, a key issue is how to integrate (1) in such a way
that the approximate solution remains orthogonal. Several strategies are possi-
ble. One approach, presented in [4], is to use an implicit Runge-Kutta method
such as the Gauss scheme. These methods, however, are computationally ex-
pensive and furthermore there are some problem classes for which no standard
discretization scheme can preserve orthonormality [5]. Some alternative strate-
gies are described in [3] and [6]. The approach that will be taken up here is to
use any reasonable numerical integrator and then post-process using a projec-
tive procedure at the end of each integration step. It is also possible to project
the solution at the end of the integration instead of at each step, although the
observed end point global errors are often larger [13].

Given a matrix, a nearby orthogonal matrix can be found via a direct al-
gorithm such as QR decomposition or singular value decomposition (see for
example [4], [13]). The following definitions are useful for the direct construction
of orthonormal matrices [8].

Definition 1 (Thin Singular Value Decomposition (SVD)). Given a ma-
trix A ∈ R

m×p with m ≥ p, there exist two matrices U ∈ R
m×p and V ∈

R
p×p such that UT AV is the diagonal matrix of singular values of A, Σ =

diag(σ1, . . . , σp) ∈ Rp×p, where σ1 ≥ · · · ≥ σp ≥ 0. U has orthonormal columns
and V is orthogonal.

Definition 2 (Polar Decomposition). Given a matrix A and its singular
value decomposition U Σ V T , the polar decomposition of A is given by the product
of two matrices Z and P where Z = U V T and P = V Σ V T . Z has orthonormal
columns and P is symmetric positive semidefinite.
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If A has full rank then its polar decomposition is unique. The orthonormal
polar factor Z of A is the matrix that, for any unitary norm, solves the mini-
mization problem [16]:

‖A− Z‖ = min
Y ∈ Rm×p

{‖A− Y ‖ : Y T Y = I
}
. (2)

QR decomposition is cheaper than SVD, roughly by a factor of two, but it does
not provide the best orthonormal approximation.

Locally quadratically convergent iterative methods for computing the or-
thonormal polar factor also exist, such as Newton or Schulz iteration [13]. For
a projected numerical integrator, the number of iterations required to accu-
rately approximate (2) varies depending on the local error tolerances used in the
integration. For many differential equations solved in IEEE double precision,
however, one or two iterations are often sufficient to obtain convergence to the
orthonormal polar factor. This means that Newton or Schulz methods can be
competitive with QR or SVD [13]. Iterative methods also have an advantage
in that they can produce smaller errors than direct methods (see Figure 2 for
example).

The application of Newton’s method to the matrix function AT A−I leads to
the following iteration for computing the orthonormal polar factor of A ∈ Rm×m:

Yi+1 = (Yi + Y −T
i )/2, Y0 = A.

For an m × p matrix with m > p the process needs to be preceded by QR
decomposition, which is expensive. A more attractive scheme, that works for
any m× p matrix A with m ≥ p, is the Schulz iteration [15]:

Yi+1 = Yi + Yi (I − Y T
i Yi)/2, Y0 = A. (3)

The Schulz iteration has an arithmetic operation count per iteration of 2m2 p+
2mp2 floating point operations, but is rich in matrix multiplication [13]. In a
practical implementation, gemm level 3 BLAS of LAPACK [19] can be used
in conjunction with architecture specific optimizations via the Automatically
Tuned Linear Algebra Software (ATLAS) [22]. Such considerations mean that the
arithmetic operation count of the Schulz iteration is not necessarily an accurate
reflection of the observed computational cost.

A useful bound on the departure from orthonormality of A in (2) is [14]:

‖AT A− I‖F . (4)

By comparing (4) and the term in parentheses in (3), a simple stopping criterion
for the Schulz iteration is ‖AT A− I‖F ≤ τ for some tolerance τ .

Assume that an initial value yn for the current solution is given, together
with a solution yn+1 = yn +∆yn from a one-step numerical integration method.
Assume that an absolute tolerance τ for controlling the Schulz iteration is also
prescribed. The following algorithm can be used for implementation.
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Algorithm 1 (Standard formulation)

1. Set Y0 = yn+1 and i = 0.
2. Compute E = I − Y T

i Yi
3. Compute Yi+1 = Yi + YiE/2.
4. If ‖E‖F ≤ τ or i = imax then return Yi+1.
5. Set i = i+ 1 and go to step 2.

NDSolve uses compensated summation to reduce the effect of rounding
errors made in repeatedly adding the contribution of small quantities ∆yn to yn
at each integration step [16]. Therefore the increment ∆yn is returned by the
base integrator. An appropriate orthogonal correction ∆Y i for the projective
iteration can be determined using the following algorithm.

Algorithm 2 (Increment formulation)

1. Set ∆Y 0 = 0 and i = 0.
2. Set Yi = ∆Y i + yn+1

3. Compute E = I − Y T
i Yi

4. Compute ∆Y i+1 = ∆Y i + YiE/2.
5. If ‖E‖F ≤ τ or i = imax then return ∆Y i+1 +∆yn.
6. Set i = i+ 1 and go to step 2.

This modified algorithm is used in OrthogonalProjection and shows an ad-
vantage of using an iterative process over a direct process, since it is not obvious
how an orthogonal correction can be derived for direct methods.

3 Implementation

The projected orthogonal integrator OrthogonalProjection has three basic
components, each of which is a separate routine:

– initialize the basic numerical method to use in the integration;
– invoke the base integration method at each step;
– perform an orthogonal projection.

Initialization of the base integrator involves constructing its ‘state’. Each
method in the new NDSolve framework has its own data object which en-
capsulates information that is needed for the invocation of the method. This
includes, but is not limited to, method coefficients, workspaces, step size control
parameters, step size acceptance/rejection information, Jacobian matrices. The
initialization phase is performed once, before any actual integration is carried
out, and the resulting data object is validated for efficiency so that it does not
need to be checked at each integration step.

Options can be used to modify the stopping criteria for the Schulz iteration.
One option provided by our code is IterationSafetyFactor which allows control
over the tolerance τ of the iteration. The factor is combined with a Unit in the
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Last Place, determined according to the working precision used in the integration
(ULP ≈ 2.22045 10−16 for IEEE double precision). The Frobenius norm used
for the stopping criterion can be efficiently computed via the LAPACK LANGE
functions [19]. An option MaxIterations controls the maximum number of
iterations imax that should be carried out.

The integration and projection phase are performed sequentially at each time
step. During the projection phase various checks are performed, such as confirm-
ing that the basic integration proceeded correctly (for example a step rejection
did not occur). After each projection, control returns to a central time stepping
routine which is a new component of NDSolve. The central routine advances
the solution and reinvokes the integration method.

An important feature of our implementation is that the basic integrator can
be any built-in numerical method, or even a user-defined procedure. An explicit
Runge-Kutta pair is often used as the basic time stepping integrator but if higher
local accuracy is required an extrapolation method could be selected by simply
specifying an appropriate option.

All numerical experiments in the sequel have been carried out using the
default options of NDSolve. The appropriate initial step size and method order
are selected automatically by the code (see for example [1], [7] and [9]). The
step size may vary throughout the integration interval in order to satisfy local
absolute and relative error tolerances. Order and tolerances can also be specified
using options. With the default settings the examples of Section 4 and Section 5
require exactly two Schulz iterations per integration step.

4 Square systems

Consider the orthogonal group Om(R) = {Y ∈ Rm×m : Y T Y = I}. The follow-
ing example involves the solution of a matrix differential system on O3(R) [23].

Y ′ = F (Y )Y
=
(
A +

(
I − Y Y T

))
Y

where A =


 0 −1 1

1 0 1
−1 −1 0


 . (5)

The matrix A is skew-symmetric. Setting Y (0) = I, the solution evolves as
Y (t) = exp[t A] and has eigenvalues:

λ1 = 1, λ2 = exp
(
t i
√

3
)
, λ3 = exp

(− t i
√

3
)
.

As t approaches π
/√

3 two of the eigenvalues of Y (t) approach −1. The interval
of integration is [0, 2].

The solution is first computed using an explicit Runge-Kutta method. Fig-
ure 1 shows the orthogonal error (4) at grid points in the numerical integration.
The error is of the order of the local accuracy of the numerical method.

The orthogonal error in the solution computed using OrthogonalProjec-
tion, with the same explicit Runge-Kutta method as the base integration scheme,
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Fig. 1. Orthogonal error ‖Y T Y − I‖F vs time for an explicit Runge Kutta method
applied to (5).
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Fig. 2. Orthogonal error ‖Y T Y − I‖F vs time for projected orthogonal integrators
applied to (5). The dashed line corresponds to forming the polar factor directly via
SVD. The solid line corresponds to the Schulz iteration in OrthogonalProjection.

is illustrated in Figure 2. The errors in the orthonormal polar factor formed di-
rectly from the SVD is also given. The initial step size and method order are the
same as in Figure 1, but the step size sequences in the integration are different.
The orthogonal errors in the direct decomposition are larger than those of the
iterative method, which are reduced to approximately the level of roundoff in
IEEE double precision arithmetic.

5 Rectangular systems

OrthogonalProjection also works for rectangular matrix differential systems.
Formally stated, we are interested in solving ordinary differential equations on
the Stiefel manifold Vm,p(R) = {Y ∈ R

m×p : Y T Y = I} of matrices of di-
mension m × p, with 1 ≤ p < m. Solutions that evolve on the Stiefel manifold
find numerous applications such as eigenvalue problems in numerical linear al-
gebra, computation of Lyapunov exponents for dynamical systems and signal
processing. Consider an example adapted from [3]:

q′(t) = Aq(t), t > 0, q(0) =
1√
m

[1, . . . , 1]T , (6)
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Fig. 3. Orthogonal error ‖Y T Y − I‖F vs time for (6) using ExplicitRungeKutta
(left) and OrthogonalProjection (right).

where A = diag(a1, . . . , am) ∈ Rm×m with ai = (−1)iα, α > 0. The normalized
exact solution is given by:

Y (t) =
q(t)

‖q(t)‖ ∈ R
m×1, q(t) =

1√
m

[exp(a1t), . . . , exp(amt)]
T .

Y (t) therefore satisfies the following weak skew-symmetric system on Vm,1(R) :

Y ′ = F (Y )Y
=
(
I − Y Y T

)
AY

The system is solved on the interval [0, 5] with α = 9/10 and dimension m = 2.

The orthogonal error in the solution has been computed using an explicit
Runge-Kutta pair and using OrthogonalProjection with the same explicit
Runge-Kutta pair for the basic integrator. Figure 3 gives the orthogonal error
at points sampled during the numerical integration. For ExplicitRungeKutta
the error is of the order of the local accuracy. Using OrthogonalProjection
the deviation from the Stiefel manifold is reduced to the level of roundoff.

Since the exact solution in known, it is possible to compute the component-
wise absolute global error at the end of the integration interval. The results are
displayed in Table 1.

Method Errors

ExplicitRungeKutta (−2.38973 10−9, 4.14548 10−11)
OrthogonalProjection (−2.38974 10−9, 2.94986 10−13)

Table 1. Absolute global integration errors for (6).
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6 Future work

OrthogonalProjection indicates how it is possible to extend the developmen-
tal NDSolve environment to add new numerical integrators. The method works
by numerically solving a differential system and post-processing the solution at
each step via an orthogonal projective procedure.

In some systems there may be constraints that are not equivalent to the
conservation of orthogonality. An example is provided by Euler’s equations for
rigid body motion (see [12] and [20]):


 ẏ1

ẏ2

ẏ3


 =


 0 y3

I3
− y2

I2− y3

I3
0 y1

I1
y2

I2
− y1

I1
0




y1

y2

y3


 . (7)

Two quadratic first integrals of the system are:

I(y) = y2
1 + y2

2 + y2
3, (8)

and

H(y) =
1

2

(
y2
1

I1
+
y2
2

I2
+
y2
3

I3

)
. (9)

Constraint (8) is conserved by orthogonality and has the effect of confining the
motion from R

3 to a sphere. Constraint (9) represents the kinetic energy of
the system and, in conjunction with (8), confines the motion to ellipsoids on the
sphere. Certain numerical methods, such as the implicit midpoint rule or 1-stage
Gauss implicit Runge-Kutta scheme, preserve quadratic invariants exactly (see
for example [2]). Figure 4 shows three solutions of (7) computed on the interval
[0, 32] with constant step size 1/10, using the initial data:

I1 = 2, I2 = 1, I3 =
2

3
, y1(0) = cos(

11

10
), y2(0) = 0, y3(0) = sin(

11

10
) .

For the explicit Euler method solutions do not lie on the unit sphere. Orthogo-
nalProjection, with the explicit Euler method as the base integrator, preserves
orthogonality but not the quadratic invariant (9), so that trajectories evolve on
the sphere but are not closed. The implicit midpoint method conserves both (8)
and (9) so that solutions evolve as ellipsoids on the sphere.

Runge-Kutta methods cannot conserve all polynomial invariants that are
neither linear or quadratic [12, Theorem 3.3]. In such cases, however, the local
solution from any one-step numerical scheme can be post-processed using a gen-
eralized projection based on Newton iteration (see for example [12, Section IV.4]
and [10, Section VII.2]). In order to address these issues, a multiple constraint
method, Projection, is currently under development. If the differential system
is ρ-reversible in time then a symmetric projection process has also been shown
to be beneficial [11].
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Fig. 4. Solutions of (7) using the explicit Euler method (left), OrthogonalProjection
(center) and the implicit midpoint method (right).
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